

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART
Peripherals	Brown-out Detect/Reset, CapSense, LCD, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 8x12b SAR; D/A 2xIDAC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4245pva-482t

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Functional Overview

CPU and Memory Subsystem

CPU

The Cortex-M0 CPU in PSoC 4200 is part of the 32-bit MCU subsystem, which is optimized for low-power operation with extensive clock gating. It mostly uses 16-bit instructions and executes a subset of the Thumb-2 instruction set. This enables fully compatible binary upward migration of the code to higher performance processors such as the Cortex-M3 and M4, thus enabling upward compatibility. The Cypress implementation includes a hardware multiplier that provides a 32-bit result in one cycle. It includes a nested vectored interrupt controller (NVIC) block with 32 interrupt inputs and also includes a Wakeup Interrupt Controller (WIC). The WIC can wake the processor up from the Deep Sleep mode, allowing power to be switched off to the main processor when the chip is in the Deep Sleep mode. The Cortex-M0 CPU provides a Non-Maskable Interrupt (NMI) input, which is made available to the user when it is not in use for system functions requested by the user.

The CPU also includes a debug interface, the serial wire debug (SWD) interface, which is a two-wire form of JTAG; the debug configuration used for PSoC 4200 has four break-point (address) comparators and two watchpoint (data) comparators.

Flash

The PSoC 4200 device has a flash module with a flash accelerator, tightly coupled to the CPU to improve average access times from the flash block. The flash block is designed to deliver 1 wait-state (WS) access time at 48 MHz and with 0-WS access time at 24 MHz. The flash accelerator delivers 85% of single-cycle SRAM access performance on average. Part of the flash module can be used to emulate EEPROM operation if required.

The PSoC 4200 flash supports the following flash protection modes at the Memory subsystem level.

Open: No Protection. Factory default mode that the product is shipped in.

Protected: User may change from Open to Protected. This mode disables Debug interface accesses. The mode can be set back to Open but only after completely erasing the flash.

Kill: User may change from Open to Kill. This mode disables all Debug accesses. The part cannot be erased externally thus obviating the possibility of partial erasure by power interruption and potential malfunction and security leaks. This is an irrecvocable mode.

In addition, Row level Read/Write protection is also supported to prevent inadvertent Writes as well as selectively block Reads. Flash Read/Write/Erase operations are always available for internal code using system calls.

SRAM

SRAM memory is retained during Hibernate.

SROM

A supervisory ROM that contains boot and configuration routines is provided.

System Resources

Power System

The power system is described in detail in the section Power on page 11. It provides assurance that voltage levels are as required for each respective mode and either delay mode entry (on power-on reset (POR), for example) until voltage levels are as required for proper function or generate resets (Brown-Out Detect (BOD)) or interrupts (Low Voltage Detect (LVD)). PSoC 4200 operates with a single external supply over the range of 1.71 V to 5.5 V and has five different power modes, transitions between which are managed by the power system. The PSoC 4200 provides Sleep, Deep Sleep, Hibernate, and Stop low-power modes.

Clock System

The PSoC 4200 clock system is responsible for providing clocks to all subsystems that require clocks and for switching between different clock sources without glitching. In addition, the clock system ensures that no metastable conditions occur.

The clock system for PSoC 4200 consists of the IMO and the ILO internal oscillators and provision for an external clock.

Figure 1. PSoC 4200 MCU Clocking Architecture

The HFCLK signal can be divided down (see PSoC 4200 MCU Clocking Architecture) to generate synchronous clocks for the UDBs, and the analog and digital peripherals. There are a total of 12 clock dividers for PSoC 4200, each with 16-bit divide capability; this allows eight to be used for the fixed-function blocks and four for the UDBs. The analog clock leads the digital clocks to allow analog events to occur before digital clock-related noise is generated. The 16-bit capability allows a lot of flexibility in generating fine-grained frequency values and is fully supported in PSoC Creator. When UDB-generated Pulse Interrupts are used, SYSCLK must equal HFCLK.

Fixed Function Digital

Timer/Counter/PWM Block

The Timer/Counter/PWM block consists of four 16-bit counters with user-programmable period length. There is a Capture register to record the count value at the time of an event (which may be an I/O event), a period register which is used to either stop or auto-reload the counter when its count is equal to the period register, and compare registers to generate compare value signals which are used as PWM duty cycle outputs. The block also provides true and complementary outputs with programmable offset between them to allow use as deadband programmable complementary PWM outputs. It also has a Kill input to force outputs to a predetermined state; for example, this is used in motor drive systems when an overcurrent state is indicated and the PWMs driving the FETs need to be shut off immediately with no time for software intervention.

Serial Communication Blocks (SCB)

PSoC 4200 has two SCBs, which can each implement an I^2C , UART, SPI, or LIN Slave interface.

I²C Mode: The hardware I²C block implements a full multi-master and slave interface (it is capable of multimaster arbitration). This block is capable of operating at speeds of up to 1 Mbps (Fast Mode Plus) and has flexible buffering options to reduce interrupt overhead and latency for the CPU. The FIFO mode is available in all channels and is very useful in the absence of DMA.

The I²C peripheral is compatible with the I²C Standard-mode, Fast-mode, and Fast-mode Plus devices as defined in the NXP I²C-bus specification and user manual (UM10204). The I²C bus I/O is implemented with GPIO in open-drain modes. The I²C bus uses open-drain drivers for clock and data with pull-up resistors on the bus for clock and data connected to all nodes. Required Rise and Fall times for different I²C speeds are guaranteed by using appropriate pull-up resistor values depending on V_{DD}, Bus Capacitance, and resistor tolerance. For detailed information on how to calculate the optimum pull-up resistor value for your design, please refer to the UM10204 I²C bus specification and user manual, the newest revision is available at www.nxp.com.

PSoC 4200 is not completely compliant with the I²C spec in the following respects:

- GPIO cells are not overvoltage tolerant and, therefore, cannot be hot-swapped or powered up independently of the rest of the I²C system.
- Fast-mode Plus has an I_{OL} specification of 20 mA at a V_{OL} of 0.4 V. The GPIO cells can sink a maximum of 8 mA I_{OL} with a V_{OL} maximum of 0.6 V.
- Fast-mode and Fast-mode Plus specify minimum Fall times, which are not met with the GPIO cell; Slow strong mode can help meet this spec depending on the Bus Load.
- When the SCB is an I²C Master, it interposes an IDLE state between NACK and Repeated Start; the I²C spec defines Bus free as following a Stop condition so other Active Masters do

not intervene but a Master that has just become activated may start an Arbitration cycle.

■ When the SCB is in I²C Slave mode, and Address Match on External Clock is enabled (EC_AM = 1) along with operation in the internally clocked mode (EC_OP = 0), then its I²C address must be even.

UART Mode: This is a full-feature UART operating at up to 1 Mbps. It supports automotive single-wire interface (LIN), infrared interface (IrDA), and SmartCard (ISO7816) protocols, all of which are minor variants of the basic UART protocol. In addition, it supports the 9-bit multiprocessor mode that allows addressing of peripherals connected over common RX and TX lines. Common UART functions such as parity error, break detect, and frame error are supported. An 8-deep FIFO allows much greater CPU service latencies to be tolerated. Note that hardware handshaking is not supported. This is not commonly used and can be implemented with a UDB-based UART in the system, if required.

SPI Mode: The SPI mode supports full Motorola SPI, TI SSP (essentially adds a start pulse used to synchronize SPI Codecs), and National Microwire (half-duplex form of SPI). The SPI block can use the FIFO and also supports an EzSPI mode in which data interchange is reduced to reading and writing an array in memory.

LIN Slave Mode: The LIN Slave mode uses the SCB hardware block and implements a full LIN slave interface. This LIN slave is compliant with LIN v1.3 and LIN v2.1/2.2 specification standards. It is certified by C&S GmbH based on the standard protocol and data link layer conformance tests. LIN slave can be operated at baud rates of up to ~20 Kbps with a maximum of 40-meter cable length. PSoC Creator software supports up to two LIN slave interfaces in the PSoC 4 device, providing built-in application programming interfaces (APIs) based on the LIN specification standard.

GPIO

PSoC 4200 has 24 GPIOs. The GPIO block implements the following:

- Eight drive strength modes:
 - Analog input mode (input and output buffers disabled)
 Input only

 - □ Weak pull-up with strong pull-down
 - □ Strong pull-up with weak pull-down
 - □ Open drain with strong pull-down
 - Open drain with strong pull-up
 - Strong pull-up with strong pull-down
 - Weak pull-up with weak pull-down
- Input threshold select (CMOS or LVTTL).
- Individual control of input and output buffer enabling/disabling in addition to the drive strength modes.
- Hold mode for latching previous state (used for retaining I/O state in Deep Sleep mode and Hibernate modes).
- Selectable slew rates for dV/dt related noise control to improve EMI.

The pins are organized in logical entities called ports, which are 8-bit in width. During power-on and reset, the blocks are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix is used to multiplex between various signals that may connect to an I/O pin. Pin locations for fixed-function peripherals are also fixed to reduce internal multiplexing complexity (these signals do not go through the DSI network). DSI signals are not affected by this and any pin may be routed to any UDB through the DSI network.

Data output and pin state registers store, respectively, the values to be driven on the pins and the states of the pins themselves.

Every I/O pin can generate an interrupt if so enabled and each I/O port has an interrupt request (IRQ) and interrupt service routine (ISR) vector associated with it (5 for PSoC 4200).

Special Function Peripherals

LCD Segment Drive

PSoC 4200 has an LCD controller which can drive up to four commons and up to 32 segments. It uses full digital methods to drive the LCD segments requiring no generation of internal LCD voltages. The two methods used are referred to as digital correlation and PWM.

Digital correlation pertains to modulating the frequency and levels of the common and segment signals to generate the highest RMS voltage across a segment to light it up or to keep the RMS signal zero. This method is good for STN displays but may result in reduced contrast with TN (cheaper) displays. PWM pertains to driving the panel with PWM signals to effectively use the capacitance of the panel to provide the integration of the modulated pulse-width to generate the desired LCD voltage. This method results in higher power consumption but can result in better results when driving TN displays. LCD operation is supported during Deep Sleep refreshing a small display buffer (4 bits; 1 32-bit register per port).

CapSense

CapSense is supported on all pins in PSoC 4200 through a CapSense Sigma-Delta (CSD) block that can be connected to any pin through an analog mux bus that any GPIO pin can be connected to via an Analog switch. CapSense function can thus be provided on any pin or group of pins in a system under software control. A component is provided for the CapSense block to make it easy for the user.

Shield voltage can be driven on another Mux Bus to provide water tolerance capability. Water tolerance is provided by driving the shield electrode in phase with the sense electrode to keep the shield capacitance from attenuating the sensed input.

The CapSense block has two IDACs which can be used for general purposes if CapSense is not being used.(both IDACs are available in that case) or if CapSense is used without water tolerance (one IDAC is available).

VSSA: Analog ground pin where package pins allow; shorted to VSS otherwise

VSS: Ground pin.

VCCD: Regulated Digital supply (1.8 V ±5%).

Port Pins can all be used as LCD Commons, LCD Segment drivers, or CSD sense and shield pins can be connected to AMUXBUS A or B or can all be used as GPIO pins that can be driven by firmware or DSI signals.

The following package is supported: 28-pin SSOP.

Figure 5. 28-pin SSOP pinout

Development Support

The PSoC 4200 family has a rich set of documentation, development tools, and online resources to assist you during your development process. Visit www.cypress.com/go/psoc4 to find out more.

Documentation

A suite of documentation supports the PSoC 4200 family to ensure that you can find answers to your questions quickly. This section contains a list of some of the key documents.

Software User Guide: A step-by-step guide for using PSoC Creator. The software user guide shows you how the PSoC Creator build process works in detail, how to use source control with PSoC Creator, and much more.

Component Datasheets: The flexibility of PSoC allows the creation of new peripherals (components) long after the device has gone into production. Component data sheets provide all of the information needed to select and use a particular component, including a functional description, API documentation, example code, and AC/DC specifications.

Application Notes: PSoC application notes discuss a particular application of PSoC in depth; examples include brushless DC

motor control and on-chip filtering. Application notes often include example projects in addition to the application note document.

Technical Reference Manual: The Technical Reference Manual (TRM) contains all the technical detail you need to use a PSoC device, including a complete description of all PSoC registers. The TRM is available in the Documentation section at www.cypress.com/psoc4.

Online

In addition to print documentation, the Cypress PSoC forums connect you with fellow PSoC users and experts in PSoC from around the world, 24 hours a day, 7 days a week.

Tools

With industry standard cores, programming, and debugging interfaces, the PSoC 4200 family is part of a development tool ecosystem. Visit us at www.cypress.com/go/psoccreator for the latest information on the revolutionary, easy to use PSoC Creator IDE, supported third party compilers, programmers, debuggers, and development kits.

Electrical Specifications

Absolute Maximum Ratings

Table 2. Absolute Maximum Ratings^[1]

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID1	V _{DDD_ABS}	Digital supply relative to Vssd	-0.5	-	6	V	Absolute max
SID2	V _{CCD_ABS}	Direct digital core voltage input relative to Vssd	-0.5	-	1.95	V	Absolute max
SID3	V _{GPIO_ABS}	GPIO voltage	-0.5	-	V _{DD} +0.5	V	Absolute max
SID4	I _{GPIO_ABS}	Maximum current per GPIO	-25	-	25	mA	Absolute max
SID5	I _{GPIO_injection}	GPIO injection current, Max for V _{IH} > V _{DDD} , and Min for V _{IL} < V _{SS}	-0.5	_	0.5	mA	Absolute max, current injected per pin
BID44	ESD_HBM	Electrostatic discharge human body model	2200	-	-	V	
BID45	ESD_CDM	Electrostatic discharge charged device model	500	-	-	V	
BID46	LU	Pin current for latch-up	-200	-	200	mA	

Device-Level Specifications

All specifications are valid for –40 °C \leq T_A \leq 85 °C for A grade devices and -40 °C \leq T_A \leq 105 °C for S grade devices, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

Table 3. DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID53	V _{DD}	Power supply input voltage (V _{DDA} = V _{DDD} = V _{DD})	1.8	-	5.5	V	With regulator enabled
SID255	V _{DDD}	Power supply input voltage unregulated	1.71	1.8	1.89	V	Internally unregu- lated supply
SID54	V _{CCD}	Output voltage (for core logic)	-	1.8	-	V	
SID55	C _{EFC}	External regulator voltage bypass	1	1.3	1.6	μF	X5R ceramic or better
SID56	C _{EXC}	Power supply decoupling capacitor	-	1	-	μF	X5R ceramic or better
Active Mode,	V _{DD} = 1.71 V to	5.5 V. Typical values measured at V_{DD} =	3.3 V				•
SID9	I _{DD4}	Execute from Flash; CPU at 6 MHz	-	-	2.8	mA	
SID10	I _{DD5}	Execute from Flash; CPU at 6 MHz	-	2.2	-	mA	T = 25 °C
SID12	I _{DD7}	Execute from Flash; CPU at 12 MHz	-	-	4.2	mA	
SID13	I _{DD8}	Execute from Flash; CPU at 12 MHz	-	3.7	-	mA	T = 25 °C
SID16	I _{DD11}	Execute from Flash; CPU at 24 MHz	-	6.7	-	mA	T = 25 °C
SID17	I _{DD12}	Execute from Flash; CPU at 24 MHz	-	-	7.2	mA	
SID19	I _{DD14}	Execute from Flash; CPU at 48 MHz	-	12.8	-	mA	T = 25 °C
SID20	I _{DD15}	Execute from Flash; CPU at 48 MHz	-	-	13.8	mA	
Sleep Mode,	V _{DD} = 1.7 V to 5.	.5 V					•
SID25	I _{DD20}	I ² C wakeup, WDT, and Comparators on. 6 MHz	-	1.3	1.8	mA	V _{DD} = 1.71 V to 5.5 V

Note

 Usage above the absolute maximum conditions listed in Table 2 may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods of time may affect device reliability. The maximum storage temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When used below absolute maximum conditions but above normal operating conditions, the device may not operate to specification.

Table 3. DC Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID25A	I _{DD20A}	I ² C wakeup, WDT, and Comparators on. 12 MHz	-	1.7	2.2	mA	V _{DD} = 1.71 V to 5.5 V
Deep Sleep N	lode, V _{DD} = 1.8	V to 3.6V (Regulator on)	I	1			1
SID31	I _{DD26}	I ² C wakeup and WDT on	_	1.3	-	μA	T = 25 °C
SID32	I _{DD27}	I ² C wakeup and WDT on	-	_	45	μA	T = 85 °C
Deep Sleep N	lode, V _{DD} = 3.6	V to 5.5 V	•	•	•		•
SID34	I _{DD29}	I ² C wakeup and WDT on	-	1.5	15	μA	Typ at 25 °C Max at 85 °C
Deep Sleep N	lode, V _{DD} = 1.71	V to 1.89 V (Regulator bypassed)					·
SID37	I _{DD32}	I ² C wakeup and WDT on	-	1.7	-	μA	T = 25 °C
SID38	I _{DD33}	I ² C wakeup and WDT on	-	-	60	μA	T = 85 °C
Deep Sleep N	lode, +105 °C	•					·
SID33Q	I _{DD28Q}	I ² C wakeup and WDT on. Regulator Off.	_	-	135	μA	V _{DD} = 1.71 V to 1.89 V
SID34Q	I _{DD29Q}	I ² C wakeup and WDT on	-	-	180	μA	V _{DD} = 1.8 V to 3.6 V
SID35Q	I _{DD30Q}	I ² C wakeup and WDT on	_	-	140	μA	V _{DD} = 3.6 V to 5.5 V
Hibernate Mo	de, V _{DD} = 1.8 V	to 3.6 V (Regulator on)	1	1			1
SID40	I _{DD35}	GPIO & Reset active	-	150	-	nA	T = 25 °C
SID41	I _{DD36}	GPIO & Reset active	_	_	1000	nA	T = 85 °C
Hibernate Mo	de, V _{DD} = 3.6 V	to 5.5 V					·
SID43	I _{DD38}	GPIO & Reset active	-	150	-	nA	T = 25 °C
Hibernate Mo	de, V _{DD} = 1.71 \	v to 1.89 V (Regulator bypassed)					•
SID46	I _{DD41}	GPIO & Reset active	-	150	-	nA	T = 25 °C
SID47	I _{DD42}	GPIO & Reset active	-	-	1000	nA	T = 85 °C
Hibernate Mo	ode, +105 °C						
SID42Q	I _{DD37Q}	Regulator Off	-	-	19.4	μA	V _{DD} = 1.71 V to 1.89 V
SID43Q	I _{DD38Q}		-	-	17	μA	V _{DD} = 1.8 V to 3.6 V
SID44Q	I _{DD39Q}		_	-	16	μA	V _{DD} = 3.6 V to 5.5 V
Stop Mode		1	1	1	1	1	
SID304	I _{DD43A}	Stop Mode current; V _{DD} = 3.3 V	_	20	80	nA	Typ at 25 °C Max at 85 °C
		Stop Mode current; V _{DD} = 5.5 V	-	20	750	nA	Typ at 25 °C Max at 85 °C
Stop Mode, +	105 °C						
SID304Q	I _{DD43AQ}	Stop Mode current; V _{DD} = 3.6 V	_	—	5645	nA	
XRES curren	t						
SID307	I _{DD_XR}	Supply current while XRES asserted	-	2	5	mA	

Table 6. GPIO AC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID70	T _{RISEF}	Rise time in fast strong mode	2	-	12	ns	3.3 V V _{DDD} , Cload = 25 pF
SID71	T _{FALLF}	Fall time in fast strong mode	2	-	12	ns	3.3 V V _{DDD} , Cload = 25 pF
SID72	T _{RISES}	Rise time in slow strong mode	10	-	60		3.3 V V _{DDD} , Cload = 25 pF
SID73	T _{FALLS}	Fall time in slow strong mode	10	-	60		3.3 V V _{DDD} , Cload = 25 pF
SID74	F _{GPIOUT1}	GPIO Fout;3.3 V \leq V _{DDD} \leq 5.5 V. Fast strong mode.	-	-	33	MHz	90/10%, 25 pF load, 60/40 duty cycle
SID75	F _{GPIOUT2}	GPIO Fout;1.7 V \leq V _{DDD} \leq 3.3 V. Fast strong mode.	-	-	16.7	MHz	90/10%, 25 pF load, 60/40 duty cycle
SID76	F _{GPIOUT3}	GPIO Fout;3.3 V \leq V _{DDD} \leq 5.5 V. Slow strong mode.	-	-	7	MHz	90/10%, 25 pF load, 60/40 duty cycle
SID245	F _{GPIOUT4}	GPIO Fout;1.7 V \leq V _{DDD} \leq 3.3 V. Slow strong mode.	-	-	3.5	MHz	90/10%, 25 pF load, 60/40 duty cycle
SID246	F _{GPIOIN}	GPIO input operating frequency; 1.71 V \leq V _{DDD} \leq 5.5 V	-	-	48	MHz	90/10% V _{IO}

XRES

Table 7. XRES DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID77	V _{IH}	Input voltage high threshold	0.7 × V _{DDD}	-	-	V	CMOS Input
SID78	V _{IL}	Input voltage low threshold	-	-	0.3 × V _{DDD}	V	CMOS Input
SID79	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	
SID80	C _{IN}	Input capacitance	-	3	-	pF	
SID81	V _{HYSXRES}	Input voltage hysteresis	-	100	_	mV	Guaranteed by characterization
SID82	IDIODE	Current through protection diode to V_{DDD}/V_{SS}	_	-	100	μA	Guaranteed by characterization

Table 8. XRES AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID83	T _{RESETWIDTH}	Reset pulse width	1	-	-	μs	Guaranteed by characterization

Analog Peripherals

Opamp

Table 9. Opamp Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
	I _{DD}	Opamp block current. No load.	_	_	-	-	
SID269	I _{DD HI}	Power = high	_	1100	1850	μA	
SID270	I _{DD MED}	Power = medium	-	550	950	μA	
SID271	IDD LOW	Power = low	-	150	350	μA	
	GBW	Load = 20 pF, 0.1 mA. V _{DDA} = 2.7 V	-	-	-	-	
SID272	GBW_HI	Power = high	6	_	-	MHz	
SID273	GBW_MED	Power = medium	4	_	-	MHz	
SID274	GBW_LO	Power = low	-	1	-	MHz	
	IOUT_MAX	$V_{DDA} \ge 2.7$ V, 500 mV from rail	-	-	-	-	
SID275	IOUT_MAX_HI	Power = high	10	-	-	mA	
SID276	IOUT_MAX_MID	Power = medium	10	-	-	mA	
SID277	IOUT_MAX_LO	Power = low	_	5	-	mA	
	I _{OUT}	V _{DDA} = 1.71 V, 500 mV from rail	-	-	-	-	
SID278	IOUT_MAX_HI	Power = high	4	-	-	mA	
SID279	IOUT_MAX_MID	Power = medium	4	-	-	mA	
SID280	IOUT_MAX_LO	Power = low	-	2	-	mA	
SID281	V _{IN}	Charge pump on, $V_{DDA} \ge 2.7 V$	-0.05	_	VDDA – 0.2	V	
SID282	V _{CM}	Charge pump on, $V_{DDA} \ge 2.7 V$	-0.05	-	VDDA-0.2	V	
	V _{OUT}	$V_{DDA} \ge 2.7 V$	_	-	-		
SID283	V _{OUT_1}	Power = high, lload=10 mA	0.5	-	VDDA – 0.5	V	
SID284	V _{OUT_2}	Power = high, lload=1 mA	0.2	-	VDDA-0.2	V	
SID285	V _{OUT_3}	Power = medium, lload=1 mA	0.2	-	VDDA-0.2	V	
SID286	V _{OUT_4}	Power = low, lload=0.1mA	0.2	-	VDDA-0.2	V	
SID288	V _{OS_TR}	Offset voltage, trimmed	1	±0.5	1	mV	High mode
SID288A	V _{OS_TR}	Offset voltage, trimmed	-	±1	-	mV	Medium mode
SID288B	V _{OS_TR}	Offset voltage, trimmed	-	±2	-	mV	Low mode
SID290	V _{OS_DR_TR}	Offset voltage drift, trimmed	-10	±3	10	µV/C	High mode. T _A <u><</u> 85 °C.
SID290Q	V _{OS_DR_TR}	Offset voltage drift, trimmed	-15	±3	15	µV/C	High mode. T _A ≤ 105 °C
SID290A	V _{OS DR TR}	Offset voltage drift, trimmed	-	±10	-	μV/C	Medium mode
SID290B	V _{OS DR TR}	Offset voltage drift, trimmed	-	±10	-	μV/C	Low mode
SID291	CMRR	DC	70	80	-	dB	VDDD = 3.6 V
SID292	PSRR	At 1 kHz, 100 mV ripple	70	85	_	dB	VDDD = 3.6 V
	Noise		-	-	-	-	
SID293	V _{N1}	Input referred, 1 Hz - 1GHz, power = high	-	94	_	µVrms	
SID294	V _{N2}	Input referred, 1 kHz, power = high	-	72	-	nV/rtHz	
SID295	V _{N3}	Input referred, 10kHz, power = high	-	28	-	nV/rtHz	
SID296	V _{N4}	Input referred, 100kHz, power = high	_	15	_	nV/rtHz	

Table 14. SAR ADC AC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID106	A_PSRR	Power supply rejection ratio	70	_	_	dB	
SID107	A_CMRR	Common mode rejection ratio	66	-	-	dB	Measured at 1 V
SID108	A_SAMP_1	Sample rate with external reference bypass cap	-	-	1	Msps	
SID108A	A_SAMP_2	Sample rate with no bypass cap. Reference = V _{DD}	-	-	500	Ksps	
SID108B	A_SAMP_3	Sample rate with no bypass cap. Internal reference	-	-	100	Ksps	
SID109	A_SNDR	Signal-to-noise and distortion ratio (SINAD)	65	-	-	dB	F _{IN} = 10 kHz
SID111	A_INL	Integral non linearity	-1.7	-	+2	LSB	$\begin{array}{l} V_{DD} = 1.71 \ to \ 5.5, \\ 1 \ Msps, \ Vref = 1 \ to \\ 5.5. \ -40 \ ^\circ C \leq \ T_A \leq \\ 85 \ ^\circ C \end{array}$
			-1.9	_	+2	LSB	$\begin{array}{l} V_{DD} = 1.71 \ to \ 5.5, \\ 1 \ Msps, \ Vref = 1 \ to \\ 5.5. \ -40 \ ^{\circ}C \leq \ T_A \leq \\ 105 \ ^{\circ}C \end{array}$
SID111A	A_INL	Integral non linearity	-1.5	-	+1.7	LSB	$\begin{array}{l} V_{DDD} = 1.71 \text{ to } 3.6, \\ 1 \text{ Msps, Vref} = 1.71 \\ \text{to } V_{DDD}40 \ ^\circ\text{C} \leq \text{T}_{\text{A}} \\ \leq 85 \ ^\circ\text{C} \end{array}$
			-1.9	-	+2	LSB	$\begin{array}{l} V_{DDD} = 1.71 \text{ to } 3.6, \\ 1 \text{ Msps, Vref} = 1.71 \\ \text{to } V_{DDD}40 \ ^\circ\text{C} \leq \text{T}_{\text{A}} \\ \leq 105 \ ^\circ\text{C} \end{array}$
SID111B	A_INL	Integral non linearity	-1.5	-	+1.7	LSB	V _{DDD} = 1.71 to 5.5, 500 Ksps, Vref = 1 to 5.5.
SID112	A_DNL	Differential non linearity	-1	_	+2.2	LSB	$\begin{array}{l} V_{DDD} = 1.71 \ to \ 5.5, \ 1 \\ Msps, \ Vref = 1 \ to \ 5.5. \\ -40 \ ^{\circ}C \leq \ T_A \ \leq \ 85 \ ^{\circ}C \end{array}$
			-1	-	+2.3	LSB	$\begin{array}{l} V_{DDD} = 1.71 \ to \ 5.5, \ 1 \\ Msps, \ Vref = 1 \ to \ 5.5. \\ -40 \ ^{\circ}C \leq \ T_A \leq 105 \ ^{\circ}C \end{array}$
SID112A	A_DNL	Differential non linearity	-1	-	+2	LSB	$\begin{array}{l} V_{DDD} = 1.71 \ to \ 3.6, \ 1 \\ Msps, \ Vref = 1.71 \ to \\ V_{DDD}. \ -40 \ ^{\circ}C \leq T_A \leq \\ 85 \ ^{\circ}C \end{array}$
			-1	-	+2.2	LSB	$\begin{array}{l} V_{DDD} = 1.71 \ \text{to} \ 3.6, \ 1 \\ Msps, \ Vref = 1.71 \ \text{to} \\ V_{DDD}. \ -40 \ ^{\circ}\text{C} \leq T_{A} \leq \\ 105 \ ^{\circ}\text{C} \end{array}$
SID112B	A_DNL	Differential non linearity	-1	-	+2.2	LSB	V _{DDD} = 1.71 to 5.5, 500 Ksps, Vref = 1 to 5.5.
SID113	A_THD	Total harmonic distortion	-	-	-65	dB	F _{IN} = 10 kHz.

CSD

Table 15. CSD Block Specification

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
CSD Spec	ification						
SID308	VCSD	Voltage range of operation	1.71	_	5.5	V	
SID309	IDAC1	DNL for 8-bit resolution	-1	_	1	LSB	
SID310	IDAC1	INL for 8-bit resolution	-3	-	3	LSB	
SID311	IDAC2	DNL for 7-bit resolution	-1	_	1	LSB	
SID312	IDAC2	INL for 7-bit resolution	-3	_	3	LSB	
SID313	SNR	Ratio of counts of finger to noise. Guaranteed by characterization	5	-	-	Ratio	Capacitance range of 9 to 35 pF, 0.1 pF sensitivity
SID314	IDAC1_CRT1	Output current of Idac1 (8-bits) in High range	-	612	-	μA	
SID314A	IDAC1_CRT2	Output current of Idac1(8-bits) in Low range	-	306	-	μA	
SID315	IDAC2_CRT1	Output current of Idac2 (7-bits) in High range	-	304.8	-	μA	
SID315A	IDAC2_CRT2	Output current of Idac2 (7-bits) in Low range	_	152.4	_	μA	

Digital Peripherals

The following specifications apply to the Timer/Counter/PWM peripherals in the Timer mode.

Timer/Counter/PWM

Table 16. TCPWM Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.TCPWM.1	ITCPWM1	Block current consumption at 3 MHz	_	-	45	μA	All modes (Timer/Counter/PWM)
SID.TCPWM.2	ITCPWM2	Block current consumption at 12 MHz	_	-	155	μA	All modes (Timer/Counter/PWM)
SID.TCPWM.2A	ITCPWM3	Block current consumption at 48 MHz	_	_	650	μA	All modes (Timer/Counter/PWM)
SID.TCPWM.3	TCPWMFREQ	Operating frequency	_	_	Fc	MHz	Fc max = Fcpu. Maximum = 24 MHz
SID.TCPWM.4	TPWMENEXT	Input Trigger Pulse Width for all Trigger Events	2/Fc	_	_	ns	Trigger Events can be Stop, Start, Reload, Count, Capture, or Kill depending on which mode of operation is selected.
SID.TCPWM.5	TPWMEXT	Output Trigger Pulse widths	2/Fc	_	_	ns	Minimum possible width of Overflow, Underflow, and CC (Counter equals Compare value) trigger outputs
SID.TCPWM.5A	TCRES	Resolution of Counter	1/Fc	-	_	ns	Minimum time between successive counts
SID.TCPWM.5B	PWMRES	PWM Resolution	1/Fc	-	_	ns	Minimum pulse width of PWM Output
SID.TCPWM.5C	QRES	Quadrature inputs resolution	1/Fc	_	_	ns	Minimum pulse width between Quadrature phase inputs.

βĈ

Table 17. Fixed I²C DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID149	I _{I2C1}	Block current consumption at 100 kHz	-	-	50	μA	
SID150	I _{I2C2}	Block current consumption at 400 kHz	-	-	135	μA	
SID151	I _{I2C3}	Block current consumption at 1 Mbps	-	-	310	μA	
SID152	I _{I2C4}	I ² C enabled in Deep Sleep mode	_	_	1.4	μA	

Table 18. Fixed I²C AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID153	F _{I2C1}	Bit rate	_	-	1	Mbps	

LCD Direct Drive

Table 19. LCD Direct Drive DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID154	ILCDLOW	Operating current in low power mode	Ι	5	_	μA	16 × 4 small segment disp. at 50 Hz
SID155	C _{LCDCAP}	LCD capacitance per segment/common driver	-	500	5000	pF	Guaranteed by Design
SID156	LCD _{OFFSET}	Long-term segment offset	-	20	-	mV	
SID157	I _{LCDOP1}	PWM Mode current. 5-V bias. 24-MHz IMO. 25 °C	-	0.6	-	mA	32 × 4 segments. 50 Hz
SID158	I _{LCDOP2}	PWM Mode current. 3.3-V bias. 24-MHz IMO. 25 °C	-	0.5	_	mA	32 × 4 segments. 50 Hz

Table 20. LCD Direct Drive AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID159	F _{LCD}	LCD frame rate	10	50	150	Hz	

Table 21. Fixed UART DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID160	I _{UART1}	Block current consumption at 100 Kbits/sec	-	-	55	μA	
SID161	I _{UART2}	Block current consumption at 1000 Kbits/sec	-	-	312	μA	

Table 22. Fixed UART AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units
SID162	F _{UART}	Bit rate	_	1	1	Mbps

Memory

Table 27. Flash DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID173	V _{PE}	Erase and program voltage	1.71	-	5.5	V	

Table 28. Flash AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID174	T _{ROWWRITE} ^[3]	Row (block) write time (erase and program)	-	-	20	ms	Row (block) = 128 bytes. -40 °C $\leq T_A \leq 85$ °C
			-	-	26	ms	Row (block) = 128 bytes. $-40 \text{ °C} \le T_A \le 105 \text{ °C}$
SID175	T _{ROWERASE} ^[3]	Row erase time	-	-	13	ms	
SID176	T _{ROWPROGRAM} ^[3]	Row program time after erase	-	-	7	ms	$-40 \text{ °C} \le \text{ T}_{\text{A}} \le 85 \text{ °C}$
			-	-	13	ms	$-40 \text{ °C} \le \text{ T}_{\text{A}} \le 105 \text{ °C}$
SID178	T _{BULKERASE} ^[3]	Bulk erase time (32 KB)	-	-	35	ms	
SID180	T _{DEVPROG} ^[3]	Total device program time	-	_	7	seconds	Guaranteed by characterization
SID181	F _{END}	Flash endurance	100 K	1	-	cycles	Guaranteed by characterization
SID182	F _{RET}	Flash retention. $T_A \le 55$ °C, 100 K P/E cycles	20		-	years	Guaranteed by characterization
SID182A		Flash retention. $T_A \le 85 \text{ °C}$, 10 K P/E cycles	10	I	_	years	Guaranteed by characterization
SID182B	F _{RETQ}	Flash retention. $T_A \le 105$ °C, 10K P/E cycles, \le three years at $T_A \ge 85$ °C.	10	20	_		Guaranteed by characterization.

Note

It can take as much as 20 milliseconds to write to Flash. During this time the device should not be Reset, or Flash operations will be interrupted and cannot be relied on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and watchdogs. Make certain that these are not inadvertently activated.

System Resources

Power-on-Reset (POR) with Brown Out

Table 29. Imprecise Power On Reset (PRES)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID185	V _{RISEIPOR}	Rising trip voltage	0.80	-	1.45	V	Guaranteed by charac- terization
SID186	V _{FALLIPOR}	Falling trip voltage	0.75	-	1.4	V	Guaranteed by charac- terization
SID187	VIPORHYST	Hysteresis	15	_	200	mV	Guaranteed by charac- terization

Table 30. Precise Power On Reset (POR)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID190	VFALLPPOR	BOD trip voltage in active and sleep modes	1.64	_	_	V	Full functionality between 1.71 V and BOD trip voltage is guaranteed by characterization
SID192	V _{FALLDPSLP}	BOD trip voltage in Deep Sleep	1.4	-	-	V	Guaranteed by characterization
BID55	Svdd	Maximum power supply ramp rate	_	_	67	kV/sec	

Voltage Monitors

Table 31. Voltage Monitors DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID195	V _{LVI1}	LVI_A/D_SEL[3:0] = 0000b	1.71	1.75	1.79	V	
SID196	V _{LVI2}	LVI_A/D_SEL[3:0] = 0001b	1.76	1.80	1.85	V	
SID197	V _{LVI3}	LVI_A/D_SEL[3:0] = 0010b	1.85	1.90	1.95	V	
SID198	V _{LVI4}	LVI_A/D_SEL[3:0] = 0011b	1.95	2.00	2.05	V	
SID199	V _{LVI5}	LVI_A/D_SEL[3:0] = 0100b	2.05	2.10	2.15	V	
SID200	V _{LVI6}	LVI_A/D_SEL[3:0] = 0101b	2.15	2.20	2.26	V	
SID201	V _{LVI7}	LVI_A/D_SEL[3:0] = 0110b	2.24	2.30	2.36	V	
SID202	V _{LVI8}	LVI_A/D_SEL[3:0] = 0111b	2.34	2.40	2.46	V	
SID203	V _{LVI9}	LVI_A/D_SEL[3:0] = 1000b	2.44	2.50	2.56	V	
SID204	V _{LVI10}	LVI_A/D_SEL[3:0] = 1001b	2.54	2.60	2.67	V	
SID205	V _{LVI11}	LVI_A/D_SEL[3:0] = 1010b	2.63	2.70	2.77	V	
SID206	V _{LVI12}	LVI_A/D_SEL[3:0] = 1011b	2.73	2.80	2.87	V	
SID207	V _{LVI13}	LVI_A/D_SEL[3:0] = 1100b	2.83	2.90	2.97	V	
SID208	V _{LVI14}	LVI_A/D_SEL[3:0] = 1101b	2.93	3.00	3.08	V	
SID209	V _{LVI15}	LVI_A/D_SEL[3:0] = 1110b	3.12	3.20	3.28	V	
SID210	V _{LVI16}	LVI_A/D_SEL[3:0] = 1111b	4.39	4.50	4.61	V	
SID211	LVI_IDD	Block current	_	_	100	μA	Guaranteed by characterization

Table 32. Voltage Monitors AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID212	T _{MONTRIP}	Voltage monitor trip time	1	Ι	1	μs	Guaranteed by characterization

SWD Interface

Table 33. SWD Interface Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID213	F_SWDCLK1	$3.3 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	-	-	14	MHz	SWDCLK ≤ 1/3 CPU clock frequency
SID214	F_SWDCLK2	$1.71~V \leq V_{DD} \leq 3.3~V$	-	-	7	MHz	SWDCLK ≤ 1/3 CPU clock frequency
SID215	T_SWDI_SETUP	T = 1/f SWDCLK	0.25*T	-	_	ns	Guaranteed by characterization
SID216	T_SWDI_HOLD	T = 1/f SWDCLK	0.25*T	-	_	ns	Guaranteed by characterization
SID217	T_SWDO_VALID	T = 1/f SWDCLK	-	-	0.5*T	ns	Guaranteed by characterization
SID217A	T_SWDO_HOLD	T = 1/f SWDCLK	1	-	_	ns	Guaranteed by characterization

Internal Main Oscillator

Table 34. IMO DC Specifications

(Guaranteed by Design)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID218	I _{IMO1}	IMO operating current at 48 MHz	_	-	1000	μA	
SID219	I _{IMO2}	IMO operating current at 24 MHz	_	-	325	μA	
SID220	I _{IMO3}	IMO operating current at 12 MHz	_	-	225	μA	
SID221	I _{IMO4}	IMO operating current at 6 MHz	_	-	180	μA	
SID222	I _{IMO5}	IMO operating current at 3 MHz	-	-	150	μA	

Table 35. IMO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID223	F _{IMOTOL1}	Frequency variation from 3 to 48 MHz	-	-	±2	%	<u>+</u> 3% if T _A > 85 °C and IMO frequency < 24 MHz
SID226	T _{STARTIMO}	IMO startup time	-	-	12	μs	
SID227	T _{JITRMSIMO1}	RMS Jitter at 3 MHz	-	156	-	ps	
SID228	T _{JITRMSIMO2}	RMS Jitter at 24 MHz	-	145	-	ps	
SID229	T _{JITRMSIMO3}	RMS Jitter at 48 MHz	-	139	-	ps	

The field values are listed in the following table.

Table 43. Field Values

Field	Description	Values	Meaning
CY8C	Cypress prefix		
4	Architecture	4	PSoC 4
A	Family within architecture	1	4100 Family
		2	4200 Family
В	CPU speed	2	24 MHz
		4	48 MHz
С	Flash capacity	4	16 KB
		5	32 KB
DE	Package code	PV	SSOP
F	Temperature range	A/S	Automotive
GHI	Attributes code	000-999	Code of feature set in specific family
Z	Fab location change		

Packaging

Table 44. Package Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Units
T _A	Operating ambient temperature	For A grade devices	-40	25.00	85	°C
T _A	Operating ambient temperature	For S grade devices	-40	25.00	105	°C
TJ	Operating junction temperature	For A grade devices	-40	_	100	°C
TJ	Operating junction temperature	For S grade devices	-40	_	120	°C
T _{JA}	Package θ_{JA} (28-pin SSOP)		-	66.58	-	°C/W
T _{JC}	Package θ_{JC} (28-pin SSOP)		_	46.28	_	°C/W

Table 45. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Maximum Time at Peak Temperature
28-pin SSOP	260 °C	30 seconds

Table 46. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2

Package	MSL
28-pin SSOP	MSL 3

PSoC4 CAB Libraries with Schematics Symbols and PCB Footprints are on the Cypress web site at http://www.cypress.com/cad-resources/psoc-4-cad-libraries?source=search&cat=technical_documents

Figure 8. 28-pin SSOP (210 Mils) Package Outline, 51-85079

Document Conventions

Units of Measure

Table 48. Units of Measure

Symbol	Unit of Measure				
°C	degrees Celsius				
dB	decibel				
fF	femtofarad				
Hz	hertz				
KB	1024 bytes				
kbps	kilobits per second				
Khr	kilohour				
kHz	kilohertz				
kΩ	kilo ohm				
ksps	kilosamples per second				
LSB	least significant bit				
Mbps	megabits per second				
MHz	megahertz				
MΩ	mega-ohm				
Msps	megasamples per second				
μA	microampere				
μF	microfarad				
μH	microhenry				
μs	microsecond				
μV	microvolt				
μW	microwatt				
mA	milliampere				
ms	millisecond				
mV	millivolt				
nA	nanoampere				
ns	nanosecond				
nV	nanovolt				
Ω	ohm				
pF	picofarad				
ppm	parts per million				
ps	picosecond				
s	second				
sps	samples per second				
sqrtHz	square root of hertz				
V	volt				

Document History Page

Document Title: Automotive PSoC [®] 4: PSoC 4200 Family Datasheet Programmable System-on-Chip (PSoC [®]) Document Number: 001-93573						
Revision	ECN	Orig. of Change	Submission Date	Description of Change		
*D	5325598	MVRE	07/04/2016	Changed status from Preliminary to Final.		
*E	5675099	SNPR	03/28/2017	Updated Ordering Information.		