

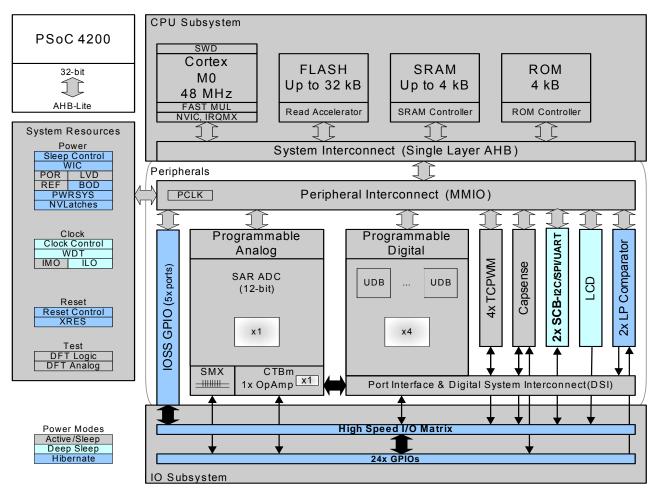
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART
Peripherals	Brown-out Detect/Reset, CapSense, LCD, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 8x12b SAR; D/A 2xIDAC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4245pva-482zt

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Block Diagram

Functional Description

The PSoC 4200 devices include extensive support for programming, testing, debugging, and tracing both hardware and firmware.

The ARM Serial_Wire Debug (SWD) interface supports all programming and debug features of the device.

Complete debug-on-chip functionality enables full-device debugging in the final system using the standard production device. It does not require special interfaces, debugging pods, simulators, or emulators. Only the standard programming connections are required to fully support debug.

The PSoC Creator IDE provides fully integrated programming and debug support for the PSoC 4200 devices. The SWD interface is fully compatible with industry-standard third-party tools. With the ability to disable debug features, with very robust flash protection, and allowing customer-proprietary functionality to be implemented in on-chip programmable blocks, the PSoC 4200 family provides a level of security not possible with multi-chip application solutions or with microcontrollers.

The debug circuits are enabled by default and can only be disabled in firmware. If not enabled, the only way to re-enable them is to erase the entire device, clear flash protection, and reprogram the device with new firmware that enables debugging.

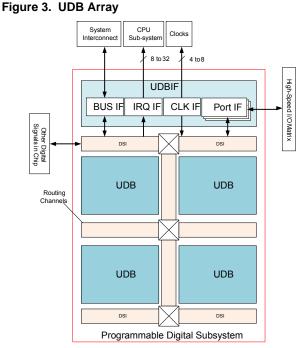
Additionally, all device interfaces can be permanently disabled (device security) for applications concerned about phishing attacks due to a maliciously reprogrammed device or attempts to defeat security by starting and interrupting flash programming sequences. Because all programming, debug, and test interfaces are disabled when maximum device security is enabled, PSoC 4200 with device security enabled may not be returned for failure analysis. This is a trade-off PSoC 4200 allows the customer to make.

Opamp (CTBm Block)

PSoC 4200 has an opamp with Comparator mode which allow most common analog functions to be performed on-chip eliminating external components; PGAs, Voltage Buffers, Filters, Trans-Impedance Amplifiers, and other functions can be realized with external passives saving power, cost, and space. The on-chip opamp is designed with enough bandwidth to drive the Sample-and-Hold circuit of the ADC without requiring external buffering.

Temperature Sensor

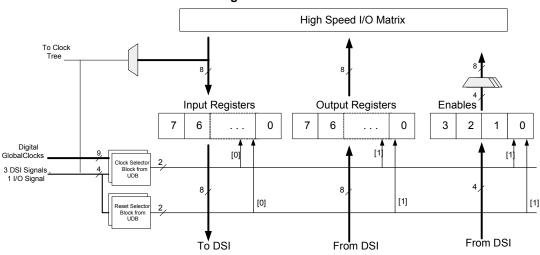
PSoC 4200 has one on-chip temperature sensor This consists of a diode, which is biased by a current source that can be disabled to save power. The temperature sensor is connected to the ADC, which digitizes the reading and produces a temperature value using Cypress supplied software that includes calibration and linearization.


Low-power Comparators

PSoC 4200 has a pair of low-power comparators, which can also operate in the Deep Sleep and Hibernate modes. This allows the analog system blocks to be disabled while retaining the ability to monitor external voltage levels during low-power modes. The comparator outputs are normally synchronized to avoid metastability unless operating in an asynchronous power mode (Hibernate) where the system wake-up circuit is activated by a comparator switch event.

Programmable Digital

Universal Digital Blocks (UDBs) and Port Interfaces


PSoC 4200 has four UDBs; the UDB array also provides a switched Digital System Interconnect (DSI) fabric that allows signals from peripherals and ports to be routed to and through the UDBs for communication and control. The UDB array is shown in the following figure.

UDBs can be clocked from a clock divider block, from a port interface (required for peripherals such as SPI), and from the DSI network directly or after synchronization.

A port interface is defined, which acts as a register that can be clocked with the same source as the PLDs inside the UDB array. This allows faster operation because the inputs and outputs can be registered at the port interface close to the I/O pins and at the edge of the array. The port interface registers can be clocked by one of the I/Os from the same port. This allows interfaces such as SPI to operate at higher clock speeds by eliminating the delay for the port input to be routed over DSI and used to register other inputs (see Figure 4).

The UDBs can generate interrupts (one UDB at a time) to the interrupt controller. The UDBs retain the ability to connect to any pin on the chip through the DSI.

Figure 4. Port Interface

Fixed Function Digital

Timer/Counter/PWM Block

The Timer/Counter/PWM block consists of four 16-bit counters with user-programmable period length. There is a Capture register to record the count value at the time of an event (which may be an I/O event), a period register which is used to either stop or auto-reload the counter when its count is equal to the period register, and compare registers to generate compare value signals which are used as PWM duty cycle outputs. The block also provides true and complementary outputs with programmable offset between them to allow use as deadband programmable complementary PWM outputs. It also has a Kill input to force outputs to a predetermined state; for example, this is used in motor drive systems when an overcurrent state is indicated and the PWMs driving the FETs need to be shut off immediately with no time for software intervention.

Serial Communication Blocks (SCB)

PSoC 4200 has two SCBs, which can each implement an I^2C , UART, SPI, or LIN Slave interface.

I²C Mode: The hardware I²C block implements a full multi-master and slave interface (it is capable of multimaster arbitration). This block is capable of operating at speeds of up to 1 Mbps (Fast Mode Plus) and has flexible buffering options to reduce interrupt overhead and latency for the CPU. The FIFO mode is available in all channels and is very useful in the absence of DMA.

The I²C peripheral is compatible with the I²C Standard-mode, Fast-mode, and Fast-mode Plus devices as defined in the NXP I²C-bus specification and user manual (UM10204). The I²C bus I/O is implemented with GPIO in open-drain modes. The I²C bus uses open-drain drivers for clock and data with pull-up resistors on the bus for clock and data connected to all nodes. Required Rise and Fall times for different I²C speeds are guaranteed by using appropriate pull-up resistor values depending on V_{DD}, Bus Capacitance, and resistor tolerance. For detailed information on how to calculate the optimum pull-up resistor value for your design, please refer to the UM10204 I²C bus specification and user manual, the newest revision is available at www.nxp.com.

PSoC 4200 is not completely compliant with the I²C spec in the following respects:

- GPIO cells are not overvoltage tolerant and, therefore, cannot be hot-swapped or powered up independently of the rest of the I²C system.
- Fast-mode Plus has an I_{OL} specification of 20 mA at a V_{OL} of 0.4 V. The GPIO cells can sink a maximum of 8 mA I_{OL} with a V_{OL} maximum of 0.6 V.
- Fast-mode and Fast-mode Plus specify minimum Fall times, which are not met with the GPIO cell; Slow strong mode can help meet this spec depending on the Bus Load.
- When the SCB is an I²C Master, it interposes an IDLE state between NACK and Repeated Start; the I²C spec defines Bus free as following a Stop condition so other Active Masters do

not intervene but a Master that has just become activated may start an Arbitration cycle.

When the SCB is in I²C Slave mode, and Address Match on External Clock is enabled (EC_AM = 1) along with operation in the internally clocked mode (EC_OP = 0), then its I²C address must be even.

UART Mode: This is a full-feature UART operating at up to 1 Mbps. It supports automotive single-wire interface (LIN), infrared interface (IrDA), and SmartCard (ISO7816) protocols, all of which are minor variants of the basic UART protocol. In addition, it supports the 9-bit multiprocessor mode that allows addressing of peripherals connected over common RX and TX lines. Common UART functions such as parity error, break detect, and frame error are supported. An 8-deep FIFO allows much greater CPU service latencies to be tolerated. Note that hardware handshaking is not supported. This is not commonly used and can be implemented with a UDB-based UART in the system, if required.

SPI Mode: The SPI mode supports full Motorola SPI, TI SSP (essentially adds a start pulse used to synchronize SPI Codecs), and National Microwire (half-duplex form of SPI). The SPI block can use the FIFO and also supports an EzSPI mode in which data interchange is reduced to reading and writing an array in memory.

LIN Slave Mode: The LIN Slave mode uses the SCB hardware block and implements a full LIN slave interface. This LIN slave is compliant with LIN v1.3 and LIN v2.1/2.2 specification standards. It is certified by C&S GmbH based on the standard protocol and data link layer conformance tests. LIN slave can be operated at baud rates of up to ~20 Kbps with a maximum of 40-meter cable length. PSoC Creator software supports up to two LIN slave interfaces in the PSoC 4 device, providing built-in application programming interfaces (APIs) based on the LIN specification standard.

GPIO

PSoC 4200 has 24 GPIOs. The GPIO block implements the following:

- Eight drive strength modes:
 - Analog input mode (input and output buffers disabled)
 Input only

 - □ Weak pull-up with strong pull-down
 - □ Strong pull-up with weak pull-down
 - □ Open drain with strong pull-down
 - Open drain with strong pull-up
 - Strong pull-up with strong pull-down
 - Weak pull-up with weak pull-down
- Input threshold select (CMOS or LVTTL).
- Individual control of input and output buffer enabling/disabling in addition to the drive strength modes.
- Hold mode for latching previous state (used for retaining I/O state in Deep Sleep mode and Hibernate modes).
- Selectable slew rates for dV/dt related noise control to improve EMI.

Pinouts

The following is the pin-list for PSoC 4200. Port 2 comprises of the high-speed Analog inputs for the SAR Mux. P1.7 is the optional external input and bypass for the SAR reference. Ports 3 and 4 contain the Digital Communication channels. All pins support CSD CapSense and Analog Mux Bus connections.

Pi	Pins 28-SSOP Alternate Functions for Pins								Din Description
Name	Туре	Pin	Name	Analog	Alt 1	Alt 2	Alt 3	Alt 4	Pin Description
VSSD	Power	DN	-	-	_	-	-	-	Digital Ground
P2.2	GPIO	5	P2.2	sarmux.2	-	-	-	-	Port 2 Pin 2: gpio, lcd, csd, sarmux
P2.3	GPIO	6	P2.3	sarmux.3	-	-	-	-	Port 2 Pin 3: gpio, lcd, csd, sarmux
P2.4	GPIO	7	P2.4	sarmux.4	tcpwm0_p[1]	-	-	-	Port 2 Pin 4: gpio, lcd, csd, sarmux, pwm
P2.5	GPIO	8	P2.5	sarmux.5	tcpwm0_n[1]	_	_	_	Port 2 Pin 5: gpio, lcd, csd, sarmux, pwm
P2.6	GPIO	9	P2.6	sarmux.6	tcpwm1_p[1]	-	_	_	Port 2 Pin 6: gpio, lcd, csd, sarmux, pwm
P2.7	GPIO	10	P2.7	sarmux.7	tcpwm1_n[1]	-	-	-	Port 2 Pin 7: gpio, lcd, csd, sarmux, pwm
P3.0	GPIO	11	P3.0	-	tcpwm0_p[0]	scb1_uart_rx[0]	scb1_i2c_scl[0]	scb1_spi_mosi[0]	Port 3 Pin 0: gpio, lcd, csd, pwm, scb1
P3.1	GPIO	12	P3.1	-	tcpwm0_n[0]	scb1_uart_tx[0]	scb1_i2c_sda[0]	scb1_spi_miso[0]	Port 3 Pin 1: gpio, lcd, csd, pwm, scb1
P3.2	GPIO	13	P3.2	-	tcpwm1_p[0]	-	swd_io	scb1_spi_clk[0]	Port 3 Pin 2: gpio, lcd, csd, pwm, scb1, swd
P3.3	GPIO	14	P3.3	-	tcpwm1_n[0]	-	swd_clk	scb1_spi_ssel_0[0]	Port 3 Pin 3: gpio, lcd, csd, pwm, scb1, swd
P4.0	GPIO	15	P4.0	-	_	scb0_uart_rx	scb0_i2c_scl	scb0_spi_mosi	Port 4 Pin 0: gpio, lcd, csd, scb0
P4.1	GPIO	16	P4.1	-	_	scb0_uart_tx	scb0_i2c_sda	scb0_spi_miso	Port 4 Pin 1: gpio, lcd, csd, scb0
P4.2	GPIO	17	P4.2	csd_c_mod	-	-	-	scb0_spi_clk	Port 4 Pin 2: gpio, lcd, csd, scb0
P4.3	GPIO	18	P4.3	csd_c_sh_tan k	-	_	_	scb0_spi_ssel_0	Port 4 Pin 3: gpio, lcd, csd, scb0
P0.0	GPIO	19	P0.0	comp1_inp	_	_	_	scb0_spi_ssel_1	Port 0 Pin 0: gpio, lcd, csd, scb0, comp
P0.1	GPIO	20	P0.1	comp1_inn	_	_	_	scb0_spi_ssel_2	Port 0 Pin 1: gpio, lcd, csd, scb0, comp
P0.2	GPIO	21	P0.2	comp2_inp	-	-	-	scb0_spi_ssel_3	Port 0 Pin 2: gpio, lcd, csd, scb0, comp
P0.3	GPIO	22	P0.3	comp2_inn	-	-	-	-	Port 0 Pin 3: gpio, Icd, csd, comp
P0.6	GPIO	23	P0.6	-	ext_clk	-	-	scb1_spi_clk[1]	Port 0 Pin 6: gpio, lcd, csd, scb1, ext_clk
P0.7	GPIO	24	P0.7	-	-	-	wakeup	scb1_spi_ssel_0[1]	Port 0 Pin 7: gpio, lcd, csd, scb1, wakeup
XRES	XRES	25	XRES	-	_	-	-	-	Chip reset, active low
VCCD	Power	26	VCCD	-	-	_	_	_	Regulated supply, connect to 1 μF cap or 1.8 V
VDDD	Power	27	VDDD	-	-	-	_	_	Common power supply (Analog and Digital) 1.8 V–5.5 V
VSSA	Power	28(DN)	VSS	-	-	-	-	-	Analog Ground
P1.0	GPIO	1	P1.0	ctb.oa0.inp	tcpwm2_p[1]	_	_	_	Port 1 Pin 0: gpio, lcd, csd, ctb, pwm
P1.1	GPIO	2	P1.1	ctb.oa0.inm	tcpwm2_n[1]	_	-	_	Port 1 Pin 1: gpio, lcd, csd, ctb, pwm
P1.2	GPIO	3	P1.2	ctb.oa0.out	tcpwm3_p[1]	_	-	-	Port 1 Pin 2: gpio, lcd, csd, ctb, pwm
P1.7	GPIO	4	P1.7	ctb.oa1.inp_alt ext_vref	-	-	-	-	Port 1 Pin 7: gpio, lcd, csd, ext_ref

Notes:

1. tcpwm_p and tcpwm_n refer to tcpwm non-inverted and inverted outputs respectively.

2. P3.2 and P3.3 are SWD pins after boot (reset).

Descriptions of the Pin functions are as follows:

VDDD: Power supply for both analog and digital sections (where there is no V_{DDA} pin).

VDDA: Analog V_{DD} pin where package pins allow; shorted to V_{DDD} otherwise.

VSSA: Analog ground pin where package pins allow; shorted to VSS otherwise

VSS: Ground pin.

VCCD: Regulated Digital supply (1.8 V ±5%).

Port Pins can all be used as LCD Commons, LCD Segment drivers, or CSD sense and shield pins can be connected to AMUXBUS A or B or can all be used as GPIO pins that can be driven by firmware or DSI signals.

The following package is supported: 28-pin SSOP.

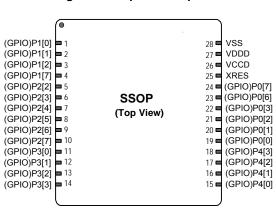


Figure 5. 28-pin SSOP pinout

Development Support

The PSoC 4200 family has a rich set of documentation, development tools, and online resources to assist you during your development process. Visit www.cypress.com/go/psoc4 to find out more.

Documentation

A suite of documentation supports the PSoC 4200 family to ensure that you can find answers to your questions quickly. This section contains a list of some of the key documents.

Software User Guide: A step-by-step guide for using PSoC Creator. The software user guide shows you how the PSoC Creator build process works in detail, how to use source control with PSoC Creator, and much more.

Component Datasheets: The flexibility of PSoC allows the creation of new peripherals (components) long after the device has gone into production. Component data sheets provide all of the information needed to select and use a particular component, including a functional description, API documentation, example code, and AC/DC specifications.

Application Notes: PSoC application notes discuss a particular application of PSoC in depth; examples include brushless DC

motor control and on-chip filtering. Application notes often include example projects in addition to the application note document.

Technical Reference Manual: The Technical Reference Manual (TRM) contains all the technical detail you need to use a PSoC device, including a complete description of all PSoC registers. The TRM is available in the Documentation section at www.cypress.com/psoc4.

Online

In addition to print documentation, the Cypress PSoC forums connect you with fellow PSoC users and experts in PSoC from around the world, 24 hours a day, 7 days a week.

Tools

With industry standard cores, programming, and debugging interfaces, the PSoC 4200 family is part of a development tool ecosystem. Visit us at www.cypress.com/go/psoccreator for the latest information on the revolutionary, easy to use PSoC Creator IDE, supported third party compilers, programmers, debuggers, and development kits.

Table 3. DC Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID25A	I _{DD20A}	I ² C wakeup, WDT, and Comparators on. 12 MHz	-	1.7	2.2	mA	V _{DD} = 1.71 V to 5.5 V
Deep Sleep N	Mode, V _{DD} = 1.8	V to 3.6V (Regulator on)			•		
SID31	I _{DD26}	I ² C wakeup and WDT on	_	1.3	-	μA	T = 25 °C
SID32	I _{DD27}	I ² C wakeup and WDT on	-	-	45	μA	T = 85 °C
Deep Sleep N	Mode, V _{DD} = 3.6	V to 5.5 V					
SID34	I _{DD29}	I ² C wakeup and WDT on	-	1.5	15	μA	Typ at 25 °C Max at 85 °C
Deep Sleep N	Node, V _{DD} = 1.71	V to 1.89 V (Regulator bypassed)					
SID37	I _{DD32}	I ² C wakeup and WDT on	-	1.7	-	μA	T = 25 °C
SID38	I _{DD33}	I ² C wakeup and WDT on	-	-	60	μA	T = 85 °C
Deep Sleep N	/lode, +105 °C				•		
SID33Q	I _{DD28Q}	I ² C wakeup and WDT on. Regulator Off.	-	-	135	μA	V _{DD} = 1.71 V to 1.89 V
SID34Q	I _{DD29Q}	I ² C wakeup and WDT on	-	-	180	μA	V _{DD} = 1.8 V to 3.6 V
SID35Q	I _{DD30Q}	I ² C wakeup and WDT on	-	-	140	μA	V _{DD} = 3.6 V to 5.5 V
Hibernate Mo	ode, V _{DD} = 1.8 V	to 3.6 V (Regulator on)			•		
SID40	I _{DD35}	GPIO & Reset active	_	150	-	nA	T = 25 °C
SID41	I _{DD36}	GPIO & Reset active	-	-	1000	nA	T = 85 °C
Hibernate Mo	ode, V _{DD} = 3.6 V	to 5.5 V			•	•	
SID43	I _{DD38}	GPIO & Reset active	_	150	-	nA	T = 25 °C
Hibernate Mo	ode, V _{DD} = 1.71 V	V to 1.89 V (Regulator bypassed)			•		•
SID46	I _{DD41}	GPIO & Reset active	-	150	-	nA	T = 25 °C
SID47	I _{DD42}	GPIO & Reset active	-	-	1000	nA	T = 85 °C
Hibernate Mo	ode, +105 °C	•			•		
SID42Q	I _{DD37Q}	Regulator Off	-	-	19.4	μA	V _{DD} = 1.71 V to 1.89 V
SID43Q	I _{DD38Q}		-	-	17	μA	V _{DD} = 1.8 V to 3.6 V
SID44Q	I _{DD39Q}		-	-	16	μA	V _{DD} = 3.6 V to 5.5 V
Stop Mode	•					•	
SID304	I _{DD43A}	Stop Mode current; V_{DD} = 3.3 V	-	20	80	nA	Typ at 25 °C Max at 85 °C
		Stop Mode current; V _{DD} = 5.5 V	_	20	750	nA	Typ at 25 °C Max at 85 °C
Stop Mode, +	-105 °C				•		
SID304Q	I _{DD43AQ}	Stop Mode current; V _{DD} = 3.6 V	_	_	5645	nA	
XRES curren					•		
SID307	I _{DD_XR}	Supply current while XRES asserted	_	2	5	mA	

Table 6. GPIO AC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID70	T _{RISEF}	Rise time in fast strong mode	2	-	12	ns	3.3 V V _{DDD} , Cload = 25 pF
SID71	T _{FALLF}	Fall time in fast strong mode	2	-	12	ns	3.3 V V _{DDD} , Cload = 25 pF
SID72	T _{RISES}	Rise time in slow strong mode	10	-	60		3.3 V V _{DDD} , Cload = 25 pF
SID73	T _{FALLS}	Fall time in slow strong mode	10	-	60		3.3 V V _{DDD} , Cload = 25 pF
SID74	F _{GPIOUT1}	GPIO Fout;3.3 V \leq V _{DDD} \leq 5.5 V. Fast strong mode.	_	-	33	MHz	90/10%, 25 pF load, 60/40 duty cycle
SID75	F _{GPIOUT2}	GPIO Fout;1.7 V \leq V _{DDD} \leq 3.3 V. Fast strong mode.	-	-	16.7	MHz	90/10%, 25 pF load, 60/40 duty cycle
SID76	F _{GPIOUT3}	GPIO Fout;3.3 V \leq V _{DDD} \leq 5.5 V. Slow strong mode.	_	-	7	MHz	90/10%, 25 pF load, 60/40 duty cycle
SID245	F _{GPIOUT4}	GPIO Fout;1.7 V \leq V _{DDD} \leq 3.3 V. Slow strong mode.	_	-	3.5	MHz	90/10%, 25 pF load, 60/40 duty cycle
SID246	F _{GPIOIN}	GPIO input operating frequency; 1.71 V \leq V _{DDD} \leq 5.5 V	_	-	48	MHz	90/10% V _{IO}

XRES

Table 7. XRES DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID77	V _{IH}	Input voltage high threshold	0.7 × V _{DDD}	-	-	V	CMOS Input
SID78	V _{IL}	Input voltage low threshold	-	-	0.3 × V _{DDD}	V	CMOS Input
SID79	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	
SID80	C _{IN}	Input capacitance	-	3	-	pF	
SID81	V _{HYSXRES}	Input voltage hysteresis	-	100	-	mV	Guaranteed by characterization
SID82	I _{DIODE}	Current through protection diode to V_{DDD}/V_{SS}	-	-	100	μA	Guaranteed by characterization

Table 8. XRES AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID83	T _{RESETWIDTH}	Reset pulse width	1	-	-	μs	Guaranteed by characterization

Table 11. Comparator AC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID91	T _{RESP1}	Response time, normal mode	-	_	110	ns	50 mV overdrive
SID258	T _{RESP2}	Response time, low power mode	-	-	200	ns	50 mV overdrive
SID92	T _{RESP3}	Response time, ultra low power mode ($V_{DDD} \ge 2.2 \text{ V}$ for Temp < 0 °C, $V_{DDD} \ge 1.8 \text{ V}$ for Temp > 0 °C)	-	-	15	μs	200 mV overdrive

Temperature Sensor

Table 12. Temperature Sensor Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID93	T _{SENSACC}	Temperature sensor accuracy	-5	±1	+5	°C	–40 to +85 °C

SAR ADC

Table 13. SAR ADC DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID94	A_RES	Resolution	-	-	12	bits	
SID95	A_CHNIS_S	Number of channels - single ended	-	-	8		8 full speed
SID96	A-CHNKS_D	Number of channels - differential	-	-	4		Diff inputs use neighboring I/O
SID97	A-MONO	Monotonicity	-	-	_		Yes. Based on characterization
SID98	A_GAINERR	Gain error	-	_	±0.1	%	With external reference. Guaranteed by characterization
SID99	A_OFFSET	Input offset voltage	-	-	2	mV	Measured with 1-V V _{REF.} Guaranteed by characterization
SID100	A_ISAR	Current consumption	-	-	1	mA	
SID101	A_VINS	Input voltage range - single ended	V _{SS}	-	V _{DDA}	V	Based on device characterization
SID102	A_VIND	Input voltage range - differential	V _{SS}	-	V _{DDA}	V	Based on device characterization
SID103	A_INRES	Input resistance	-	-	2.2	KΩ	Based on device characterization
SID104	A_INCAP	Input capacitance	-	-	10	pF	Based on device characterization

CSD

Table 15. CSD Block Specification

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
CSD Spec	ification					-	
SID308	VCSD	Voltage range of operation	1.71	-	5.5	V	
SID309	IDAC1	DNL for 8-bit resolution	-1	-	1	LSB	
SID310	IDAC1	INL for 8-bit resolution	-3	-	3	LSB	
SID311	IDAC2	DNL for 7-bit resolution	-1	-	1	LSB	
SID312	IDAC2	INL for 7-bit resolution	-3	_	3	LSB	
SID313	SNR	Ratio of counts of finger to noise. Guaranteed by characterization	5	-	-	Ratio	Capacitance range of 9 to 35 pF, 0.1 pF sensitivity
SID314	IDAC1_CRT1	Output current of Idac1 (8-bits) in High range	-	612	-	μA	
SID314A	IDAC1_CRT2	Output current of Idac1(8-bits) in Low range	_	306	-	μA	
SID315	IDAC2_CRT1	Output current of Idac2 (7-bits) in High range	-	304.8	-	μA	
SID315A	IDAC2_CRT2	Output current of Idac2 (7-bits) in Low range	-	152.4	-	μA	

SPI Specifications

Table 23. Fixed SPI DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units
SID163	I _{SPI1}	Block current consumption at 1 Mbits/sec	-	-	360	μA
SID164	I _{SPI2}	Block current consumption at 4 Mbits/sec	-	-	560	μA
SID165	I _{SPI3}	Block current consumption at 8 Mbits/sec	-	-	600	μA

Table 24. Fixed SPI AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units
SID166	011	SPI operating frequency (master; 6X oversampling)	-	1	8	MHz

Table 25. Fixed SPI Master mode AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units
SID167	T _{DMO}	MOSI valid after Sclock driving edge	-	-	15	ns
SID168	T _{DSI}	MISO valid before Sclock capturing edge. Full clock, late MISO Sampling used	20	_	_	ns
SID169	T _{HMO}	Previous MOSI data hold time with respect to capturing edge at Slave	0	_	_	ns

Table 26. Fixed SPI Slave mode AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID170	T _{DMI}	MOSI valid before Sclock capturing edge	40	-	-	ns	
SID171	T _{DSO}	MISO valid after Sclock driving edge	_	-	42 + 3 × Tscbclk	ns	
SID171A	T _{DSO_ext}	MISO valid after Sclock driving edge in Ext. Clock mode	-	-	48	ns	
SID172	T _{HSO}	Previous MISO data hold time	0	-	_	ns	
SID172A	T _{SSELSCK}	SSEL Valid to first SCK Valid edge	100	-	_	ns	

Memory

Table 27. Flash DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID173	V _{PE}	Erase and program voltage	1.71	Ι	5.5	V	

Table 28. Flash AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID174	T _{ROWWRITE} ^[3]	Row (block) write time (erase and program)	-	-	20	ms	Row (block) = 128 bytes. –40 °C ≤ T _A ≤ 85 °C
			-	_	26	ms	Row (block) = 128 bytes. $-40 \text{ °C} \le T_A \le 105 \text{ °C}$
SID175	T _{ROWERASE} ^[3]	Row erase time	-	-	13	ms	
SID176	T _{ROWPROGRAM} ^[3]	Row program time after erase	-	-	7	ms	$-40~^\circ C \leq T_A \leq 85~^\circ C$
			-	-	13	ms	$-40~^\circ C \leq ~T_A~\leq~105~^\circ C$
SID178	T _{BULKERASE} ^[3]	Bulk erase time (32 KB)	-	-	35	ms	
SID180	T _{DEVPROG} ^[3]	Total device program time	-	_	7	seconds	Guaranteed by characterization
SID181	F _{END}	Flash endurance	100 K	_	_	cycles	Guaranteed by characterization
SID182	F _{RET}	Flash retention. $T_A \le 55 \degree$ C, 100 K P/E cycles	20	_	_	years	Guaranteed by characterization
SID182A		Flash retention. $T_A \le 85 \text{ °C}$, 10 K P/E cycles	10	_	_	years	Guaranteed by characterization
SID182B	F _{RETQ}	Flash retention. $T_A \le 105$ °C, 10K P/E cycles, \le three years at $T_A \ge 85$ °C.	10	20	_		Guaranteed by characterization.

Note

It can take as much as 20 milliseconds to write to Flash. During this time the device should not be Reset, or Flash operations will be interrupted and cannot be relied on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and watchdogs. Make certain that these are not inadvertently activated.

System Resources

Power-on-Reset (POR) with Brown Out

Table 29. Imprecise Power On Reset (PRES)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID185	V _{RISEIPOR}	Rising trip voltage	0.80	_	1.45	V	Guaranteed by charac- terization
SID186	V _{FALLIPOR}	Falling trip voltage	0.75	_	1.4	V	Guaranteed by charac- terization
SID187	V _{IPORHYST}	Hysteresis	15	_	200	mV	Guaranteed by charac- terization

Table 30. Precise Power On Reset (POR)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID190	V _{FALLPPOR}	BOD trip voltage in active and sleep modes	1.64	_	_		Full functionality between 1.71 V and BOD trip voltage is guaranteed by characterization
SID192	V _{FALLDPSLP}	BOD trip voltage in Deep Sleep	1.4	-	-	V	Guaranteed by characterization
BID55	Svdd	Maximum power supply ramp rate	_	_	67	kV/sec	

Voltage Monitors

Table 31. Voltage Monitors DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID195	V _{LVI1}	LVI_A/D_SEL[3:0] = 0000b	1.71	1.75	1.79	V	
SID196	V _{LVI2}	LVI_A/D_SEL[3:0] = 0001b	1.76	1.80	1.85	V	
SID197	V _{LVI3}	LVI_A/D_SEL[3:0] = 0010b	1.85	1.90	1.95	V	
SID198	V _{LVI4}	LVI_A/D_SEL[3:0] = 0011b	1.95	2.00	2.05	V	
SID199	V _{LVI5}	LVI_A/D_SEL[3:0] = 0100b	2.05	2.10	2.15	V	
SID200	V _{LVI6}	LVI_A/D_SEL[3:0] = 0101b	2.15	2.20	2.26	V	
SID201	V _{LVI7}	LVI_A/D_SEL[3:0] = 0110b	2.24	2.30	2.36	V	
SID202	V _{LVI8}	LVI_A/D_SEL[3:0] = 0111b	2.34	2.40	2.46	V	
SID203	V _{LVI9}	LVI_A/D_SEL[3:0] = 1000b	2.44	2.50	2.56	V	
SID204	V _{LVI10}	LVI_A/D_SEL[3:0] = 1001b	2.54	2.60	2.67	V	
SID205	V _{LVI11}	LVI_A/D_SEL[3:0] = 1010b	2.63	2.70	2.77	V	
SID206	V _{LVI12}	LVI_A/D_SEL[3:0] = 1011b	2.73	2.80	2.87	V	
SID207	V _{LVI13}	LVI_A/D_SEL[3:0] = 1100b	2.83	2.90	2.97	V	
SID208	V _{LVI14}	LVI_A/D_SEL[3:0] = 1101b	2.93	3.00	3.08	V	
SID209	V _{LVI15}	LVI_A/D_SEL[3:0] = 1110b	3.12	3.20	3.28	V	
SID210	V _{LVI16}	LVI_A/D_SEL[3:0] = 1111b	4.39	4.50	4.61	V	
SID211	LVI_IDD	Block current	-	-	100	μA	Guaranteed by characterization

Internal Low-Speed Oscillator

Table 36. ILO DC Specifications

(Guaranteed by Design)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID231	I _{ILO1}	ILO operating current at 32 kHz	-	0.3	1.05		Guaranteed by characterization
SID233	IILOLEAK	ILO leakage current	-	2	15	nA	Guaranteed by design

Table 37. ILO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID234	T _{STARTILO1}	ILO startup time	-	-	2	ms	Guaranteed by characterization
SID236	T _{ILODUTY}	ILO duty cycle	40	50	60	%	Guaranteed by characterization
SID237	F _{ILOTRIM1}	32 kHz trimmed frequency	15	32	50	kHz	Max. ILO frequency is 70 kHz if T _A > 85 °C

Table 38. External Clock Specifications

Spec ID	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID305	ExtClkFreq	External Clock input Frequency	0	-	48		Guaranteed by characterization
SID306	ExtClkDuty	Duty cycle; Measured at V _{DD/2}	45	-	55		Guaranteed by characterization

Table 39. UDB AC Specifications

(Guaranteed by Characterization)

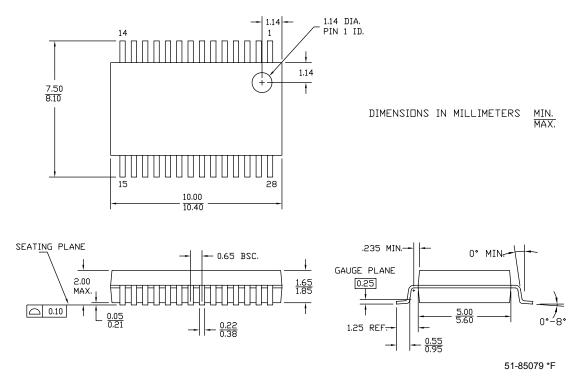
Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
Datapath p	erformance	· · ·					
SID249	F _{MAX-TIMER}	Max frequency of 16-bit timer in a UDB pair	_	-	48	MHz	
SID250	F _{MAX-ADDER}	Max frequency of 16-bit adder in a UDB pair	-	-	48	MHz	
SID251	F _{MAX_CRC}	Max frequency of 16-bit CRC/PRS in a UDB pair	-	-	48	MHz	
PLD Perfo	rmance in UDB	· · ·					
SID252	F _{MAX_PLD}	Max frequency of 2-pass PLD function in a UDB pair	-	-	48	MHz	
Clock to O	utput Performance	· · · · · · · · · · · · · · · · · · ·					
SID253	T _{CLK_OUT_UDB1}	Prop. delay for clock in to data out at 25 °C, Typ.	-	15	-	ns	
SID254	T _{CLK_OUT_UDB2}	Prop. delay for clock in to data out, Worst case.	_	25	_	ns	

Ordering Information

The PSoC 4200 part numbers and features are listed in the following table.

Table 42. PSoC 4200 Family Ordering Information

							Fea	ature	s					Package		rating erature
Family	MPN	Max CPU Speed (MHz)	Flash (KB)	SRAM (KB)	UDB	Opamp (CTBm)	CapSense	Direct LCD Drive	12-bit SAR ADC	LP Comparators	TCPWM Blocks	SCB Blocks	GPIO	28-SSOP	-40 to +85 °C (A grade)	-40 to +105 °C (S grade)
	CY8C4244PVA-442Z	48	16	4	2	1	>	>	1 Msps	2	4	2	24	~	~	-
	CY8C4245PVA-452Z	48	32	4	4	0	-	~	-	0	4	2	24	~	~	-
4200	CY8C4245PVA-482Z	48	32	4	4	1	~	~	1 Msps	2	4	2	24	~	~	-
4200	CY8C4244PVS-442Z	48	16	4	2	1	~	~	1 Msps	2	4	2	24	~	-	~
	CY8C4245PVS-452Z	48	32	4	4	0	I	~	_	0	4	2	24	~	_	~
	CY8C4245PVS-482Z	48	32	4	4	1	~	~	1 Msps	2	4	2	24	~	_	~


Part Numbering Conventions

PSoC 4 devices follow the part numbering convention described in the following table. All fields are single-character alphanumeric (0, 1, 2, ..., 9, A,B, ..., Z) unless stated otherwise.

The part numbers are of the form CY8C4ABCDEF-GHI where the fields are defined as follows.

Example	CY8C 4 A B C DE F - GHI Z
	Cypress Prefix
4: PSoC4	Architecture
2 : 4200Family	Family within Architecture
4 : 48 MHz	Speed Grade
5 : 32 KB	Flash Capacity
PV: SSOP	Package Code
A: Automotive -40 to +85 °C S: Automotive: -40 to +105 °C	Temperature Range ————————————————————————————————————
	Attributes Set
	Fab Location Change: Z

Figure 8. 28-pin SSOP (210 Mils) Package Outline, 51-85079

PHUB F PHY F PICU F PLA F PLD F	programmable gain amplifier peripheral hub physical layer port interrupt control unit programmable logic array programmable logic device, see also PAL phase-locked loop package material declaration data sheet power-on reset		
PHY F PICU F PLA F PLD F	physical layer port interrupt control unit programmable logic array programmable logic device, see also PAL phase-locked loop package material declaration data sheet		
PICU F PLA F PLD F	port interrupt control unit programmable logic array programmable logic device, see also PAL phase-locked loop package material declaration data sheet		
PLA r PLD r	programmable logic array programmable logic device, see also PAL phase-locked loop package material declaration data sheet		
PLD p	programmable logic device, see also PAL phase-locked loop package material declaration data sheet		
	phase-locked loop package material declaration data sheet		
PLL r	package material declaration data sheet		
1· 1	-		
PMDD p	power-on reset		
POR p			
PRES p	precise power-on reset		
PRS p	pseudo random sequence		
PS p	port read data register		
PSoC [®] F	Programmable System-on-Chip™		
PSRR p	power supply rejection ratio		
PWM ß	pulse-width modulator		
RAM r	random-access memory		
RISC r	reduced-instruction-set computing		
RMS r	root-mean-square		
RTC r	real-time clock		
RTL r	register transfer language		
RTR r	remote transmission request		
RX r	receive		
SAR s	successive approximation register		
SC/CT s	switched capacitor/continuous time		
SCL I	² C serial clock		
SDA I	² C serial data		
S/H s	sample and hold		
SINAD s	signal to noise and distortion ratio		
SIO sf	special input/output, GPIO with advanced features. See GPIO.		
SOC s	start of conversion		
SOF s	start of frame		
	Serial Peripheral Interface, a communications protocol		
SR s	slew rate		
SRAM s	static random access memory		
SRES s	software reset		
SWD s	serial wire debug, a test protocol		
SWV s	single-wire viewer		
TD t	transaction descriptor, see also DMA		

Table 47. Acronyms Used in this Document (continued)

Acronym	Description	
THD	total harmonic distortion	
TIA	transimpedance amplifier	
TRM	technical reference manual	
TTL	transistor-transistor logic	
ТΧ	transmit	
UART	Universal Asynchronous Transmitter Receiver, a communications protocol	
UDB	universal digital block	
USB	Universal Serial Bus	
USBIO	USB input/output, PSoC pins used to connect to a USB port	
VDAC	voltage DAC, see also DAC, IDAC	
WDT	watchdog timer	
WOL	write once latch, see also NVL	
WRES	watchdog timer reset	
XRES	external reset I/O pin	
XTAL	crystal	

Table 47. Acronyms Used in this Document (continued)

Document Conventions

Units of Measure

Table 48. Units of Measure

Symbol	Unit of Measure		
°C	degrees Celsius		
dB	decibel		
fF	femtofarad		
Hz	hertz		
KB	1024 bytes		
kbps	kilobits per second		
Khr	kilohour		
kHz	kilohertz		
kΩ	kilo ohm		
ksps	kilosamples per second		
LSB	least significant bit		
Mbps	megabits per second		
MHz	megahertz		
MΩ	mega-ohm		
Msps	megasamples per second		
μA	microampere		
μF	microfarad		
μH	microhenry		
μs	microsecond		
μV	microvolt		
μW	microwatt		
mA	milliampere		
ms	millisecond		
mV	millivolt		
nA	nanoampere		
ns	nanosecond		
nV	nanovolt		
Ω	ohm		
pF	picofarad		
ppm	parts per million		
ps	picosecond		
S	second		
sps	samples per second		
sqrtHz	square root of hertz		
V	volt		

Document History Page

Document Title: Automotive PSoC [®] 4: PSoC 4200 Family Datasheet Programmable System-on-Chip (PSoC [®]) Document Number: 001-93573						
Revision	ECN	Orig. of Change	Submission Date	Description of Change		
*D	5325598	MVRE	07/04/2016	Changed status from Preliminary to Final.		
*E	5675099	SNPR	03/28/2017	Updated Ordering Information.		

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

[©] Cypress Semiconductor Corporation 2014-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you under its copyright rights in the Software, a personal, non-exclusive, nontransferable license (without the right to sublicense) (a) for Software provided in source code form, to modify and reproduce the Software is non-exclusive, nontransferable license (vithout the right to sublicense) and distributors), solely for use with Cypress hardware product units. Cypress also grants you a personal, non-exclusive, nontransferable, license (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units. Cypress also grants you a personal, non-exclusive, nontransferable, license (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units. Cypress, unmodified) to make, use, distribute, and import the Software solely to the minimum extent its necessary for you to exercise your rights under the copyright license granted in the previous sentence. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of hazardous substances management, or other taslaltations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or properly damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and Company shall and hereby does release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. Company shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.