


Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                    |
|----------------------------|-----------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M0+                                          |
| Core Size                  | 32-Bit Single-Core                                        |
| Speed                      | 75MHz                                                     |
| Connectivity               | I <sup>2</sup> C, SPI, UART/USART                         |
| Peripherals                | DMA, WDT                                                  |
| Number of I/O              | 28                                                        |
| Program Memory Size        | 32KB (32K x 8)                                            |
| Program Memory Type        | FLASH                                                     |
| EEPROM Size                | -                                                         |
| RAM Size                   | 8K x 8                                                    |
| Voltage - Supply (Vcc/Vdd) | 1.71V ~ 3.6V                                              |
| Data Converters            | A/D 16x12b; D/A 1x12b                                     |
| Oscillator Type            | Internal                                                  |
| Operating Temperature      | -40°C ~ 105°C (TA)                                        |
| Mounting Type              | Surface Mount                                             |
| Package / Case             | 32-LQFP                                                   |
| Supplier Device Package    | 32-LQFP (7x7)                                             |
| Purchase URL               | https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mkv10z32vlc7 |
|                            |                                                           |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



#### Ordering Information<sup>1</sup>

| Part Number  | Ме         | Memory    |    |  |  |
|--------------|------------|-----------|----|--|--|
|              | Flash (KB) | SRAM (KB) |    |  |  |
| MKV10Z32VLC7 | 32         | 8         | 28 |  |  |
| MKV10Z32VFM7 | 32         | 8         | 28 |  |  |
| MKV10Z32VLF7 | 32         | 8         | 40 |  |  |
| MKV10Z16VLC7 | 16         | 8         | 28 |  |  |
| MKV10Z16VFM7 | 16         | 8         | 28 |  |  |
| MKV10Z16VLF7 | 16         | 8         | 40 |  |  |

1. To confirm current availability of ordererable part numbers, go to http://www.freescale.com and perform a part number search.

#### **Related Resources**

| Туре                | Description                                                                                                                      | Resource                                                                                                               |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Selector<br>Guide   | The Freescale Solution Advisor is a web-based tool that features interactive application wizards and a dynamic product selector. | Solution Advisor                                                                                                       |
| Product Brief       | The Product Brief contains concise overview/summary information to enable quick evaluation of a device for design suitability.   | KV10PB <sup>1</sup>                                                                                                    |
| Reference<br>Manual | The Reference Manual contains a comprehensive description of the structure and function (operation) of a device.                 | KV10P48M75RM <sup>1</sup>                                                                                              |
| Data Sheet          | The Data Sheet includes electrical characteristics and signal connections.                                                       | This document                                                                                                          |
| Chip Errata         | The chip mask set Errata provides additional or corrective information for a particular device mask set.                         | KV10Z_1N81H <sup>1</sup>                                                                                               |
| Package<br>drawing  | Package dimensions are provided in package drawings.                                                                             | QFN 32-pin: 98ASA00473D <sup>1</sup><br>LQFP 32-pin: 98ASH70029A <sup>1</sup><br>LQFP 48-pin: 98ASH00962A <sup>1</sup> |

1. To find the associated resource, go to http://www.freescale.com and perform a search using this term.



## 1 Ratings

## 1.1 Thermal handling ratings

| Symbol           | Description                   | Min. | Max. | Unit | Notes |
|------------------|-------------------------------|------|------|------|-------|
| T <sub>STG</sub> | Storage temperature           | -55  | 150  | °C   | 1     |
| T <sub>SDR</sub> | Solder temperature, lead-free | _    | 260  | °C   | 2     |

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

### 1.2 Moisture handling ratings

| Symbol | Description                | Min. | Max. | Unit | Notes |
|--------|----------------------------|------|------|------|-------|
| MSL    | Moisture sensitivity level | _    | 3    | —    | 1     |

1. Determined according to IPC/JEDEC Standard J-STD-020, *Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices*.

## 1.3 ESD handling ratings

| Symbol           | Description                                           | Min.  | Max.  | Unit | Notes |
|------------------|-------------------------------------------------------|-------|-------|------|-------|
| V <sub>HBM</sub> | Electrostatic discharge voltage, human-body model     | -2000 | +2000 | V    | 1     |
| V <sub>CDM</sub> | Electrostatic discharge voltage, charged-device model | -500  | +500  | V    | 2     |
| I <sub>LAT</sub> | Latch-up current at ambient temperature of 105 °C     | -100  | +100  | mA   |       |

1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

## 1.4 Voltage and current operating ratings

5



### 2.2.3 Voltage and current operating behaviors Table 3. Voltage and current operating behaviors

| Symbol           | Description                                                                                            | Min.                  | Max.  | Unit | Notes |
|------------------|--------------------------------------------------------------------------------------------------------|-----------------------|-------|------|-------|
| V <sub>OH</sub>  | Output high voltage — Normal drive pad                                                                 |                       |       |      |       |
|                  | All port pins, except PTC6 and PTC7                                                                    | V <sub>DD</sub> – 0.5 | _     | v    |       |
|                  | • 2.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V, I <sub>OH</sub> = -5 mA                                   | V <sub>DD</sub> – 0.5 | —     | v    |       |
|                  | • $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -1.5 \text{ mA}$ |                       |       |      |       |
| V <sub>OH</sub>  | Output high voltage — High drive pad                                                                   |                       |       |      |       |
|                  | PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6,                                                              | V <sub>DD</sub> – 0.5 | _     | V    |       |
|                  | PTD7 pins                                                                                              | V <sub>DD</sub> – 0.5 | _     | v    |       |
|                  | • 2.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V, I <sub>OH</sub> = -18 mA                                  |                       |       |      |       |
|                  | • $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -6 \text{ mA}$   |                       |       |      |       |
| I <sub>OHT</sub> | Output high current total for all ports                                                                | —                     | 100   | mA   |       |
| V <sub>OL</sub>  | Output low voltage — Normal drive pad                                                                  |                       |       |      |       |
|                  | All port pins                                                                                          | _                     | 0.5   | V    |       |
|                  | • 2.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V, I <sub>OL</sub> = 5 mA                                    | _                     | 0.5   | v    |       |
|                  | • 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V, I <sub>OL</sub> = 1.5 mA                                 |                       |       |      |       |
| V <sub>OL</sub>  | Output low voltage — High drive pad                                                                    |                       |       |      |       |
|                  | PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6,                                                              | _                     | 0.5   | V    |       |
|                  | PTD7 pins                                                                                              | _                     | 0.5   | v    |       |
|                  | • 2.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V, I <sub>OL</sub> = 18 mA                                   |                       |       |      |       |
|                  | • $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 6 \text{ mA}$    |                       |       |      |       |
| I <sub>OLT</sub> | Output low current total for all ports                                                                 | —                     | 100   | mA   |       |
| I <sub>IN</sub>  | Input leakage current (per pin) for full temperature range                                             | -                     | 1     | μA   |       |
| I <sub>IN</sub>  | Input leakage current (per pin) at 25 °C                                                               | -                     | 0.025 | μA   | 1     |
| I <sub>IN</sub>  | Input leakage current (total all pins) for full temperature range                                      | -                     | 41    | μA   | 1     |
| I <sub>OZ</sub>  | Hi-Z (off-state) leakage current (per pin)                                                             |                       | 1     | μA   |       |
| R <sub>PU</sub>  | Internal pullup resistors                                                                              | 20                    | 50    | kΩ   | 2     |

1. Measured at  $V_{DD} = 3.6 V$ 

2. Measured at V<sub>DD</sub> supply voltage = V<sub>DD</sub> min and Vinput = V<sub>SS</sub>



### 2.2.4 Power mode transition operating behaviors

All specifications except  $t_{POR}$  and VLLSx $\rightarrow$ RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 75 MHz
- Bus and flash clock = 25 MHz
- FEI clock mode

| Symbol           | Description                                                                                                                                                       | Min. | Тур. | Max. | Unit | Notes |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|-------|
| t <sub>POR</sub> | After a POR event, amount of time from the point $V_{DD}$ reaches 1.8 V to execution of the first instruction across the operating temperature range of the chip. |      | _    | 300  | μs   |       |
|                  | • VLLS0 $\rightarrow$ RUN                                                                                                                                         | _    | 106  | 115  | μs   |       |
|                  | • VLLS1 → RUN                                                                                                                                                     | _    | 106  | 115  | μs   |       |
|                  | VLLS3 → RUN                                                                                                                                                       | _    | 47   | 53   | μs   |       |
|                  | <ul> <li>VLPS → RUN</li> </ul>                                                                                                                                    | _    | 4.5  | 4.8  | μs   |       |
|                  | • STOP → RUN                                                                                                                                                      | _    | 4.5  | 4.8  | μs   |       |

### Table 4. Power mode transition operating behaviors

### 2.2.5 Power consumption operating behaviors

### NOTE

The maximum values stated in the following table represent characterized results equivalent to the mean plus six times the standard deviation (mean + 6 sigma).

Table 5. Power consumption operating behaviors

| Symbol              | Description                                                                  | Min. | Тур. | Max. | Unit | Notes      |
|---------------------|------------------------------------------------------------------------------|------|------|------|------|------------|
| I <sub>DDA</sub>    | Analog supply current                                                        | —    | —    | 5    | mA   | 1          |
| I <sub>DD_RUN</sub> | Run mode current — all peripheral clocks disabled, code executing from flash |      |      |      |      | Target IDD |
|                     | • at 1.8 V 50 MHz (25 MHz Bus)                                               | _    | 5    | 6.3  | mA   |            |





| Symbol               | Description                                                                          | Min. | Тур.       | Max.       | Unit | Notes                                         |
|----------------------|--------------------------------------------------------------------------------------|------|------------|------------|------|-----------------------------------------------|
|                      | • at 3.0 V 50 MHz (25 MHz Bus)                                                       | —    | 5          | 6.3        | mA   |                                               |
|                      | • at 1.8 V 75 MHz (25 MHz Bus)                                                       | _    | 6.5        | 7.8        | mA   |                                               |
|                      | • at 3.0 V 75 MHz (25 MHz Bus)                                                       | —    | 6.5        | 7.5        | mA   |                                               |
| I <sub>DD_RUN</sub>  | Run mode current — all peripheral clocks enabled, code executing from flash          |      |            |            |      | Target IDD                                    |
|                      | • at 1.8 V 50 MHz                                                                    | _    | 7.1        | 8.2        | mA   |                                               |
|                      | • at 3.0 V 50 MHz                                                                    | _    | 7.1        | 8          | mA   |                                               |
|                      | • at 1.8 V 75 MHz                                                                    | _    | 9.4        | 10.9       | mA   |                                               |
|                      | • at 3.0 V 75 MHz                                                                    | _    | 9.4        | 10.6       | mA   |                                               |
| I <sub>DD_WAIT</sub> | Wait mode high frequency 75 MHz current at 3.0 V — all peripheral clocks disabled    |      | 4          | 5.2        | mA   | -                                             |
| I <sub>DD_WAIT</sub> | Wait mode reduced frequency 50 MHz current at 3.0 V — all peripheral clocks disabled | _    | 3.4        | 4.7        | mA   | _                                             |
| I <sub>DD_VLPR</sub> | Very-Low-Power Run mode current 4 MHz at 3.0 V — all peripheral clocks disabled      | _    | 215        | 437        | μA   | 4 MHz<br>CPU<br>speed, 1<br>MHz bus<br>speed. |
| DD_VLPR              | Very-Low-Power Run mode current 4 MHz at 3.0 V — all peripheral clocks enabled       | _    | 313        | 570        | μA   | 4 MHz<br>CPU<br>speed, 1<br>MHz bus<br>speed. |
| DD_VLPW              | Very-Low-Power Wait mode current at 3.0 V — all peripheral clocks disabled           | _    | 149        | 303        | μA   | 4 MHz<br>CPU<br>speed, 1<br>MHz bus<br>speed. |
| DD_VLPW              | Very-Low-Power Wait mode current at 3.0 V — all peripheral clocks enabled            | _    | 244        | 347        | μΑ   | 4 MHz<br>CPU<br>speed, 1<br>MHz bus<br>speed. |
| I <sub>DD_STOP</sub> | Stop mode current at 3.0 V<br>• -40 °C to 25 °C                                      |      | 248        | 280        |      | _                                             |
|                      | • at 50 °C                                                                           |      | 248<br>261 | 280<br>315 |      |                                               |
|                      | • at 70 °C                                                                           |      |            |            | μA   |                                               |
|                      | • at 85 °C                                                                           |      | 278<br>307 | 333<br>435 |      |                                               |
|                      | • at 105 °C                                                                          |      | 307<br>381 | 435<br>510 |      |                                               |
| I <sub>DD_VLPS</sub> | Very-Low-Power Stop mode current at 3.0 V<br>• -40 °C to 25 °C                       |      |            | 510        |      | -                                             |
|                      |                                                                                      | _    | 2.2        | 4.3        |      |                                               |
|                      | • at 50 °C                                                                           | _    | 4.2        | 9.9        |      |                                               |

| Table 5. | Power consumption operating behaviors (continued) |
|----------|---------------------------------------------------|
|----------|---------------------------------------------------|



| Symbol                | Description                                                                                     | Min. | Тур.  | Max.  | Unit | Notes |
|-----------------------|-------------------------------------------------------------------------------------------------|------|-------|-------|------|-------|
|                       | • at 70 °C                                                                                      | _    | 8.8   | 24    | μA   |       |
|                       | • at 85 °C                                                                                      | _    | 16.2  | 59    |      |       |
|                       | • at 105 °C                                                                                     | —    | 36.7  | 82    |      |       |
| I <sub>DD_VLLS3</sub> | Very-Low-Leakage Stop mode 3 current at 3.0 V<br>• -40 °C to 25 °C                              |      |       |       | μΑ   |       |
|                       | • at 50 °C                                                                                      | —    | 1.3   | 5.7   |      |       |
|                       | • at 70 °C                                                                                      |      | 1.9   | 6.1   |      |       |
|                       | • at 85 °C                                                                                      | _    | 3.3   | 7.4   |      |       |
|                       | ● at 105 °C                                                                                     | _    | 5.8   | 11.2  |      |       |
|                       |                                                                                                 |      | 13    | 18    |      |       |
| I <sub>DD_VLLS1</sub> | Very-Low-Leakage Stop mode 1 current at 3.0 V                                                   |      |       |       | μΑ   | —     |
|                       | • -40°C to 25°C                                                                                 | —    | 0.8   | 3.0   |      |       |
|                       | • at 50°C                                                                                       |      | 1.2   | 4.9   |      |       |
|                       | • at 70°C                                                                                       | _    | 2.2   | 7.0   |      |       |
|                       | • at 85°C                                                                                       | _    | 4     | 12.5  |      |       |
|                       | • at 105°C                                                                                      |      | 9.4   | 29.0  |      |       |
| I <sub>DD_VLLS0</sub> | Very-Low-Leakage Stop mode 0 current<br>(SMC_STOPCTRL[PORPO] = 0) at 3.0 V                      |      |       |       | μA   | _     |
|                       | • -40 °C to 25 °C                                                                               |      | 0.279 | 0.7   |      |       |
|                       | • at 50 °C                                                                                      | _    | 0.638 | 1.2   |      |       |
|                       | • at 70 °C                                                                                      |      | 1.63  | 2.5   |      |       |
|                       | • at 85 °C                                                                                      |      | 3.4   | 4.5   |      |       |
|                       | • at 105 °C                                                                                     | _    | 8.9   | 12.0  |      |       |
| I <sub>DD_VLLS0</sub> | Very-Low-Leakage Stop mode 0 current<br>(SMC_STOPCTRL[PORPO] = 1) at 3.0 V<br>• -40 °C to 25 °C |      |       |       | μΑ   | 2     |
|                       | • at 50 °C                                                                                      |      | 0.098 | 0.485 |      |       |
|                       | • at 70 °C                                                                                      |      | 0.448 | 0.788 |      |       |
|                       | • at 85 °C                                                                                      | _    | 1.4   | 2.29  |      |       |
|                       | • at 105 °C                                                                                     | _    | 3.19  | 4.14  |      |       |
|                       |                                                                                                 |      | 8.47  | 11.8  |      |       |

 Table 5. Power consumption operating behaviors (continued)

1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.

2. No brownout



| Symbol                    | Description                                                                                                                                                                                                                                                    |     | Temperature (°C) |     | )   |     | Un  |    |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------|-----|-----|-----|-----|----|
|                           |                                                                                                                                                                                                                                                                | -40 | 25               | 50  | 70  | 85  | 105 |    |
| I <sub>IREFSTEN4MHz</sub> | 4 MHz internal reference clock (IRC)<br>adder. Measured by entering STOP or<br>VLPS mode with 4 MHz IRC enabled.                                                                                                                                               | 56  | 56               | 56  | 56  | 56  | 56  | μA |
| IIREFSTEN32KHz            | 32 kHz internal reference clock (IRC)<br>adder. Measured by entering STOP<br>mode with the 32 kHz IRC enabled.                                                                                                                                                 | 52  | 52               | 52  | 52  | 52  | 52  | μA |
| I <sub>EREFSTEN4MHz</sub> | External 4 MHz crystal clock adder.<br>Measured by entering STOP or VLPS<br>mode with the crystal enabled.                                                                                                                                                     | 206 | 228              | 237 | 245 | 251 | 258 | u/ |
| IEREFSTEN32KHZ            | External 32 kHz crystal clock adder by<br>means of the OSC0_CR[EREFSTEN<br>and EREFSTEN] bits. Measured by<br>entering all modes with the crystal<br>enabled.                                                                                                  | 440 | 490              | 540 | 560 | 570 | 580 |    |
|                           | VLLS1                                                                                                                                                                                                                                                          | 440 | 490              | 540 | 560 | 570 | 580 | n/ |
|                           | VLLS3                                                                                                                                                                                                                                                          | 510 | 560              | 560 | 560 | 610 | 680 |    |
|                           | VLPS                                                                                                                                                                                                                                                           | 510 | 560              | 560 | 560 | 610 | 680 |    |
|                           | STOP                                                                                                                                                                                                                                                           |     |                  |     |     |     |     |    |
| I <sub>CMP</sub>          | CMP peripheral adder measured by<br>placing the device in VLLS1 mode with<br>CMP enabled using the 6-bit DAC and<br>a single external input for compare.<br>Includes 6-bit DAC power<br>consumption.                                                           | 22  | 22               | 22  | 22  | 22  | 22  | μ  |
| I <sub>UART</sub>         | UART peripheral adder measured by<br>placing the device in STOP or VLPS<br>mode with selected clock source<br>waiting for RX data at 115200 baud<br>rate. Includes selected clock source<br>power consumption.<br>MCGIRCLK (4 MHz internal reference<br>clock) | 66  | 66               | 66  | 66  | 66  | 66  | μι |
|                           | OSCERCLK (4 MHz external crystal)                                                                                                                                                                                                                              | 214 | 237              | 246 | 254 | 260 | 268 |    |
| I <sub>SPI</sub>          | SPI peripheral adder measured by<br>placing the device in STOP or VLPS<br>mode with selected clock source<br>waiting for RX data at 115200 baud<br>rate. Includes selected clock source<br>power consumption.                                                  | 66  | 66               | 66  | 66  | 66  | 66  | μ  |
|                           | MCGIRCLK (4 MHz internal reference<br>clock)                                                                                                                                                                                                                   |     |                  |     |     |     |     | μ, |
|                           | OSCERCLK (4 MHz external crystal)                                                                                                                                                                                                                              | 214 | 237              | 246 | 254 | 260 | 268 |    |
| I <sub>I2C</sub>          | I2C peripheral adder measured by<br>placing the device in STOP or VLPS<br>mode with selected clock source                                                                                                                                                      |     |                  |     |     |     |     |    |

| Table 6.         Low power mode peripheral adders — typical value | alue |
|-------------------------------------------------------------------|------|
|-------------------------------------------------------------------|------|



## 2.4 Thermal specifications

### 2.4.1 Thermal operating requirements

#### Table 11. Thermal operating requirements

| Symbol         | Description              | Min. | Max. | Unit |
|----------------|--------------------------|------|------|------|
| TJ             | Die junction temperature | -40  | 125  | °C   |
| T <sub>A</sub> | Ambient temperature      | -40  | 105  | °C   |

### NOTE

Maximum  $T_A$  can be exceeded only if the user ensures that  $T_J$  does not exceed maximum  $T_J$ . The simplest method to determine  $T_J$  is:  $T_J = T_A + \theta_{JA} x$  chip power dissipation.

### 2.4.2 Thermal attributes

Table 12. Thermal attributes

| Board type        | Symbol            | Description                                                                                              | 48 LQFP | 32 LQFP | 32 QFN | Unit | Notes |
|-------------------|-------------------|----------------------------------------------------------------------------------------------------------|---------|---------|--------|------|-------|
| Single-layer (1S) | R <sub>θJA</sub>  | Thermal resistance, junction to ambient (natural convection)                                             | 81      | 85      | 98     | °C/W | 1     |
| Four-layer (2s2p) | R <sub>θJA</sub>  | Thermal resistance, junction to ambient (natural convection)                                             | 57      | 57      | 34     | °C/W |       |
| Single-layer (1S) | R <sub>θJMA</sub> | Thermal resistance, junction to ambient (200 ft./min. air speed)                                         | 68      | 72      | 82     | °C/W |       |
| Four-layer (2s2p) | R <sub>θJMA</sub> | Thermal resistance, junction to ambient (200 ft./min. air speed)                                         | 51      | 50      | 28     | °C/W |       |
| _                 | R <sub>θJB</sub>  | Thermal resistance, junction to board                                                                    | 35      | 33      | 14     | °C/W | 2     |
| _                 | R <sub>θJC</sub>  | Thermal resistance, junction to case                                                                     | 25      | 25      | 2.5    | °C/W | 3     |
| _                 | $\Psi_{JT}$       | Thermal characterization<br>parameter, junction to package<br>top outside center (natural<br>convection) | 7       | 7       | 8      | °C/W | 4     |

1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air).

2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board.



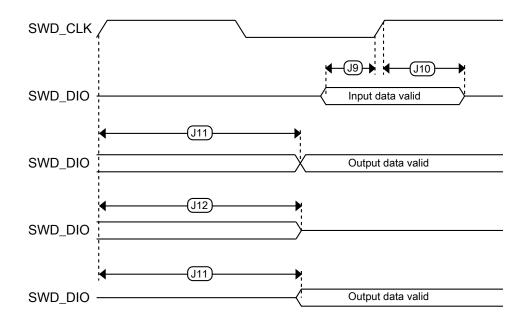



Figure 6. Serial wire data timing

## 3.2 System modules

There are no specifications necessary for the device's system modules.

## 3.3 Clock modules

### 3.3.1 MCG specifications

| Table 14. | MCG | specifications |
|-----------|-----|----------------|
|-----------|-----|----------------|

| Symbol                  | Description                                                                                                          | Min.  | Тур.   | Max.    | Unit              | Notes |
|-------------------------|----------------------------------------------------------------------------------------------------------------------|-------|--------|---------|-------------------|-------|
| f <sub>ints_ft</sub>    | Internal reference frequency (slow clock) — factory trimmed at nominal V <sub>DD</sub> and 25 °C                     | _     | 32.768 | _       | kHz               |       |
| f <sub>ints_t</sub>     | Internal reference frequency (slow clock) — user trimmed                                                             | 31.25 | _      | 39.0625 | kHz               |       |
| $\Delta_{fdco\_res\_t}$ | Resolution of trimmed average DCO output<br>frequency at fixed voltage and temperature —<br>using SCTRIM and SCFTRIM | _     | ± 0.3  | ± 0.6   | %f <sub>dco</sub> | 1     |



- The resulting system clock frequencies must not exceed their maximum specified values. The DCO frequency deviation (Δf<sub>dco t</sub>) over voltage and temperature must be considered.
- 5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 1.
- 6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 7. This specification is based on standard deviation (RMS) of period or frequency.
- 8. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or there is a change from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

### 3.3.2 Oscillator electrical specifications

### 3.3.2.1 Oscillator DC electrical specifications Table 15. Oscillator DC electrical specifications

| Symbol             | Description                                                    | Min. | Тур. | Max. | Unit | Notes |
|--------------------|----------------------------------------------------------------|------|------|------|------|-------|
| V <sub>DD</sub>    | Supply voltage                                                 | 1.71 | —    | 3.6  | V    |       |
| I <sub>DDOSC</sub> | Supply current — low-power mode (HGO=0)                        |      |      |      |      | 1     |
|                    | • 32 kHz                                                       | —    | 500  | _    | nA   |       |
|                    | • 4 MHz                                                        | _    | 200  | _    | μA   |       |
|                    | • 8 MHz                                                        | _    | 300  | _    | μA   |       |
|                    | • 16 MHz                                                       | _    | 950  | _    | μA   |       |
|                    | • 24 MHz                                                       | _    | 1.2  | _    | mA   |       |
|                    | • 32 MHz                                                       | _    | 1.5  | _    | mA   |       |
| IDDOSC             | Supply current — high gain mode (HGO=1)                        |      |      |      |      | 1     |
|                    | • 4 MHz                                                        | _    | 500  | _    | μA   |       |
|                    | • 8 MHz                                                        | _    | 600  | _    | μA   |       |
|                    | • 16 MHz                                                       | _    | 2.5  | _    | mA   |       |
|                    | • 24 MHz                                                       | _    | 3    | _    | mA   |       |
|                    | • 32 MHz                                                       | _    | 4    | _    | mA   |       |
| C <sub>x</sub>     | EXTAL load capacitance                                         |      |      | _    |      | 2, 3  |
| Cy                 | XTAL load capacitance                                          |      |      | —    |      | 2, 3  |
| R <sub>F</sub>     | Feedback resistor — low-frequency, low-power mode (HGO=0)      |      |      |      | MΩ   | 2, 4  |
|                    | Feedback resistor — low-frequency, high-gain mode (HGO=1)      | _    | 10   | —    | MΩ   |       |
|                    | Feedback resistor — high-frequency, low-<br>power mode (HGO=0) |      | _    | _    | MΩ   |       |
|                    | Feedback resistor — high-frequency, high-gain mode (HGO=1)     | _    | 1    | _    | MΩ   |       |



| Symbol                       | Description                                                                                            | Min. | Тур.            | Max. | Unit | Notes |
|------------------------------|--------------------------------------------------------------------------------------------------------|------|-----------------|------|------|-------|
| R <sub>S</sub>               | Series resistor — low-frequency, low-power mode (HGO=0)                                                | —    | _               | _    | kΩ   |       |
|                              | Series resistor — low-frequency, high-gain mode (HGO=1)                                                |      | 200             |      | kΩ   |       |
|                              | Series resistor — high-frequency, low-power mode (HGO=0)                                               | —    | _               | _    | kΩ   |       |
|                              | Series resistor — high-frequency, high-gain mode (HGO=1)                                               |      |                 |      |      |       |
|                              |                                                                                                        | _    | 0               | _    | kΩ   |       |
| V <sub>pp</sub> <sup>5</sup> | Peak-to-peak amplitude of oscillation (oscillator<br>mode) — low-frequency, low-power mode<br>(HGO=0)  | _    | 0.6             | _    | V    |       |
|                              | Peak-to-peak amplitude of oscillation (oscillator<br>mode) — low-frequency, high-gain mode<br>(HGO=1)  | _    | V <sub>DD</sub> | _    | V    |       |
|                              | Peak-to-peak amplitude of oscillation (oscillator<br>mode) — high-frequency, low-power mode<br>(HGO=0) | _    | 0.6             | _    | V    |       |
|                              | Peak-to-peak amplitude of oscillation (oscillator<br>mode) — high-frequency, high-gain mode<br>(HGO=1) | _    | V <sub>DD</sub> | —    | V    |       |

 Table 15.
 Oscillator DC electrical specifications (continued)

1.  $V_{DD}$ =3.3 V, Temperature =25 °C

2. See crystal or resonator manufacturer's recommendation

3.  $C_x, C_y$  can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For all other cases external capacitors must be used.

- 4. When low power mode is selected, R<sub>F</sub> is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

### 3.3.2.2 Oscillator frequency specifications Table 16. Oscillator frequency specifications

| Symbol                | Description                                                                                           | Min. | Тур. | Max. | Unit | Notes |
|-----------------------|-------------------------------------------------------------------------------------------------------|------|------|------|------|-------|
| f <sub>osc_lo</sub>   | Oscillator crystal or resonator frequency — low-<br>frequency mode (MCG_C2[RANGE]=00)                 | 32   | _    | 40   | kHz  |       |
| f <sub>osc_hi_1</sub> | Oscillator crystal or resonator frequency — high-<br>frequency mode (low range)<br>(MCG_C2[RANGE]=01) | 3    | _    | 8    | MHz  |       |
| f <sub>osc_hi_2</sub> | Oscillator crystal or resonator frequency — high<br>frequency mode (high range)<br>(MCG_C2[RANGE]=1x) | 8    | _    | 32   | MHz  |       |
| f <sub>ec_extal</sub> | Input clock frequency (external clock mode)                                                           | —    | —    | 50   | MHz  | 1, 2  |
| t <sub>dc_extal</sub> | Input clock duty cycle (external clock mode)                                                          | 40   | 50   | 60   | %    |       |



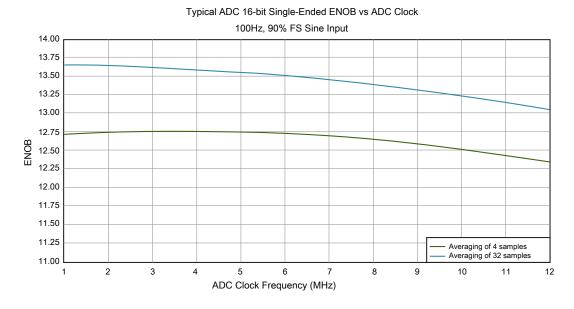



Figure 9. Typical ENOB vs. ADC\_CLK for 16-bit single-ended mode

### 3.6.2 CMP and 6-bit DAC electrical specifications Table 23. Comparator and 6-bit DAC electrical specifications

| Symbol             | Description                                               | Min.                  | Тур. | Max.            | Unit |
|--------------------|-----------------------------------------------------------|-----------------------|------|-----------------|------|
| V <sub>DD</sub>    | Supply voltage                                            | 1.71                  |      | 3.6             | V    |
| I <sub>DDHS</sub>  | Supply current, high-speed mode (EN = 1, PMODE = 1)       | —                     | _    | 200             | μA   |
| I <sub>DDLS</sub>  | Supply current, low-speed mode (EN = 1, PMODE = 0)        | —                     | _    | 20              | μA   |
| V <sub>AIN</sub>   | Analog input voltage                                      | V <sub>SS</sub>       | —    | V <sub>DD</sub> | V    |
| V <sub>AIO</sub>   | Analog input offset voltage                               | —                     |      | 20              | mV   |
| V <sub>H</sub>     | Analog comparator hysteresis <sup>1</sup>                 |                       |      |                 |      |
|                    | • CR0[HYSTCTR] = 00                                       | —                     | 5    | _               | mV   |
|                    | • CR0[HYSTCTR] = 01                                       | —                     | 10   | _               | mV   |
|                    | • CR0[HYSTCTR] = 10                                       | —                     | 20   | _               | mV   |
|                    | • CR0[HYSTCTR] = 11                                       | —                     | 30   | _               | mV   |
| V <sub>CMPOh</sub> | Output high                                               | V <sub>DD</sub> – 0.5 |      |                 | V    |
| V <sub>CMPOI</sub> | Output low                                                | —                     | _    | 0.5             | V    |
| t <sub>DHS</sub>   | Propagation delay, high-speed mode (EN = 1,<br>PMODE = 1) | 20                    | 35   | 200             | ns   |
| t <sub>DLS</sub>   | Propagation delay, low-speed mode (EN = 1,<br>PMODE = 0)  | 80                    | 100  | 600             | ns   |
|                    | Analog comparator initialization delay <sup>2</sup>       | —                     | _    | 40              | μs   |



| Symbol               | Description                                                                    | Min.                      | Тур.     | Max.              | Unit   | Notes |
|----------------------|--------------------------------------------------------------------------------|---------------------------|----------|-------------------|--------|-------|
| t <sub>DACHP</sub>   | Full-scale settling time (0x080 to 0xF7F) — high-power mode                    |                           | 15       | 30                | μs     | 1     |
| t <sub>CCDACLP</sub> | Code-to-code settling time (0xBF8 to<br>0xC08)—high-speed mode                 |                           | 1        | —                 | μs     | 1     |
|                      | —low-power mode                                                                |                           | —        | 5                 | μs     | 1     |
| V <sub>dacoutl</sub> | DAC output voltage range low — high-<br>speed mode, no load, DAC set to 0x000  |                           | _        | 100               | mV     |       |
| V <sub>dacouth</sub> | DAC output voltage range high — high-<br>speed mode, no load, DAC set to 0xFFF | V <sub>DACR</sub><br>-100 | —        | V <sub>DACR</sub> | mV     |       |
| INL                  | Integral non-linearity error — high speed mode                                 | _                         | —        | ±8                | LSB    | 2     |
| DNL                  | Differential non-linearity error — V <sub>DACR</sub> > 2<br>V                  | _                         | —        | ±1                | LSB    | 3     |
| DNL                  | Differential non-linearity error — V <sub>DACR</sub> = VREF_OUT                |                           | —        | ±1                | LSB    | 4     |
| V <sub>OFFSET</sub>  | Offset error                                                                   |                           | ±0.4     | ±0.8              | %FSR   | 5     |
| E <sub>G</sub>       | Gain error                                                                     | _                         | ±0.1     | ±0.6              | %FSR   | 5     |
| PSRR                 | Power supply rejection ratio, $V_{DDA} \ge 2.4 \text{ V}$                      | 60                        | —        | 90                | dB     |       |
| T <sub>CO</sub>      | Temperature coefficient offset voltage                                         | _                         | 3.7      | —                 | μV/C   | 6     |
| T <sub>GE</sub>      | Temperature coefficient gain error                                             | _                         | 0.000421 | —                 | %FSR/C |       |
| Rop                  | Output resistance (load = $3 \text{ k}\Omega$ )                                | _                         | —        | 250               | Ω      |       |
| SR                   | Slew rate -80h→ F7Fh→ 80h                                                      |                           |          |                   | V/µs   |       |
|                      | <ul> <li>High power (SP<sub>HP</sub>)</li> </ul>                               | 1.2                       | 1.7      | —                 |        |       |
|                      | Low power (SP <sub>LP</sub> )                                                  | 0.05                      | 0.12     | —                 |        |       |
| BW                   | 3dB bandwidth                                                                  |                           |          |                   | kHz    |       |
|                      | • High power (SP <sub>HP</sub> )                                               | 550                       | _        | —                 |        |       |
|                      | Low power (SP <sub>LP</sub> )                                                  | 40                        | _        | _                 |        |       |

| Table 25. | 12-bit DAC operating behaviors (continued) |
|-----------|--------------------------------------------|
|-----------|--------------------------------------------|

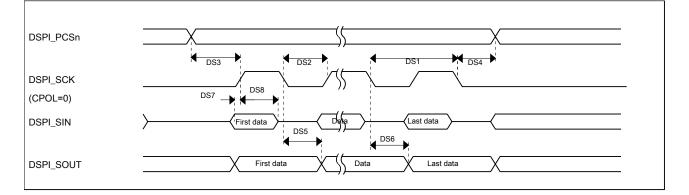
1. Settling within ±1 LSB

2. The INL is measured for 0 + 100 mV to  $V_{DACR}$  –100 mV

3. The DNL is measured for 0 + 100 mV to  $V_{DACR}$  -100 mV 4. The DNL is measured for 0 + 100 mV to  $V_{DACR}$  -100 mV with  $V_{DDA}$  > 2.4 V 5. Calculated by a best fit curve from  $V_{SS}$  + 100 mV to  $V_{DACR}$  - 100 mV

6.  $V_{DDA} = 3.0 \text{ V}$ , reference select set for  $V_{DDA}$  (DACx\_CO:DACRFS = 1), high power mode (DACx\_CO:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device

### 3.8.1 DSPI switching specifications (limited voltage range)


The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

| Num | Description                         | Min.                          | Max.                      | Unit | Notes |
|-----|-------------------------------------|-------------------------------|---------------------------|------|-------|
|     | Operating voltage                   | 2.7                           | 3.6                       | V    |       |
|     | Frequency of operation              | —                             | 25                        | MHz  |       |
| DS1 | DSPI_SCK output cycle time          | 2 x t <sub>BUS</sub>          | —                         | ns   |       |
| DS2 | DSPI_SCK output high/low time       | (t <sub>SCK</sub> /2) – 2     | (t <sub>SCK</sub> /2) + 2 | ns   |       |
| DS3 | DSPI_PCSn valid to DSPI_SCK delay   | (t <sub>BUS</sub> x 2) –<br>2 | _                         | ns   | 1     |
| DS4 | DSPI_SCK to DSPI_PCSn invalid delay | (t <sub>BUS</sub> x 2) –<br>2 | _                         | ns   | 2     |
| DS5 | DSPI_SCK to DSPI_SOUT valid         | —                             | 8.5                       | ns   |       |
| DS6 | DSPI_SCK to DSPI_SOUT invalid       | -2                            | —                         | ns   |       |
| DS7 | DSPI_SIN to DSPI_SCK input setup    | 17                            | —                         | ns   |       |
| DS8 | DSPI_SCK to DSPI_SIN input hold     | 0                             | —                         | ns   |       |

| Table 26. | Master mode DSI | PI timing (limited | voltage range) |
|-----------|-----------------|--------------------|----------------|
|-----------|-----------------|--------------------|----------------|

1. The delay is programmable in SPIx\_CTARn[PSSCK] and SPIx\_CTARn[CSSCK].

2. The delay is programmable in SPIx\_CTARn[PASC] and SPIx\_CTARn[ASC].



#### Figure 14. DSPI classic SPI timing — master mode

#### Table 27. Slave mode DSPI timing (limited voltage range)

| Num | Description            | Min. | Max. | Unit |
|-----|------------------------|------|------|------|
|     | Operating voltage      | 2.7  | 3.6  | V    |
|     | Frequency of operation |      | 12.5 | MHz  |



# 5 Pinout

# 5.1 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

### NOTE

• PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6, PTD7 are high current pins.

| 48<br>LQFP | 32<br>QFN | 32<br>LQFP | Pin Name | Default                                         | ALT0                                            | ALT1  | ALT2               | ALT3            | ALT4       | ALT5       | ALT6            | ALT7 |
|------------|-----------|------------|----------|-------------------------------------------------|-------------------------------------------------|-------|--------------------|-----------------|------------|------------|-----------------|------|
| 1          | 1         | 1          | VDD      | VDD                                             | VDD                                             |       |                    |                 |            |            |                 |      |
| 2          | 2         | 2          | VSS      | VSS                                             | VSS                                             |       |                    |                 |            |            |                 |      |
| 3          | 3         | 3          | PTE16    | ADC0_SE1/<br>ADC0_DP1/<br>ADC1_SE0              | ADC0_SE1/<br>ADC0_DP1/<br>ADC1_SE0              | PTE16 | SPI0_PCS0/<br>SS_b | UART1_TX        | FTM_CLKIN0 |            | FTM0_FLT3       |      |
| 4          | 4         | 4          | PTE17    | ADC0_SE5/<br>ADC0_DM1/<br>ADC1_SE5              | ADC0_SE5/<br>ADC0_DM1/<br>ADC1_SE5              | PTE17 | SPI0_SCK           | UART1_RX        | FTM_CLKIN1 |            | LPTMR0_<br>ALT3 |      |
| 5          | 5         | 5          | PTE18    | ADC0_SE6/<br>ADC1_SE1/<br>ADC1_DP1              | ADC0_SE6/<br>ADC1_SE1/<br>ADC1_DP1              | PTE18 | SPI0_SOUT          | UART1_<br>CTS_b | I2C0_SDA   |            | SPI0_SIN        |      |
| 6          | 6         | 6          | PTE19    | ADC0_SE7/<br>ADC1_SE7/<br>ADC1_DM1              | ADC0_SE7/<br>ADC1_SE7/<br>ADC1_DM1              | PTE19 | SPI0_SIN           | UART1_<br>RTS_b | I2C0_SCL   |            | SPI0_SOUT       |      |
| 7          | _         | _          | PTE20    | ADC0_SE0/<br>ADC0_DP0                           | ADC0_SE0/<br>ADC0_DP0                           | PTE20 |                    | FTM1_CH0        | UART0_TX   |            |                 |      |
| 8          | _         | _          | PTE21    | ADC0_SE4/<br>ADC0_DM0                           | ADC0_SE4/<br>ADC0_DM0                           | PTE21 |                    | FTM1_CH1        | UART0_RX   |            |                 |      |
| 9          | 7         | 7          | VDDA     | VDDA                                            | VDDA                                            |       |                    |                 |            |            |                 |      |
| 10         | 7         | 7          | VREFH    | VREFH                                           | VREFH                                           |       |                    |                 |            |            |                 |      |
| 11         | 8         | 8          | VREFL    | VREFL                                           | VREFL                                           |       |                    |                 |            |            |                 |      |
| 12         | 8         | 8          | VSSA     | VSSA                                            | VSSA                                            |       |                    |                 |            |            |                 |      |
| 13         | _         | _          | PTE29    | CMP1_IN5/<br>CMP0_IN5                           | CMP1_IN5/<br>CMP0_IN5                           | PTE29 |                    | FTM0_CH2        |            | FTM_CLKIN0 |                 |      |
| 14         | 9         | 9          | PTE30    | ADC1_SE4/<br>CMP0_IN4/<br>CMP1_IN4/<br>DAC0_OUT | ADC1_SE4/<br>CMP0_IN4/<br>CMP1_IN4/<br>DAC0_OUT | PTE30 |                    | FTM0_CH3        |            | FTM_CLKIN1 |                 |      |

• PTC6 and PTC7 have open drain outputs



| 48<br>LQFP | 32<br>QFN | 32<br>LQFP | Pin Name | Default  | ALT0     | ALT1              | ALT2               | ALT3            | ALT4     | ALT5     | ALT6      | ALT7     |
|------------|-----------|------------|----------|----------|----------|-------------------|--------------------|-----------------|----------|----------|-----------|----------|
| 41         | -         | _          | PTD0     | DISABLED |          | PTD0/<br>LLWU_P12 | SPI0_PCS0/<br>SS_b | UART0_<br>CTS_b | FTM0_CH0 | UART1_RX |           |          |
| 42         | _         | _          | PTD1     | ADC0_SE2 | ADC0_SE2 | PTD1              | SPI0_SCK           | UART0_<br>RTS_b | FTM0_CH1 | UART1_TX |           |          |
| 43         | -         | -          | PTD2     | DISABLED |          | PTD2/<br>LLWU_P13 | SPI0_SOUT          | UART0_RX        | FTM0_CH2 |          |           | I2C0_SCL |
| 44         | -         | -          | PTD3     | DISABLED |          | PTD3              | SPI0_SIN           | UART0_TX        | FTM0_CH3 |          |           | I2C0_SDA |
| 45         | 29        | 29         | PTD4     | DISABLED |          | PTD4/<br>LLWU_P14 | SPI0_PCS1          | UART0_<br>RTS_b | FTM0_CH4 | FTM2_CH0 | EWM_IN    |          |
| 46         | 30        | 30         | PTD5     | ADC0_SE3 | ADC0_SE3 | PTD5              | SPI0_PCS2          | UART0_<br>CTS_b | FTM0_CH5 | FTM2_CH1 | EWM_OUT_b |          |
| 47         | 31        | 31         | PTD6     | ADC1_SE6 | ADC1_SE6 | PTD6/<br>LLWU_P15 | SPI0_PCS3          | UART0_RX        | FTM0_CH0 | FTM1_CH0 | FTM0_FLT0 |          |
| 48         | 32        | 32         | PTD7     | DISABLED |          | PTD7              |                    | UART0_TX        | FTM0_CH1 | FTM1_CH1 | FTM0_FLT1 |          |

## 5.2 KV10 Pinouts

The following figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section.



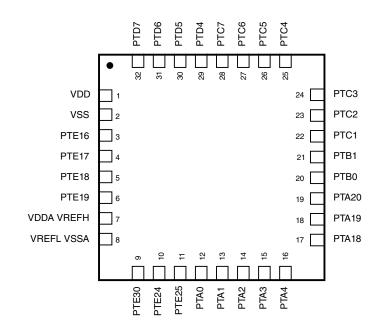



Figure 19. 32 QFN Pinout Diagram

Kinetis V Series KV10, 32/16 KB Flash, Rev4, 02/2015.



### 7.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

## 7.2 Format

Part numbers for this device have the following format:

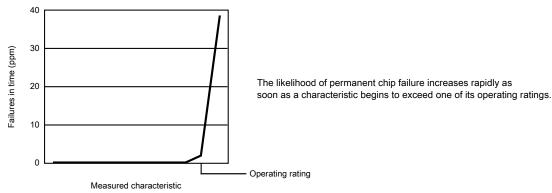
Q KV## A FFF R T PP CC N

### 7.3 Fields

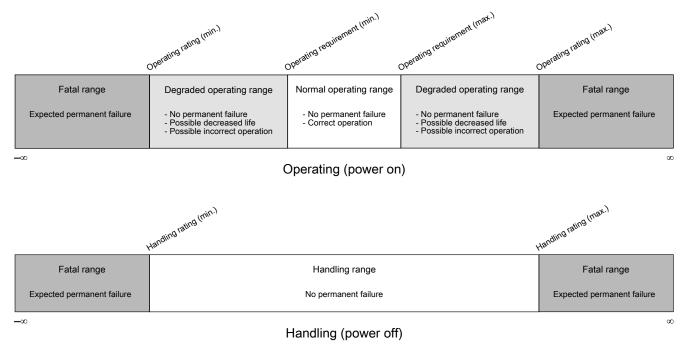
This table lists the possible values for each field in the part number (not all combinations are valid):

| Field | Description                 | Values                                                                                                                                                                                                                                                                                                           |
|-------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q     | Qualification status        | <ul> <li>M = Fully qualified, general market flow</li> <li>P = Prequalification</li> </ul>                                                                                                                                                                                                                       |
| KV##  | Kinetis family              | • KV10                                                                                                                                                                                                                                                                                                           |
| М     | Key attribute               | • Z = M0+ core                                                                                                                                                                                                                                                                                                   |
| FFF   | Program flash memory size   | • 32 = 32 KB                                                                                                                                                                                                                                                                                                     |
| Т     | Temperature range (°C)      | • V = -40 to 105                                                                                                                                                                                                                                                                                                 |
| PP    | Package identifier          | <ul> <li>FK = 24 QFN (4 mm x 4 mm)</li> <li>LC = 32 LQFP (7 mm x 7 mm)</li> <li>FM = 32 QFN (5 mm x 5 mm)</li> <li>LF = 48 LQFP (7 mm x 7 mm)</li> <li>FT = 48 QFN (10 mm x 10 mm)</li> <li>LH = 64 LQFP (10 mm x 10 mm)</li> <li>LK = 80 LQFP (12 mm x 12 mm)</li> <li>LL = 100 LQFP (14 mm x 14 mm)</li> </ul> |
| CCC   | Maximum CPU frequency (MHz) | • 7 = 75 MHz                                                                                                                                                                                                                                                                                                     |
| N     | Packaging type              | <ul> <li>R = Tape and reel</li> <li>(Blank) = Trays</li> </ul>                                                                                                                                                                                                                                                   |

# 7.4 Example


This is an example part number:

Kinetis V Series KV10, 32/16 KB Flash, Rev4, 02/2015.




**Terminology and guidelines** 

## 8.5 Result of exceeding a rating



## 8.6 Relationship between ratings and operating requirements



## 8.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.



## 8.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

### 8.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

| Symbol          | Description                                    | Min. | Тур. | Max. | Unit |
|-----------------|------------------------------------------------|------|------|------|------|
| I <sub>WP</sub> | Digital I/O weak<br>pullup/pulldown<br>current | 10   | 70   | 130  | μΑ   |

### 8.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions: