

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RXv2
Core Size	32-Bit Single-Core
Speed	240MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, MMC/SD, QSPI, SCI, SPI, SSI, USB OTG
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	78
Program Memory Size	2MB (2M × 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x12b, 14x12b; D/A 1x12
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TFLGA
Supplier Device Package	100-TFLGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f571mfddlj-20

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Classification	Module/Function	Description
Operating modes	5	 Operating modes by the mode-setting pins at the time of release from the reset state Single-chip mode Boot mode (for the SCI interface) Boot mode (for the USB interface) User boot mode Selection of operating mode by register setting Single-chip mode, user boot mode On-chip ROM disabled extended mode On-chip ROM enabled extended mode Endian selectable
Clock	Clock generation circuit	 Main clock oscillator, sub clock oscillator, low-speed/high-speed on-chip oscillator, PLL frequency synthesizer, and IWDT-dedicated on-chip oscillator The peripheral module clocks can be set to frequencies above that of the system clock. Main-clock oscillation stoppage detection Separate frequency-division and multiplication settings for the system clock (ICLK), peripheral module clocks (PCLKA, PCLKB, PCLKC, PCLKD), flash-IF clock (FCLK) and external bus clock (BCLK) The CPU and other bus masters run in synchronization with the system clock (ICLK): Up to 240 MHz Peripheral modules of MTU3, GPT, RSPI, SCIFA, USBA, ETHERC, EPTPC, EDMAC, and AES run in synchronization with PCLKA, which operates at up to 120 MHz. Other peripheral modules run in synchronization with PCLKB: Up to 60 MHz ADCLK in the SD12AD (unit 0) runs in synchronization with PCLKD: Up to 60 MHz Flash IF run in synchronization with the flash-IF clock (FCLK): Up to 60 MHz Devices connected to the external bus run in synchronization with the external bus clock (BCLK): Up to 60 MHz Multiplication is possible with using the high-speed on-chip oscillator (HOCO) as a reference clock of the PLL circuit
Reset		 Nine types of reset RES# pin reset: Generated when the RES# pin is driven low. Power-on reset: Generated when the RES# pin is driven high and VCC = AVCC0 = AVCC1 rises. Voltage-monitoring 0 reset: Generated when VCC = AVCC0 = AVCC1 falls. Voltage-monitoring 1 reset: Generated when VCC = AVCC0 = AVCC1 falls. Voltage-monitoring 2 reset: Generated when VCC = AVCC0 = AVCC1 falls. Voltage-monitoring 2 reset: Generated when VCC = AVCC0 = AVCC1 falls. Deep software standby reset: Generated in response to an interrupt to trigger release from deep software standby. Independent watchdog timer reset: Generated when the independent watchdog timer underflows, or a refresh error occurs. Watchdog timer reset: Generated when the watchdog timer underflows, or a refresh error occurs. Software reset: Generated by register setting.
Power-on reset		If the RES# pin is at the high level when power is supplied, an internal reset is generated. After VCC = AVCC0 = AVCC1 has exceeded the voltage detection level and the specified period has elapsed, the reset is cancelled.
Voltage detection	n circuit (LVDA)	 Monitors the voltage being input to the VCC = AVCC0 = AVCC1 pins and generates an internal reset or internal interrupt. Voltage detection circuit 0 Capable of generating an internal reset The option-setting memory can be used to select enabling or disabling of the reset. Voltage detection level: Selectable from three different levels (2.94 V, 2.87 V, and 2.80 V) Voltage detection circuits 1 and 2 Voltage detection level: Selectable from three different levels (2.99 V, 2.92 V, and 2.85 V) Digital filtering (1/2, 1/4, 1/8, and 1/16 LOCO frequency) Capable of generating an internal reset Two types of timing are selectable for release from reset An internal interrupt can be requested. Detection of voltage rising above and falling below thresholds is selectable. Maskable or non-maskable interrupt is selectable Voltage detection monitoring Event linking

 Table 1.1
 Outline of Specifications (2/10)

Classification	Module/Function	Description
Low power consumption	Low power consumption facilities	 Module stop function Four low power consumption modes Sleep mode, all-module clock stop mode, software standby mode, and deep software standby mode
	Battery backup function	• When the voltage on the VCC pin drops, battery power from the VBATT pin is supplied to keep the real-time clock (RTC) operating.
Interrupt	Interrupt controller (ICUA)	 Peripheral function interrupts: 298 sources External interrupts: 16 (pins IRQ0 to IRQ15) Software interrupts: 2 sources Non-maskable interrupts: 7 sources Sixteen levels specifiable for the order of priority Method of interrupt source selection: The interrupt vectors consist of 256 vectors (128 sources are fixed. The remaining 128 vectors are selected from among the other 157 sources.)
External bus exte	ension	 The external address space can be divided into eight areas (CS0 to CS7), each with independent control of access settings. Capacity of each area: 16 Mbytes (CS0 to CS7) A chip-select signal (CS0# to CS7#) can be output for each area. Each area is specifiable as an 8-, 16-, or 32-bit bus space. The data arrangement in each area is selectable as little or big endian (only for data). SDRAM interface connectable Bus format: Separate bus, multiplex bus Wait control Write buffer facility
DMA	DMA controller (DMACAa)	 8 channels Three transfer modes: Normal transfer, repeat transfer, and block transfer Activation sources: Software trigger, external interrupts, and interrupt requests from peripheral functions
	EXDMA controller (EXDMACa)	 2 channels Four transfer modes: Normal transfer, repeat transfer, block transfer, and cluster transfer Single-address transfer enabled with the EDACKn signal Activation sources: Software trigger, external DMA requests (EDREQn), and interrupt requests from peripheral functions
	Data transfer controller (DTCa)	 Three transfer modes: Normal transfer, repeat transfer, and block transfer Activation sources: External interrupts and interrupt requests from peripheral functions
I/O ports	Programmable I/O ports	 I/O ports for the 177-pin TFLGA (in planning), 176-pin LFBGA (in planning), and 176-pin LQFP I/O pins: 127 Input pin: 1 Pull-up resistors: 127 Open-drain outputs: 127 5-V tolerance: 19 I/O ports for the 145-pin TFLGA (in planning) and 144-pin LQFP I/O pins: 111 Input pin: 1 Pull-up resistors: 111 Open-drain outputs: 111 5-V tolerance: 18 I/O ports for the 100-pin TFLGA (in planning) and 100-pin LQFP I/O pins: 78 Input pin: 1 Pull-up resistors: 78 Open-drain outputs: 78 5-V tolerance: 17

Table 1.1Outline of Specifications (3/10)

Classification	Module/Function	Description
Event link contro	oller (ELC)	 Event signals such as interrupt request signals can be interlinked with the operation of functions such as timer counting, eliminating the need for intervention by the CPU to control the functions. 119 internal event signals can be freely combined for interlinked operation with connected functions. Event signals from peripheral modules can be used to change the states of output pins (of ports B and E). Changes in the states of pins (of ports B and E) being used as inputs can be interlinked with the operation of peripheral modules.
Timers	16-bit timer pulse unit (TPUa)	 (16 bits x 6 channels) x 1 unit Maximum of 16 pulse-input/output possible Select from among seven or eight counter-input clock signals for each channel Input capture/output compare function Output of PWM waveforms in up to 15 phases in PWM mode Support for buffered operation, phase-counting mode (two phase encoder input) and cascade-connected operation (32 bits x 2 channels) depending on the channel. PPG output trigger can be generated Capable of generating conversion start triggers for the A/D converters Digital filtering of signals from the input capture pins Event linking by the ELC
Timers	Multifunction timer pulse unit (MTU3a)	 9 channels (16 bits × 8 channels, 32 bits × 1 channel) Maximum of 16 pulse-input/output and 3 pulse-input possible Select from among 13 counter-input clock signals for each channel (PCLKA/1, PCLKA/2, PCLKA/8, PCLKA/8, PCLKA/6, PCLKA/32, PCLKA/64, PCLKA/256, PCLKA/1024, MTCLKA, MTCLKA, MTCLKA, MTCLKA, MTCLKC, MTCLKD) 11 of the signals are available for channels 1, 3 and 4, 12 are available for channel 2, and 9 are available for channels 5 to 8. Input capture function 39 output compare/input capture registers Counter clear operation (synchronous clearing by compare match/input capture) Simultaneous writing to multiple timer counters (TCNT) Simultaneous register input/output by synchronous counter operation Buffered operation Support for cascade-connected operation 43 interrupt sources Automatic transfer of register data Pulse output mode Couplementary PWM output mode Outputs non-overlapping waveforms for controlling 3-phase inverters Automatic specification of dead times PWM duty cycle: Selectable as any value from 0% to 100% Delay can be applied to requests for A/D conversion. Non-generation of interrupt requests at peak or trough values of counters can be selected. Double buffer configuration Reset synchronous PWM mode Three phases of positive and negative PWM waveforms can be output with desired duty cycles. Phase-counting mode: 16-bit mode (channels 1 and 2); 32-bit mode (channels 1 and 2) Counter functionality for dead-time compensation Generation of triggers for A/D converter onversion A/D converter start triggers can be skipped Digital filter function for signals on the input capture and external counter clock pins PPG output trigger can be generated Event linking by the ELC
	Port output enable 3 (POE3a)	 Control of the high-impedance state of the MTU3/GPT's waveform output pins 5 pins for input from signal sources: POE0, POE4, POE8, POE10, POE11 Initiation on detection of short-circuited outputs (detection of simultaneous PWM output to the active level) Initiation by oscillation-stoppage detection or software Additional programming of output control target pins is enabled

Table 1.1 Outline of Specifications (4/10)

Classification	Module/Function	Description				
Communication function	I ² C bus interface (RIICa)	 2 channels (only channel 0 can be used in fast-mode plus) Communication formats I²C bus format/SMBus format Supports the multi-master Max. transfer rate: 1 Mbps (channel 0) Event linking by the ELC 				
	CAN module (CAN)	 3 channels Compliance with the ISO11898-1 specification (standard frame and extended frame) 32 mailboxes per channel 				
	Serial peripheral interface (RSPIa)	 2 channels RSPI transfer facility Using the MOSI (master out, slave in), MISO (master in, slave out), SSL (slave select), and RSPCK (RSPI clock) signals enables serial transfer through SPI operation (four lines) or clock-synchronous operation (three lines) Capable of handling serial transfer as a master or slave Data formats Switching between MSB first and LSB first The number of bits in each transfer can be changed to any number of bits from 8 to 16, or to 20, 24, or 32 bits. 128-bit buffers for transmission and reception Up to four frames can be transmitted or received in a single transfer operation (with each frame having up to 32 bits) Buffered structure Double buffers for both transmission and reception RSPCK can be stopped with the receive buffer full for master reception. 				
	Quad serial peripheral interface (QSPI)	 1 channel Connectable with serial flash memory equipped with multiple input and output lines (i.e. for single, dual, or quad operation) Programmable bit length and selectable active sense and phase of the clock signal Sequential execution of transfer LSB or MSB first is selectable. 				
Serial sound inte	rface (SSI)	 2 channels Full-duplex transfer is possible (only on channel 0). Support for multiple audio formats Support for master or slave operation Bit clock frequency is selectable from four different types (16 fs, 32 fs, 48 fs, and 64 fs). Support for 8-/16-/18-/20-/22-/24 bit data formats Internal 8-stage FIFO for transmission and reception Stopping SSIWS when data transfer is stopped is selectable. 				
Sampling rate co	nverter (SRC)	 1 channel Data formats: 32-bit stereo (16 bits for the left, 16 bits for the right) and 16-bit monaural. Input sampling rates: 8, 11.025, 12, 16, 22.05, 24, 32, 44.1, 48 kHz Output sampling rates: 32, 44.1, 48, 8*² or 16 kHz*² 				
SD host interface (SDHI)*4		 1 channel One interface for SD memory and I/O cards (supporting 1- and 4-bit SD buses) SD specifications Part 1: Physical Layer Specification Ver.3.01 compliant (DDR not supported) Part E1: SDIO Specification Ver. 3.00 Error checking: CRC7 for commands and CRC16 for data Interrupt requests: Card access interrupt, SDIO access interrupt, card detection interrupt DMA transfer requests: SD_BUF write and SD_BUF read Support for card detection and write protection 				
MMC host interface (MMCIF)		 1 channel Compliant with JEDEC STANDARD JESD84-A441 (DDR is not supported) Interface for Multimedia Cards (MMCs) Device buses: Support for 1-, 4-, and 8-bit MMC buses Interrupt requests: Card detection interrupt, error/timeout interrupt, normal operation interrupt DMA transfer requests: CE_DATA write and CE_DATA read Support for card detection, boot operation, high priority interrupt (HPI) 				

Table 1.1Outline of Specifications (7/10)

Pin Number				Timer	Communication Memory Interfac			
176-Pin LQFP	Power Supply Clock System Control	I/O Port	Bus EXDMAC SDRAMC	(MTU, GPT, TPU, TMR, PPG, RTC, CMTW, POE, CAC)	(ETHERC, SCIg, SCIh, RSPI, RIIC, CAN, USB, SSI) MMCIF, PI		Interrupt	S12ADC, R12DA
141		P60	CS0#		ET1_TX_EN/ RMII1_TXD_EN			
142	VCC							
143		PD7	D7[A7/D7]	MTIC5U/POE0#		MMC_D1-B/ SDHI_D1-B/ QIO1-B/QMI-B		AN107
144		PG1	D25		ET1_RX_ER/ RMII1_RX_ER			
145		PD6	D6[A6/D6]	MTIC5V/MTIOC8A/ POE4#		MMC_D0-B/ SDHI_D0-B/ QIO0-B/ QMO-B	IRQ6	AN106
146		PG0	D24		ET1_RX_CLK/ REF50CK1			
147		PD5	D5[A5/D5]	MTIC5W/MTIOC8C/ POE10#		MMC_CLK-B/ SDHI_CLK-B/ QSPCLK-B	IRQ5	AN113
148		PD4	D4[A4/D4]	MTIOC8B/POE11#	MMC_CMD-B/ SDHI_CMD-B/ QSSL-B		IRQ4	AN112
149		P97	A23/D23		ET1_ERXD3			
150		PD3	D3[A3/D3]	MTIOC8D/ GTIOC0A-E/POE8#/ TOC2		MMC_D3-B/ SDHI_D3-B/ QIO3-B	IRQ3	AN111
151	VSS							
152		P96	A22/D22		ET1_ERXD2			
153	VCC							
154		PD2	D2[A2/D2]	MTIOC4D/ GTIOC0B-E/TIC2	CRX0	MMC_D2-B/ SDHI_D2-B/ QIO2_B	IRQ2	AN110
155		P95	A21/D21		ET1_ERXD1/ RMII1_RXD1			
156		PD1	D1[A1/D1]	MTIOC4B/ GTIOC1A-E/POE0#	СТХО		IRQ1	AN109
157		P94	A20/D20		ET1_ERXD0/ RMII1_RXD0			
158		PD0	D0[A0/D0]	GTIOC1B-E/POE4#			IRQ0	AN108
159		P93	A19/D19	POE0#	ET1_LINKSTA/CTS7#/ RTS7#/SS7#			AN117
160		P92	A18/D18	POE4#	ET1_CRS/ RMII1_CRS_DV/ RXD7/SMISO7/SSCL7			AN116
161		P91	A17/D17		ET1_COL/SCK7			AN115
162	VSS							
163		P90	A16/D16		ET1_RX_DV/ TXD7/SMOSI7/SSDA7			AN114
164	VCC							L
165		P47					IRQ15- DS	AN007
166		P46					IRQ14- DS	AN006
167		P45					IRQ13- DS	AN005
168		P44					IRQ12- DS	AN004
169		P43					IRQ11-DS	AN003
170		P42					IRQ10- DS	AN002

Table 1.6	List of Pin and Pin Fund	tions (176-Pin LQFP)	(6/7)
			(0, .)

Pin				Timor	Communication	Memory Interface		
Number	Power Supply		Bus	(MTU, GPT, TPU,	(ETHERC, SCIg.	Camera interface		
100-Pin LQFP	Clock System Contro	I/O Port	EXDMAC	TMR, PPG, RTC, CMTW, POE, CAC)	SCIh, RSPI, RIIC, CAN, USB, SSI)	(QSPI, SDHI, MMCIF, PDC)	Interrupt	S12ADC, R12DA
1	AVCC1							
2	EMLE							
3	AVSS1							
4		PJ3	EDACK1	MTIOC3C	ET0_EXOUT CTS6#/RTS6#/CTS0#/ RTS0#/SS6#/SS0#			
5	VCL							
6	VBATT							
7	MD/FINED							
8	XCIN							
9	XCOUT							
10	RES#							
11	XTAL	P37						
12	VSS	Daa						
13	EXTAL	P36						
14		D25					NIMI	
10	UFSEL	P33			SCKE/SCK0/			
	1K31#	F 34		PO12/POE10#	ETO_LINKSTA			
17		P33	EDREQ1	MTIOC0D/TIOCD0/ TMRI3/PO11/POE4#/ POE11#	RXD6/RXD0/SMISO6/ SMISO0/SSCL6/ SSCL0/CRX0		IRQ3-DS	
18		P32		MTIOC0C/TIOCC0/ TMO3/PO10/ RTCOUT/RTCIC2/ POE0#/POE10#	TXD6/TXD0/SMOSI6/ SMOSI0/SSDA6/ SSDA0/CTX0/ USB0_VBUSEN		IRQ2-DS	
19	TMS	P31		MTIOC4D/TMCI2/ PO9/RTCIC1	CTS1#/RTS1#/SS1#/ SSLB0-A		IRQ1-DS	
20	TDI	P30		MTIOC4B/TMRI3/ PO8/RTCIC0/POE8#	RXD1/SMISO1/ SSCL1/MISOB-A		IRQ0-DS	
21	тск	P27	CS7#	MTIOC2B/TMCI3/PO7	SCK1/RSPCKB-A			
22	TDO	P26	CS6#	MTIOC2A/TMO1/PO6	TXD1/CTS3#/RTS3#/ SMOSI1/SS3#/ SSDA1/MOSIB-A			
23		P25	CS5#/ EDACK1	MTIOC4C/MTCLKB/ TIOCA4/PO5	RXD3/SMISO3/ SSCL3/SSIDATA1			ADTRG0#
24		P24	CS4#/ EDREQ1	MTIOC4A/MTCLKA/ TIOCB4/TMRI1/PO4	SCK3/ USB0_VBUSEN/ SSISCK1			
25		P23	EDACK0	MTIOC3D/MTCLKD/ GTIOC0A-B/TIOCD3/ PO3	TXD3/CTS0#/RTS0#/ SMOSI3/SS0#/ SSDA3/SSISCK0			
26		P22	EDREQ0	MTIOC3B/MTCLKC/ GTIOC1A-B/TIOCC3/ TMO0/PO2	SCK0/ USB0_OVRCURB/ AUDIO_MCLK			
27		P21		MTIOC1B/MTIOC4A/ GTIOC2A-B/TIOCA3/ TMCI0/PO1	RXD0/SMISO0/ SSCL0/ USB0_EXICEN/ SSIWS0		IRQ9	
28		P20		MTIOC1A/TIOCB3/ TMRI0/PO0	TXD0/SMOSI0/ SSDA0/USB0_ID/ SSIRXD0		IRQ8	
29		P17		MTIOC3A/MTIOC3B/ MTIOC4B/ GTIOC0B-B/TIOCB0/ TCLKD/TMO1/PO15/ POE8#	SCK1/TXD3/SMOSI3/ SSDA3/SDA2-DS/ SSITXD0		IRQ7	ADTRG1#

$[14] = 1.10 \qquad \text{List of Finance Fine curves} (100-Fine QFF) (1/4)$
--

Pin Number				Timer	Communication	Memory Interface Camera Interface		
100-Pin LQFP	Power Supply Clock System Contro	I/O Port	Bus EXDMAC	(MTU, GPT, TPU, TMR, PPG, RTC, CMTW, POE, CAC)	(ETHERC, SCIg, SCIh, RSPI, RIIC, CAN, USB, SSI)	(QSPI, SDHI, MMCIF, PDC)	Interrupt	S12ADC, R12DA
30		P16		MTIOC3C/MTIOC3D/ TIOCB1/TCLKC/ TMO2/PO14/ RTCOUT	TXD1/RXD3/SMOSI1/ SMISO3/SSDA1/ SSCL3/SCL2-DS/ USB0_VBUS/ USB0_VBUSEN/ USB0_OVRCURB		IRQ6	ADTRG0#
31		P15		MTIOC0B/MTCLKB/ GTETRG-B/TIOCB2/ TCLKB/TMCI2/PO13	RXD1/SCK3/SMISO1/ SSCL1/CRX1-DS/ SSIWS1		IRQ5	
32		P14		MTIOC3A/MTCLKA/ TIOCB5/TCLKA/ TMRI2/PO15	CTS1#/RTS1#/SS1#/ CTX1/ USB0_OVRCURA		IRQ4	
33		P13		MTIOC0B/TIOCA5/ TMO3/PO13	TXD2/SMOSI2/ SSDA2/SDA0[FM+]		IRQ3	ADTRG1#
34		P12		TMCI1	RXD2/SMISO2/ SSCL2/SCL0[FM+]		IRQ2	
35	VCC_USB							
36					USB0_DM			
37					USB0_DP			
38	VSS_USB							
39		P55	WAIT#/ EDREQ0	MTIOC4D/TMO3	CRX1/ET0_EXOUT		IRQ10	
40		P54	ALE/EDACK0	MTIOC4B/TMCI1	CTS2#/RTS2#/SS2#/ CTX1/ET0_LINKSTA			
41		P53	BCLK					
42		P52	RD#		RXD2/SMISO2/ SSCL2/SSLB3-A			
43		P51	WR1#/BC1#/ WAIT#		SCK2/SSLB2-A			
44		P50	WR0#/WR#		TXD2/SMOSI2/ SSDA2/SSLB1-A			
45	UB	PC7	A23/CS0#	MTIOC3A/MTCLKB/ GTIOC3A-D/TMO2/ TOC0/PO31/CACREF	TXD8/MISOA-A/ ET0_COL		IRQ14	
46		PC6	A22/CS1#	MTIOC3C/MTCLKA/ GTIOC3B-D/TMCI2/ TIC0/PO30	RXD8/MOSIA-A/ ET0_ETXD3		IRQ13	
47		PC5	A21/CS2#/ WAIT#	MTIOC3B/MTCLKD/ GTIOC1A-D/TMRI2/ PO29	SCK8/RSPCKA-A/ RTS8#/ET0_ETXD2			
48		PC4	A20/CS3#	MTIOC3D/MTCLKC/ GTETRG-D/TMCI1/ PO25/POE0#	SCK5/CTS8#/ SSLA0-A/ ET0_TX_CLK			
49		PC3	A19	MTIOC4D/ GTIOC1B-D/TCLKB/ PO24	TXD5/SMOSI5/ SSDA5/ET0_TX_ER			
50		PC2	A18	MTIOC4B/ GTIOC2B-D/TCLKA/ PO21	RXD5/SMISO5/ SSCL5/SSLA3-A/ ET0_RX_DV			
51		PC1	A17	MTIOC3A/TCLKD/ PO18	SCK5/SSLA2-A/ ET0_ERXD2		IRQ12	
52		PC0	A16	MTIOC3C/TCLKC/ PO17	CTS5#/RTS5#/SS5#/ SSLA1-A/ET0_ERXD3		IRQ14	
53		PB7	A15	MTIOC3B/TIOCB5/ PO31	TXD9/ET0_CRS/ RMII0_CRS_DV			
54		PB6	A14	MTIOC3D/TIOCA5/ PO30	RXD9/ET0_ETXD1/ RMII0_TXD1			
55		PB5	A13	MTIOC2A/MTIOC1B/ TIOCB4/TMRI1/PO29/ POE4#	SCK9/RTS9#/ ET0_ETXD0/ RMII0_TXD0			

 Table 1.10
 List of Pin and Pin Functions (100-Pin LQFP) (2/4)

2. CPU

Figure 2.1 shows register set of the CPU.

	General-purpose register	Control register	
	b31	b0 b31	
	R0 (SP) ^{*1}	ISP (Interrupt stack pointer)	
	R1	USP (User stack pointer)	
	R2	INITE (Interrupt table register)	
	R3		
	R4	PC (Program counter)	
	R5		
	R6	PSW (Processor status word)	
	R7	BPC (Backup PC)	
	R8		
	R9	BPSW (Backup PSW)	
	R10	FINTV (Fast interrupt vector register)	
	R11		
	R12	FPSVV (Floating-point status word)	
	R13	EXTB (Exception table register)	
	R14		
	R15		
SP inst	ruction register		
71			
	ACC	0 (Accumulator 0)	
	ACC	1 (Accumulator 1)	

Figure 2.1 Register Set of the CPU

• Longword-size I/O registers

MOV.L #SFR_ADDR, R1 MOV.L #SFR_DATA, [R1] CMP [R1].L, R1 ;; Next process

If multiple registers are written to and a subsequent instruction should be executed after the write operations are entirely completed, only read the I/O register that was last written to and execute the operation using the value; it is not necessary to read or execute operation for all the registers that were written to.

(3) Number of Access Cycles to I/O Registers

For the number of I/O register access cycles, refer to section Table 4.1, List of I/O Registers (Address Order). The number of access cycles to I/O registers is obtained by following equation.^{*1}

Number of access cycles to I/O registers = Number of bus cycles for internal main bus 1 + Number of divided clock synchronization cycles + Number of bus cycles for internal peripheral busses 1 to 6

The number of bus cycles of internal peripheral bus 1 to 6 differs according to the register to be accessed.

When peripheral functions connected to internal peripheral bus 2 to 6 or registers for the external bus control unit (except for bus error related registers) are accessed, the number of divided clock synchronization cycles is added.

The number of divided clock synchronization cycles differs depending on the frequency ratio between ICLK and PCLK (or FCLK, BCLK) or bus access timing.

In the peripheral function unit, when the frequency ratio of ICLK is equal to or greater than that of PCLK (or FCLK), the sum of the number of bus cycles for internal main bus 1 and the number of the divided clock synchronization cycles will be one cycle of PCLK (or FCLK) at a maximum. Therefore, one PCLK (or FCLK) has been added to the number of access states shown inTable 4.1.

When the frequency ratio of ICLK is lower than that of PCLK (or FCLK), the subsequent bus access is started from the ICLK cycle following the completion of the access to the peripheral functions. Therefore, the access cycles are described on an ICLK basis.

In the external bus control unit, the sum of the number of bus cycles for internal main bus 1 and the number of divided clock synchronization cycles will be one cycle of BCLK at a maximum. Therefore, one BCLK is added to the number of access cycles shown in Table 4.1.

Note 1. This applies to the number of cycles when the access from the CPU does not conflict with the instruction fetching to the external memory or bus access from the different bus master (DMAC or DTC).

(4) Notes on Sleep Mode and Mode Transitions

During sleep mode or mode transitions, do not write to the registers related to system control (indicated by 'SYSTEM' in the Module Symbol column in Table 4.1, List of I/O Registers (Address Order)).

(5) Restrictions in Relation to RMPA and String-Manipulation Instructions

The allocation of data to be handled by RMPA or string-manipulation instructions to I/O registers is prohibited, and operation is not guaranteed if this restriction is not observed.

	Modulo		Pagistar	Number	A	Number of A	Access Cycles	Polatod
Address	Symbol	Register Name	Symbol	of Bits	Size	$\textbf{ICLK} \geq \textbf{PCLK}$	ICLK < PCLK	Function
0008 9E24h	QSPI	QSPI Transfer Data Length Multiplier Setting Register 2	SPBMUL2	32	32	4, 5 PCLKB	2, 3 ICLK	QSPI
0008 9E28h	QSPI	QSPI Transfer Data Length Multiplier Setting Register 3	SPBMUL3	32	32	4, 5 PCLKB	2, 3 ICLK	QSPI
0008 A000h	SCI0	Serial Mode Register	SMR	8	8	2, 3 PCLKB	2 ICLK	SCIg, SCIh
0008 A001h	SCI0	Bit Rate Register	BRR	8	8	2, 3 PCLKB	2 ICLK	SCIg, SCIh
0008 A002h	SCI0	Serial Control Register	SCR	8	8	2, 3 PCLKB	2 ICLK	SClg, SClh
0008 A003h	SCI0	Transmit Data Register	TDR	8	8	2, 3 PCLKB	2 ICLK	SClg, SClh
0008 A004h	SCI0	Serial Status Register	SSR	8	8	2, 3 PCLKB	2 ICLK	SClg, SClh
0008 A005h	SCI0	Receive Data Register	RDR	8	8	2, 3 PCLKB	2 ICLK	SClg, SClh
0008 A006h	SCI0	Smart Card Mode Register	SCMR	8	8	2, 3 PCLKB	2 ICLK	SCIg, SCIh
0008 A007h	SCI0	Serial Extended Mode Register	SEMR	8	8	2, 3 PCLKB	2 ICLK	SCIg, SCIh
0008 A008h	SCI0	Noise Filter Setting Register	SNFR	8	8	2, 3 PCLKB	2 ICLK	SClg, SClh
0008 A009h	SCI0	I ² C Mode Register 1	SIMR1	8	8	2, 3 PCLKB	2 ICLK	SClg, SClh
0008 A00Ah	SCI0	I ² C Mode Register 2	SIMR2	8	8	2, 3 PCLKB	2 ICLK	SCIg, SCIh
0008 A00Bh	SCI0	I ² C Mode Register 3	SIMR3	8	8	2, 3 PCLKB	2 ICLK	SCIg, SCIh
0008 A00Ch	SCI0	I ² C Status Register	SISR	8	8	2, 3 PCLKB	2 ICLK	SCIg, SCIh
0008 A00Dh	SCI0	SPI Mode Register	SPMR	8	8	2, 3 PCLKB	2 ICLK	SClg, SClh
0008 A00Eh	SCI0	Transmit Data Register H	TDRH	8	8	2, 3 PCLKB	2 ICLK	SCIg, SCIh
0008 A00Fh	SCI0	Transmit Data Register L	TDRL	8	8	2, 3 PCLKB	2 ICLK	SClg, SClh
0008 A00Eh	SCI0	Transmit Data Register HL	TDRHL	16	16	4, 5 PCLKB	2 ICLK	SClg, SClh
0008 A010h	SCI0	Receive Data Register H	RDRH	8	8	2, 3 PCLKB	2 ICLK	SCIg, SCIh
0008 A011h	SCI0	Receive Data Register L	RDRL	8	8	2, 3 PCLKB	2 ICLK	SCIg, SCIh
0008 A010h	SCI0	Receive Data Register HL	RDRHL	16	16	4, 5 PCLKB	2 ICLK	SClg, SClh
0008 A012h	SCI0	Modulation Duty Register	MDDR	8	8	2, 3 PCLKB	2 ICLK	SClg, SClh
0008 A020h	SCI1	Serial Mode Register	SMR	8	8	2, 3 PCLKB	2 ICLK	SClg, SClh
0008 A021h	SCI1	Bit Rate Register	BRR	8	8	2, 3 PCLKB	2 ICLK	SCIg, SCIh
0008 A022h	SCI1	Serial Control Register	SCR	8	8	2, 3 PCLKB	2 ICLK	SClg, SClh
0008 A023h	SCI1	Transmit Data Register	TDR	8	8	2, 3 PCLKB	2 ICLK	SCIg, SCIh
0008 A024h	SCI1	Serial Status Register	SSR	8	8	2, 3 PCLKB	2 ICLK	SClg, SClh
0008 A025h	SCI1	Receive Data Register	RDR	8	8	2, 3 PCLKB	2 ICLK	SClg, SClh
0008 A026h	SCI1	Smart Card Mode Register	SCMR	8	8	2, 3 PCLKB	2 ICLK	SCIg, SCIh
0008 A027h	SCI1	Serial Extended Mode Register	SEMR	8	8	2, 3 PCLKB	2 ICLK	SClg, SClh

Table 4.1 List of I/O Registers (Address Order) (20 / 67)

	Module		Pogistor	Number of Bits Access Size Number of Access Cycles	Number Access Number of A		Polatod	
Address	Symbol	Register Name	Symbol	of Bits	Size	$\textbf{ICLK} \geq \textbf{PCLK}$	ICLK < PCLK	Function
000D 0420h	USBA	CFIFO Port Select Register	CFIFOSEL	16	16	(3 + BUSWAIT) PCLKA or more	Rounded up to the nearest integer greater than 1 + (3 + BUSWAIT) × (frequency ratio of ICLK/PCLKB)* ⁵	USBAa
000D 0422h	USBA	CFIFO Port Control Register	CFIFOCTR	16	16	(3 + BUSWAIT) PCLKA or more	Rounded up to the nearest integer greater than 1 + (3 + BUSWAIT) × (frequency ratio of ICLK/PCLKB)* ⁵	USBAa
000D 0428h	USBA	D0FIFO Port Select Register	DOFIFOSEL	16	16	(3 + BUSWAIT) PCLKA or more	Rounded up to the nearest integer greater than 1 + (3 + BUSWAIT) × (frequency ratio of ICLK/PCLKB)*5	USBAa
000D 042Ah	USBA	D0FIFO Port Control Register	DOFIFOCTR	16	16	(3 + BUSWAIT) PCLKA or more	Rounded up to the nearest integer greater than 1 + (3 + BUSWAIT) × (frequency ratio of ICLK/PCLKB)* ⁵	USBAa
000D 042Ch	USBA	D1FIFO Port Select Register	D1FIFOSEL	16	16	(3 + BUSWAIT) PCLKA or more	Rounded up to the nearest integer greater than 1 + (3 + BUSWAIT) × (frequency ratio of ICLK/PCLKB)* ⁵	USBAa
000D 042Eh	USBA	D1FIFO Port Control Register	D1FIFOCTR	16	16	(3 + BUSWAIT) PCLKA or more	Rounded up to the nearest integer greater than 1 + (3 + BUSWAIT) × (frequency ratio of ICLK/PCLKB)* ⁵	USBAa
000D 0430h	USBA	Interrupt Enable Register 0	INTENBO	16	16	(3 + BUSWAIT) PCLKA or more	Rounded up to the nearest integer greater than 1 + (3 + BUSWAIT) × (frequency ratio of ICLK/PCLKB)* ⁵	USBAa
000D 0432h	USBA	Interrupt Enable Register 1	INTENB1	16	16	(3 + BUSWAIT) PCLKA or more	Rounded up to the nearest integer greater than 1 + (3 + BUSWAIT) × (frequency ratio of ICLK/PCLKB)* ⁵	USBAa
000D 0436h	USBA	BRDY Interrupt Enable Register	BRDYENB	16	16	(3 + BUSWAIT) PCLKA or more	Rounded up to the nearest integer greater than 1 + (3 + BUSWAIT) × (frequency ratio of ICLK/PCLKB)* ⁵	USBAa
000D 0438h	USBA	NRDY Interrupt Enable Register	NRDYENB	16	16	(3 + BUSWAIT) PCLKA or more	Rounded up to the nearest integer greater than 1 + (3 + BUSWAIT) × (frequency ratio of ICLK/PCLKB)* ⁵	USBAa
000D 043Ah	USBA	BEMP Interrupt Enable Register	BEMPENB	16	16	(3 + BUSWAIT) PCLKA or more	Rounded up to the nearest integer greater than 1 + (3 + BUSWAIT) × (frequency ratio of ICL K/PCL KB)*5	USBAa

Table 4.1 List of I/O Registers (Address Order) (61 / 67)

	Module		Pogister	Number	Access	Number of Access (CLK ≥ PCLK ICLK (3 + BUSWAIT) Round the ne intege intege	ccess Cycles	Polatod
Address	Symbol	Register Name	Symbol	of Bits	Size	$\textbf{ICLK} \geq \textbf{PCLK}$	ICLK < PCLK	Function
000D 0494h	USBA	Pipe2 Transaction Counter Enable Register	PIPE2TRE	16	16	(3 + BUSWAIT) PCLKA or more	Rounded up to the nearest integer greater than 1 + (3 + BUSWAIT) × (frequency ratio of ICLK/PCLKB)* ⁵	USBAa
000D 0496h	USBA	Pipe2 Transaction Counter Register	PIPE2TRN	16	16	(3 + BUSWAIT) PCLKA or more	Rounded up to the nearest integer greater than 1 + (3 + BUSWAIT) × (frequency ratio of ICLK/PCLKB)* ⁵	USBAa
000D 0498h	USBA	Pipe3 Transaction Counter Enable Register	PIPE3TRE	16	16	(3 + BUSWAIT) PCLKA or more	Rounded up to the nearest integer greater than 1 + (3 + BUSWAIT) × (frequency ratio of ICLK/PCLKB)*5	USBAa
000D 049Ah	USBA	Pipe3 Transaction Counter Register	PIPE3TRN	16	16	(3 + BUSWAIT) PCLKA or more	Rounded up to the nearest integer greater than 1 + (3 + BUSWAIT) × (frequency ratio of ICLK/PCLKB)* ⁵	USBAa
000D 049Ch	USBA	Pipe4 Transaction Counter Enable Register	PIPE4TRE	16	16	(3 + BUSWAIT) PCLKA or more	Rounded up to the nearest integer greater than 1 + (3 + BUSWAIT) × (frequency ratio of ICLK/PCLKB)* ⁵	USBAa
000D 049Eh	USBA	Pipe4 Transaction Counter Register	PIPE4TRN	16	16	(3 + BUSWAIT) PCLKA or more	Rounded up to the nearest integer greater than 1 + (3 + BUSWAIT) × (frequency ratio of ICLK/PCLKB)* ⁵	USBAa
000D 04A0h	USBA	Pipe5 Transaction Counter Enable Register	PIPE5TRE	16	16	(3 + BUSWAIT) PCLKA or more	Rounded up to the nearest integer greater than 1 + (3 + BUSWAIT) × (frequency ratio of ICLK/PCLKB)* ⁵	USBAa
000D 04A2h	USBA	Pipe5 Transaction Counter Register	PIPE5TRN	16	16	(3 + BUSWAIT) PCLKA or more	Rounded up to the nearest integer greater than 1 + (3 + BUSWAIT) × (frequency ratio of ICLK/PCLKB)* ⁵	USBAa
000D 04D0h	USBA	Device Address 0 Configuration Register	DEVADDO	16	16	(3 + BUSWAIT) PCLKA or more	Rounded up to the nearest integer greater than 1 + (3 + BUSWAIT) × (frequency ratio of ICLK/PCLKB)* ⁵	USBAa
000D 04D2h	USBA	Device Address 1 Configuration Register	DEVADD1	16	16	(3 + BUSWAIT) PCLKA or more	Rounded up to the nearest integer greater than 1 + (3 + BUSWAIT) × (frequency ratio of ICLK/PCLKB)*5	USBAa
000D 04D4h	USBA	Device Address 2 Configuration Register	DEVADD2	16	16	(3 + BUSWAIT) PCLKA or more	Rounded up to the nearest integer greater than 1 + (3 + BUSWAIT) × (frequency ratio of ICL K/PCL KB)*5	USBAa

Table 4.1 List of I/O Registers (Address Order) (65 / 67)

	Modulo		Pogistor	Number Acces		Number of A	Related	
Address	Symbol	Register Name	Symbol	of Bits	Size	$\textbf{ICLK} \geq \textbf{PCLK}$	ICLK < PCLK	Function
000D 04D6h	USBA	Device Address 3 Configuration Register	DEVADD3	16	16	(3 + BUSWAIT) PCLKA or more	Rounded up to the nearest integer greater than 1 + (3 + BUSWAIT) × (frequency ratio of ICLK/PCLKB)* ⁵	USBAa
000D 04D8h	USBA	Device Address 4 Configuration Register	DEVADD4	16	16	(3 + BUSWAIT) PCLKA or more	Rounded up to the nearest integer greater than 1 + (3 + BUSWAIT) × (frequency ratio of ICLK/PCLKB)* ⁵	USBAa
000D 04DAh	USBA	Device Address 5 Configuration Register	DEVADD5	16	16	(3 + BUSWAIT) PCLKA or more	Rounded up to the nearest integer greater than 1 + (3 + BUSWAIT) × (frequency ratio of ICLK/PCLKB)* ⁵	USBAa
000D 0500h	USBA	Low Power Control Register	LPCTRL	16	16	(3 + BUSWAIT) PCLKA or more	Rounded up to the nearest integer greater than 1 + (3 + BUSWAIT) × (frequency ratio of ICLK/PCLKB)* ⁵	USBAa
000D 0502h	USBA	Low Power Status Register	LPSTS	16	16	(3 + BUSWAIT) PCLKA or more	Rounded up to the nearest integer greater than 1 + (3 + BUSWAIT) × (frequency ratio of ICLK/PCLKB)* ⁵	USBAa
000D 0540h	USBA	Battery Charging Control Register	BCCTRL	16	16	(3 + BUSWAIT) PCLKA or more	Rounded up to the nearest integer greater than 1 + (3 + BUSWAIT) × (frequency ratio of ICLK/PCLKB)* ⁵	USBAa
000D 0544h	USBA	Function L1 Control Register 1	PL1CTRL1	16	16	(3 + BUSWAIT) PCLKA or more	Rounded up to the nearest integer greater than 1 + (3 + BUSWAIT) × (frequency ratio of ICLK/PCLKB)* ⁵	USBAa
000D 0546h	USBA	Function L1 Control Register 2	PL1CTRL2	16	16	(3 + BUSWAIT) PCLKA or more	Rounded up to the nearest integer greater than 1 + (3 + BUSWAIT) × (frequency ratio of ICLK/PCLKB)* ⁵	USBAa
000D 0548h	USBA	Host L1 Control Register 1	HL1CTRL1	16	16	(3 + BUSWAIT) PCLKA or more	Rounded up to the nearest integer greater than 1 + (3 + BUSWAIT) × (frequency ratio of ICLK/PCLKB)* ⁵	USBAa
000D 054Ah	USBA	Host L1 Control Register 2	HL1CTRL2	16	16	(3 + BUSWAIT) PCLKA or more	Rounded up to the nearest integer greater than 1 + (3 + BUSWAIT) × (frequency ratio of ICLK/PCLKB)* ⁵	USBAa
000D 0560h	USBA	Deep Standby USB Transceiver Control/Pin Monitor Register	DPUSROR	32	32	(3 + BUSWAIT) PCLKA or more	Rounded up to the nearest integer greater than 1 + (3 + BUSWAIT) × (frequency ratio of ICLK/PCLKB)* ⁵	USBAa

Table 4.1 List of I/O Registers (Address Order) (66 / 67)

Figure 5.22 External Bus Timing/External Wait Control

5.3.6 EXDMAC Timing

Table 5.22 EXDMAC Timing

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = V_{BATT} = 2.7 to 3.6 V, 2.7 ≤ VREFH0 ≤ AVCC0, VCC_USBA = AVCC_USBA = 3.0 to 3.6 V,

 $\label{eq:VSS} VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS1_USBA = VSS2_USBA = PVSS_USBA = AVSS_USBA = 0 \ V, \\ ICLK = 8 \ to \ 240 \ MHz, \ PCLKA = 8 \ to \ 120 \ MHz, \ PCLKB = BCLK = SDCLK = 8 \ to \ 60 \ MHz, \ T_a = T_{opr} \\ Output \ load \ conditions: \ V_{OH} = VCC \ \times \ 0.5, \ V_{OL} = VCC \ \times \ 0.5, \ C = 30 \ pF \\ High-drive \ output \ is \ selected \ by \ the \ driving \ ability \ control \ register.$

	Item	Symbol	Min.	Max.	Unit	Test Conditions
EXDMAC	EDREQ setup time		13	_	ns	Figure 5.30
	EDREQ hold time	t _{EDRQH}	2	_	ns	
	EDACK delay time	t _{EDACD}	_	13	ns	Figure 5.31, Figure 5.32

Figure 5.30 EDREQ0 and EDREQ1 Input Timing

Figure 5.31 EDACK0 and EDACK1 Single-Address Transfer Timing (for a CS Area)

5.3.7 **Timing of On-Chip Peripheral Modules**

Table 5.23 I/O Port Timing

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = V_{BATT} = 2.7 to 3.6 V, 2.7 ≤ VREFH0 ≤ AVCC0, VCC_USBA = AVCC_USBA = 3.0 to 3.6 V, VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS1_USBA = VSS2_USBA = PVSS_USBA = AVSS_USBA = 0 V, PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, $T_a = T_{opr}$ Output load conditions: $V_{OH} = VCC \times 0.5$, $V_{OL} = VCC \times 0.5$, C = 30 pF High-drive output is selected by the driving ability control register.

	Item	Symbol	Min.	Max.	Unit* ¹	Test Conditions
I/O ports	Input data pulse width	t _{PRW}	1.5	_	t _{PBcyc}	Figure 5.33

Note 1. t_{PBcyc}: PCLKB cycle

Table 5.44 On-Chip USB High-Speed Characteristics (DP and DM Pin Characteristics)

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = V_{BATT} = 3.0 to 3.6 V, 3.0 ≤ VREFH0 ≤ AVCC0,

```
VCC_USBA = AVCC_USBA = 3.0 to 3.6 V,
```

 $VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS1_USBA = VSS2_USBA = PVSS_USBA = AVSS_USBA = 0 V, USBA_RREF = 2.2 k\Omega \pm 1\%, USBMCLK = 20/24 MHz, PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, T_a = T_{opr}$

	Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Input characteristics	Squelch detect sensitivity (Differential voltage)	V _{HSSQ}	100	_	150	mV	Figure 5.79
	Disconnect detect sensitivity	V _{HSDSC}	525	_	625	mV	Figure 5.80
	Common mode voltage	V _{HSCM}	-50		500	mV	
Output characteristics	Idle state	V _{HSOI}	-10	I	10	mV	
	Output high level voltage	V _{HSOH}	360	I	440	mV	
	Output low level voltage	V _{HSOL}	-10	I	10	mV	
	Chirp J output voltage (difference)	V _{CHIRPJ}	700	_	1100	mV	
	Chirp K output voltage (difference)	V _{CHIRPK}	-900	_	-500	mV	
AC	Rise time	t _{HSR}	500	_		ps	Figure 5.81
characteristics	Fall time	t _{HSF}	500	_		ps	
	Output resistance	Z _{HSDRV}	40.5	—	49.5	Ω	

Figure 5.80 DP and DM Disconnect detect sensitivity (High-Speed)

Figure 5.81 DP and DM Output Timing (High-Speed)

5.9 Oscillation Stop Detection Timing

Table 5.52 Oscillation Stop Detection Circuit Characteristics

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = V_{BATT} = 2.7 to 3.6 V, 2.7 ≤ VREFH0 ≤ AVCC0,

VCC_USBA = AVCC_USBA = 3.0 to 3.6 V,

 $\label{eq:VSS} VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS1_USBA = VSS2_USBA = PVSS_USBA = AVSS_USBA = 0 \ V, \ T_a = T_{opr}$

ltem	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Detection time	t _{dr}		_	1	ms	Figure 5.87

Figure 5.87 Oscillation Stop Detection Timing

5.10 Battery Backup Function Characteristics

Table 5.53 Battery Backup Function Characteristics

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = 2.7 to 3.6 V, 2.7 ≤ VREFH0 ≤ AVCC0,

VCC_USBA = AVCC_USBA = 3.0 to 3.6 V,

 $\label{eq:VSS} VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS1_USBA = VSS2_USBA = PVSS_USBA = AVSS_USBA = 0 \ V, \\ V_{BATT} = 2.0 \ to \ 3.6 \ V, \ T_a = T_{opr}$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Voltage level for switching to battery backup	V _{DETBATT}	2.50	2.60	2.70	V	Figure 5.88
Lower-limit V_{BATT} voltage for power supply switching due to VCC voltage drop	V _{BATTSW}	2.70	—	—		
VCC-off period for starting power supply switching	t _{VOFFBATT}	200	—	—	μs	

Note: The VCC-off period for starting power supply switching indicates the period in which VCC is below the minimum value of the voltage level for switching to battery backup (V_{DETBATT}).

Figure 5.88 Battery Backup Function Characteristics

Table 5.55 Data Flash Memory Characteristics

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = V_{BATT} = 2.7 to 3.6 V, 2.7 ≤ VREFH0 ≤ AVCC0,

VCC_USBA = AVCC_USBA = 3.0 to 3.6 V

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS1_USBA = VSS2_USBA = PVSS_USBA = AVSS_USBA = 0 V, Temperature range for programming/erasure: T_a = T_{opr}

Itom		Symbol	F	CLK = 4 M⊦	lz	20 MHz	Unit		
item	_	Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Onic
Programming time	4 bytes	t _{DP4}	_	0.66	3.8	—	0.3	1.7	ms
Erasure time	64 bytes	t _{DE64}	_	5.4	18	—	3	10	ms
Blank check time	4 bytes	t _{DBC4}	_	_	84	—	_	30	μs
Reprogramming/erasure cycle*1		N _{DPEC}	100000 *2	_	_	100000 *2	_	—	Times
Suspend delay time during programming		t _{DSPD}	_	_	264	—	_	120	μs
First suspend delay time (in suspend priority mode	during erasure e)	t _{DSESD1}	_	_	216	_	_	120	μs
Second suspend delay ti erasure (in suspend priority mode	me during e)	t _{DSESD2}	_	_	300	_	_	300	μs
Suspend delay time durin (in erasure priority mode	ng erasing)	t _{DSEED}	_	_	300	_	_	300	μs
Forced stop command		t _{FD}	_	TBD	32	—	_	20	μs
Data hold time*3		t _{DDRP}	10	_	_	10	_	_	Year

Note 1. Definition of reprogram/erase cycle:

The reprogram/erase cycle is the number of erasing for each block. When the reprogram/erase cycle is n times (n = 100000), erasing can be performed n times for each block. For instance, when 4-byte programming is performed 512 times for different addresses in 2-Kbyte block and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address for several times as one erasing is not enabled (overwriting is prohibited).

Note 2. This is the minimum number of times to guarantee all the characteristics after reprogramming (guaranteed range is from 1 to the value of the minimum value).

Note 3. This shows the characteristics when reprogramming is performed within the specified range, including the minimum value.

