

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128ga306t-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 1-1: PIC24FJ128GA310 FAMILY GENERAL BLOCK DIAGRAM

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC^{\circledast} MCUs and improve Data Space memory usage efficiency, the PIC24F instruction set supports both word and byte operations. As a consequence of byte accessibility, all EA calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word, which contains the byte, using the LSB of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address.

All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap will be generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed but the write will not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB. The Most Significant Byte (MSB) is not modified.

A Sign-Extend (SE) instruction is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

Although most instructions are capable of operating on word or byte data sizes, it should be noted that some instructions operate only on words.

4.2.3 NEAR DATA SPACE

The 8-Kbyte area between 0000h and 1FFFh is referred to as the Near Data Space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. The remainder of the Data Space is addressable indirectly. Additionally, the whole Data Space is addressable using MOV instructions, which support Memory Direct Addressing with a 16-bit address field.

4.2.4 SPECIAL FUNCTION REGISTER (SFR) SPACE

The first 2 Kbytes of the Near Data Space, from 0000h to 07FFh, are primarily occupied with Special Function Registers (SFRs). These are used by the PIC24F core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'. A diagram of the SFR space, showing where the SFRs are actually implemented, is shown in Table 4-2. Each implemented area indicates a 32-byte region where at least one address is implemented as an SFR. A complete list of implemented SFRs, including their addresses, is shown in Tables 4-3 through 4-34.

			SFF	R Space Add	ress					
	xx00	xx20	xx40	xx60	xx80 xxA0 xxC0			C0	xxE0	
000h		Core		ICN	Interrupts					
100h	Tim	ners	Cap	oture	—	- Compare				—
200h	l ² C™	UART	SPI/UART	_	— UART		1/0	0		
300h		ADC/CTMU		—			DMA			_
400h	—	_	_	—					ANA	_
500h	_	—	_	_	LCD		D	_		LCD
600h	EPMP	RTC/CMP	CRC	_	PPS				_	
700h	_		System	NVM/PMD			_			

TABLE 4-2: IMPLEMENTED REGIONS OF SFR DATA SPACE

Legend: — = No implemented SFRs in this block

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP (CONTINUED)

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC16	00C4	—	CRCIP2	CRCIP1	CRCIP0	—	U2ERIP2	U2ERIP1	U2ERIP0	—	U1ERIP2	U1ERIP1	U1ERIP0	—	_	_	—	4440
IPC18	00C8	_	_	_	_	_	_	_	_	_	_	_	_	_	HLVDIP2	HLVDIP1	HLVDIP0	0004
IPC19	00CA	_	_	_	_	_	_	_	_	_	CTMUIP2	CTMUIP1	CTMUIP0	_	_	_	_	0040
IPC20	00CC	_	U3TXIP2	U3TXIP1	U3TXIP0	_	U3RXIP2	U3RXIP1	U3RXIP0	_	U3ERIP2	U3ERIP1	U3ERIP0	_	_	_	_	4440
IPC21	00CE	_	U4ERIP2	U4ERIP1	U4ERIP0	_	_	_	_	_	_	_	_	_	_	_	_	4000
IPC22	00D0	_	_	_	_	_	_	_	_	_	U4TXIP2	U4TXIP1	U4TXIP0	_	U4RXIP2	U4RXIP1	U4RXIP0	0044
IPC25	00D6	_	_	_	_	_	_	_	_	_	_	_	_	_	LCDIP2	LCDIP1	LCDIP0	0004
IPC29	00DE	_	_	_	_	_	_	_	_	_	JTAGIP2	JTAGIP1	JTAGIP0	_	_	_	_	0040
INTTREG	00E0	CPUIRQ	_	VHOLD	_	ILR3	ILR2	ILR1	ILR0	_	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-6: TIMER REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100		Timer1 Register												0000			
PR1	0102								Timer1 Peri	od Register								FFFF
T1CON	0104	TON	_	TSIDL	_	_		TIECS1	TIECS0	_	TGATE	TCKPS1	TCKPS0	_	TSYNC	TCS	—	0000
TMR2	0106								Timer2	Register								0000
TMR3HLD	0108						Timer	3 Holding F	Register (for	32-bit time	r operations	s only)						0000
TMR3	010A								Timer3 I	Register								0000
PR2	010C								Timer2 Peri	od Register	-							FFFF
PR3	010E								Timer3 Peri	od Register	-							FFFF
T2CON	0110	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	_	0000
T3CON	0112	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	_	0000
TMR4	0114								Timer4 I	Register								0000
TMR5HLD	0116						Tin	ner5 Holdin	g Register (for 32-bit op	perations or	ıly)						0000
TMR5	0118								Timer5 I	Register								0000
PR4	011A								Timer4 Peri	od Register	-							FFFF
PR5	011C		Timer5 Period Register									FFFF						
T4CON	011E	TON	—	TSIDL	—	—	—	_	—	_	TGATE	TCKPS1	TCKPS0	T45	—	TCS	—	0000
T5CON	0120	TON	_	TSIDL	_	_	_	—	_	_	TGATE	TCKPS1	TCKPS0	_	_	TCS		0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-8: OUTPUT COMPARE REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1CON1	0190	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC1CON2	0192	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC1RS	0194							0	utput Compa	are 1 Second	ary Register							0000
OC1R	0196								Output C	Compare 1 R	egister							0000
OC1TMR	0198								Timer	Value 1 Reg	ster							xxxx
OC2CON1	019A	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC2CON2	019C	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC2RS	019E							0	utput Compa	are 2 Second	ary Register							0000
OC2R	01A0								Output C	Compare 2 R	egister							0000
OC2TMR	01A2								Timer	Value 2 Reg	ster							xxxx
OC3CON1	01A4	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC3CON2	01A6	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC3RS	01A8		Output Compare 3 Secondary Register										0000					
OC3R	01AA								Output C	Compare 3 R	egister							0000
OC3TMR	01AC								Timer	Value 3 Reg	ster							xxxx
OC4CON1	01AE	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC4CON2	01B0	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC4RS	01B2							0	utput Compa	are 4 Second	ary Register							0000
OC4R	01B4								Output C	Compare 4 Re	egister							0000
OC4TMR	01B6								Timer	Value 4 Reg	ster							xxxx
OC5CON1	01B8	—	-	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT1	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC5CON2	01BA	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC5RS	01BC							0	utput Compa	are 5 Second	ary Register							0000
OC5R	01BE								Output C	Compare 5 R	egister							0000
OC5TMR	01C0								Timer	Value 5 Reg	ster							xxxx
OC6CON1	01C2	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC6CON2	01C4	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC6RS	01C6	Output Compare 6 Secondary Register 0000																
OC6R	01C8								Output C	Compare 6 R	egister							0000
OC6TMR	01CA								Timer	Value 6 Reg	ster							xxxx

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.2.5.2 Data Write into EDS

In order to write data to EDS space, such as in EDS reads, an Address Pointer is set up by loading the required EDS page number into the DSWPAG register, and assigning the offset address to one of the W registers. Once the above assignment is done, then the EDS window is enabled by setting bit 15 of the Working register assigned with the offset address and the accessed location can be written.

Figure 4-2 illustrates how the EDS space address is generated for write operations.

When the MSbs of EA are '1', the lower 9 bits of DSWPAG are concatenated to the lower 15 bits of EA to form a 24-bit EDS address for write operations. Example 4-2 shows how to write a byte, word and double-word to EDS.

The Page registers (DSRPAG/DSWPAG) do not update automatically while crossing a page boundary, when the rollover happens from 0xFFFF to 0x8000.

While developing code in assembly, care must be taken to update the Page registers when an Address Pointer crosses the page boundary. The 'C' compiler keeps track of the addressing and increments or decrements the Page registers accordingly while accessing contiguous data memory locations.

Note 1: All write operations to EDS are executed in a single cycle.

- 2: Use of Read/Modify/Write operation on any EDS location under a REPEAT instruction is not supported. For example, BCLR, BSW, BTG, RLC f, RLNC f, RRC f, RRNC f, ADD f, SUB f, SUBR f, AND f, IOR f, XOR f, ASR f, ASL f.
- 3: Use the DSRPAG register while performing Read/Modify/Write operations.

FIGURE 4-6: EDS ADDRESS GENERATION FOR WRITE OPERATIONS

EXAMPLE 4-2: EDS WRITE CODE IN ASSEMBLY

```
; Set the EDS page where the data to be written
          #0x0002, w0
   mov
                         ;page 2 is selected for write
   mov
          w0, DSWPAG
          #0x0800, w1 ;select the location (0x800) to be written
   mov
   bset
          w1, #15
                       ;set the MSB of the base address, enable EDS mode
;Write a byte to the selected location
          #0x00A5, w2
   mov
          #0x003C, w3
   mov
   mov.b w2, [w1++]
                         ;write Low byte
   mov.b w3, [w1++]
                         ;write High byte
;Write a word to the selected location
   mov #0x1234, w2 ;
          w2, [w1]
                         ;
   mov
;Write a Double - word to the selected location
          #0x1122, w2
   mov
   mov
          #0x4455, w3
   mov.d w2, [w1]
                         ;2 EDS writes
```

EXAMPLE 6-2: ERASING A PROGRAM MEMORY BLOCK ('C' LANGUAGE CODE)

<pre>// C example using MPLAB C30 unsigned long progAddr = 0xXXXXXX; unsigned int offset;</pre>	// Address of row to write
//Set up pointer to the first memory location to	o be written
TBLPAG = progAddr>>16;	// Initialize PM Page Boundary SFR
offset = progAddr & 0xFFFF;	<pre>// Initialize lower word of address</pre>
builtin_tblwtl(offset, 0x0000);	// Set base address of erase block
	// with dummy latch write
NVMCON = 0×4042 ;	// Initialize NVMCON
asm("DISI #5");	<pre>// Block all interrupts with priority <7</pre>
	// for next 5 instructions
<pre>builtin_write_NVM();</pre>	// check function to perform unlock
	// sequence and set WR

EXAMPLE 6-3: LOADING THE WRITE BUFFERS

;	Set up NVMCON for row programming operations	5
	MOV #0x4001, W0	;
	MOV W0, NVMCON	; Initialize NVMCON
;	Set up a pointer to the first program memory	/ location to be written
;	program memory selected, and writes enabled	
	MOV #0x0000, W0	;
	MOV W0, TBLPAG	; Initialize PM Page Boundary SFR
	MOV #0x6000, W0	; An example program memory address
;	$\ensuremath{\texttt{Perform}}$ the TBLWT instructions to write the	latches
;	0th_program_word	
	MOV #LOW_WORD_0, W2	;
	MOV #HIGH_BYTE_0, W3	;
	TBLWTL W2, [W0]	; Write PM low word into program latch
	TBLWTH W3, [W0++]	; Write PM high byte into program latch
;	lst_program_word	
	MOV #LOW_WORD_1, W2	;
	MOV #HIGH_BYTE_1, W3	i
	TBLWTL W2, [W0]	; Write PM low word into program latch
	TBLWTH W3, [W0++]	; Write PM high byte into program latch
;	2nd_program_word	
	MOV #LOW_WORD_2, W2	;
	MOV #HIGH_BYTE_2, W3	;
	TBLWTL W2, [W0]	; Write PM low word into program latch
	TBLWTH W3, [W0++]	; Write PM high byte into program latch
	•	
	•	
	•	
;	63rd_program_word	
	MOV #LOW_WORD_63, W2	;
	MOV #HIGH_BYTE_63, W3	
	TBLWTL W2, [W0]	; Write PM low word into program latch
	TBLWTH W3, [W0]	; Write PM high byte into program latch

EXAMPLE 6-4: INITIATING A PROGRAMMING SEQUENCE

DISI	#5	; Block all interrupts with priority <7
		; for next 5 instructions
MOV.B	#0x55, W0	
MOV	W0, NVMKEY	; Write the 0x55 key
MOV.B	#0xAA, W1	i
MOV	W1, NVMKEY	; Write the OxAA key
BSET	NVMCON, #WR	; Start the programming sequence
NOP		; Required delays
NOP		
BTSC	NVMCON, #15	; and wait for it to be
BRA	\$-2	; completed

© 2010-2014 Microchip Technology Inc.

Flag Bit	Setting Event	Clearing Event
TRAPR (RCON<15>)	Trap Conflict Event	POR
IOPUWR (RCON<14>)	Illegal Opcode or Uninitialized W Register Access	POR
CM (RCON<9>)	Configuration Mismatch Reset	POR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET Instruction	POR
WDTO (RCON<4>)	WDT Time-out	CLRWDT, PWRSAV Instruction, POR
SLEEP (RCON<3>)	PWRSAV #0 Instruction	POR
DPSLP (RCON<10>)	PWRSAV #0 Instruction while DSEN bit is Set	POR
IDLE (RCON<2>)	PWRSAV #1 Instruction	POR
BOR (RCON<1>)	POR, BOR	_
POR (RCON<0>)	POR	—

TABLE 7-1: RESET FLAG BIT OPERATION

Note: All Reset flag bits may be set or cleared by the user software.

7.1 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the PIC24F CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of four registers. The Reset value for the Reset Control register, RCON, will depend on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, will depend on the type of Reset and the programmed values of the FNOSC<2:0> bits in Flash Configuration Word 2 (CW2) (see Table 7-2). The RCFGCAL and NVMCON registers are only affected by a POR.

7.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 7-3. Note that the system Reset signal, SYSRST, is released after the POR delay time expires.

The time at which the device actually begins to execute code will also depend on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The Fail-Safe Clock Monitor (FSCM) delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

7.3 Brown-out Reset (BOR)

PIC24FJ128GA310 family devices implement a BOR circuit that provides the user with several configuration and power-saving options. The BOR is controlled by the BOREN (CW3<12>) Configuration bit.

When BOR is enabled, any drop of VDD below the BOR threshold results in a device BOR. Threshold levels are described in **Section 32.1** "**DC Characteristics**" (Parameter DC17).

7.4 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 7-2. If clock switching is disabled, the system clock source is always selected according to the Oscillator Configuration bits. Refer to **"Oscillator"** (DS39700) in the *"dsPIC33/PIC24 Family Reference Manual"* for further details.

TABLE 7-2: OSCILLATOR SELECTION vs. TYPE OF RESET (CLOCK SWITCHING ENABLED)

Reset Type	Clock Source Determinant					
POR	FNOSC<2:0> Configuration bits					
BOR	(CW2<10:8>)					
MCLR						
WDTO	COSC2:0> Control bits (OSCCON<14:12>)					
SWR	(00000114.122)					

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	U3TXIP2	U3TXIP1	U3TXIP0		U3RXIP2	U3RXIP1	U3RXIP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	U3ERIP2	U3ERIP1	U3ERIP0	_	—	_	—
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimplemer	nted: Read as '	0'				
bit 14-12	U3TXIP<2:0	>: UART3 Tran	smitter Interru	ot Priority bits			
	111 = Interru	upt is Priority 7 (highest priority	y interrupt)			
	•						
	•						
	001 = Interru	upt is Priority 1					
	000 = Interru	upt source is dis	abled				
bit 11	Unimplemer	nted: Read as '	0'				
bit 10-8	U3RXIP<2:0	>: UART3 Rece	eiver Interrupt	Priority bits			
	111 = Interru	upt is Priority 7 (highest priority	y interrupt)			
	•						
	•						
	001 = Interru	upt is Priority 1					
	000 = Interru	upt source is dis	abled				
bit 7	Unimplemer	nted: Read as '	0'				
bit 6-4	U3ERIP<2:0	>: UART3 Erro	⁻ Interrupt Prio	rity bits			
	111 = Interru	upt is Priority 7 (highest priority	y interrupt)			
	•						
	•						
	001 = Interru	upt is Priority 1					
	000 = Interru	upt source is dis	abled				
bit 3-0	Unimplemer	nted: Read as '	0'				

REGISTER 8-39: IPC20: INTERRUPT PRIORITY CONTROL REGISTER 20

10.1.2 HARDWARE-BASED POWER-SAVING MODE

The hardware-based VBAT mode does not require any action by the user during code development. Instead, it is a hardware design feature that allows the micro-controller to retain critical data (using the DSGPRx registers) and maintain the RTCC when VDD is removed from the application. This is accomplished by supplying a backup power source to a specific power pin. VBAT mode is described in more detail in **Section 10.5 "Vbat Mode"**.

10.1.3 LOW-VOLTAGE/RETENTION REGULATOR

PIC24FJ128GA310 family devices incorporate a second on-chip voltage regulator, designed to provide power to select microcontroller features at 1.2V nominal. This regulator allows features, such as data RAM and the WDT, to be maintained in power-saving modes where they would otherwise be inactive, or maintain them at a lower power than would otherwise be the case.

The low-voltage/retention regulator is only available when Sleep or Deep Sleep modes are invoked. It is controlled by the LPCFG Configuration bit (CW1<10>) and in firmware by the RETEN bit (RCON<12>). LPCFG must be programmed (= 0) and the RETEN bit must be set (= 1) for the regulator to be enabled.

10.2 Idle Mode

Idle mode has these features:

- The CPU will stop executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.8 "Selective Peripheral Module Control").
- If the WDT or FSCM is enabled, the LPRC will also remain active.

The device will wake from Idle mode on any of these events:

- Any interrupt that is individually enabled
- Any device Reset
- A WDT time-out

On wake-up from Idle, the clock is reapplied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

10.3 Sleep Mode

Sleep mode includes these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption will be reduced to a minimum provided that no I/O pin is sourcing current.
- The I/O pin directions and states are frozen.
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled.
- The LPRC clock will continue to run in Sleep mode if the WDT or RTCC, with LPRC as clock source, is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate in Sleep mode. This includes items, such as the Input Change Notification on the I/O ports, or peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation will be disabled in Sleep mode.

The device will wake-up from Sleep mode on any of these events:

- On any interrupt source that is individually enabled
- · On any form of device Reset
- · On a WDT time-out

On wake-up from Sleep, the processor will restart with the same clock source that was active when Sleep mode was entered.

10.3.1 LOW-VOLTAGE/RETENTION SLEEP MODE

Low-Voltage/Retention Sleep mode functions as Sleep mode with the same features and wake-up triggers. The difference is that the low-voltage/retention regulator allows core digital logic voltage (VCORE) to drop to 1.2V nominal. This permits an incremental reduction of power consumption over what would be required if VCORE was maintained at a 1.8V (minimum) level.

Low-Voltage Sleep mode requires a longer wake-up time than Sleep mode, due to the additional time required to bring VCORE back to 1.8V (known as TREG). In addition, the use of the low-voltage/retention regulator limits the amount of current that can be sourced to any active peripherals, such as the RTCC/LCD, etc.

If a MCLR Reset event occurs during Deep Sleep, the DSGPRx, DSCON and DSWAKE registers will remain valid, and the RELEASE bit will remain set. The state of the SOSC will also be retained. The I/O pins, however, will be reset to their MCLR Reset state. Since RELEASE is still set, changes to the SOSCEN bit (OSCCON<1>) cannot take effect until the RELEASE bit is cleared.

In all other Deep Sleep wake-up cases, application firmware must clear the RELEASE bit in order to reconfigure the I/O pins.

10.4.5 DEEP SLEEP WDT

To enable the DSWDT in Deep Sleep mode, program the Configuration bit, DSWDTEN (CW4<7>). The device WDT need not be enabled for the DSWDT to function. Entry into Deep Sleep modes automatically reset the DSWDT.

The DSWDT clock source is selected by the DSWDTOSC Configuration bit (CW4<5>). The postscaler options are programmed by the DSWDPS<4:0> Configuration bits (CW4<4:0>). The minimum time-out period that can be achieved is 1 ms and the maximum is 25.7 days. For more details on the CW4 Configuration register and DSWDT configuration options, refer to **Section 29.0 "Special Features"**.

10.4.5.1 Switching Clocks in Deep Sleep Mode

Both the RTCC and the DSWDT may run from either SOSC or the LPRC clock source. This allows both the RTCC and DSWDT to run without requiring both the LPRC and SOSC to be enabled together, reducing power consumption.

Running the RTCC from LPRC will result in a loss of accuracy in the RTCC, of approximately 5 to 10%. If a more accurate RTCC is required, it must be run from the SOSC clock source. The RTCC clock source is selected with the RTCLK<1:0> bits (RTCPWC<11:10>).

Under certain circumstances, it is possible for the DSWDT clock source to be off when entering Deep Sleep mode. In this case, the clock source is turned on automatically (if DSWDT is enabled), without the need for software intervention. However, this can cause a delay in the start of the DSWDT counters. In order to avoid this delay when using SOSC as a clock source, the application can activate SOSC prior to entering Deep Sleep mode.

10.4.6 CHECKING AND CLEARING THE STATUS OF DEEP SLEEP

Upon entry into Deep Sleep mode, the status bit, DPSLP (RCON<10>), becomes set and must be cleared by the software.

On power-up, the software should read this status bit to determine if the Reset was due to an exit from Deep Sleep mode, and clear the bit if it is set. Of the four possible combinations of DPSLP and POR bit states, three cases can be considered:

- Both the DPSLP and POR bits are cleared. In this case, the Reset was due to some event other than a Deep Sleep mode exit.
- The DPSLP bit is clear, but the POR bit is set; this is a normal POR.
- Both the DPSLP and POR bits are set. This means that Deep Sleep mode was entered, the device was powered down and Deep Sleep mode was exited.

10.4.7 POWER-ON RESETS (PORs)

VDD voltage is monitored to produce PORs. Since exiting from Deep Sleep mode functionally looks like a POR, the technique described in **Section 10.4.6 "Checking and Clearing the Status of Deep Sleep"** should be used to distinguish between Deep Sleep and a true POR event. When a true POR occurs, the entire device, including all Deep Sleep logic (Deep Sleep registers, RTCC, DSWDT, etc.) are reset.

10.5 VBAT Mode

This mode represents the lowest power state that the microcontroller can achieve and still resume operation. VBAT mode is automatically triggered when the micro-controller's main power supply on VDD fails. When this happens, the microcontroller's on-chip power switch connects to a backup power source, such as a battery, supplied to the VBAT pin. This maintains a few key systems at an extremely low-power draw until VDD is restored.

The power supplied on VBAT only runs two systems: the RTCC and the Deep Sleep Semaphore registers (DSGPR0 and DSGPR1). To maintain these systems during a sudden loss of VDD, it is essential to connect a power source, other than VDD or AVDD, to the VBAT pin.

REGISTER 11-27: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	—	RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0			
bit 15							bit 8			
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	—	RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable I	bit	U = Unimplem	nented bit, read	d as '0'				
-n = Value at	-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown									
bit 15-14	Unimplemer	ted: Read as ')'							

- bit 13-8 RP1R<5:0>: RP1 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP1 (see Table 11-4 for peripheral function numbers). bit 7-6 Unimplemented: Read as '0'
- bit 5-0 RP0R<5:0>: RP0 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP0 (see Table 11-4 for peripheral function numbers).

REGISTER 11-28: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP3R5	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	RP2R5	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 RP3R<5:0>: RP3 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP3 (see Table 11-4 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 RP2R<5:0>: RP2 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP2 (see Table 11-4 for peripheral function numbers).

REGISTER 11-35: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0 R/W-0 R/W-0		R/W-0
—	—	RP17R5	RP17R4	RP17R3 RP17R2		RP17R1	RP17R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP16R5	RP16R4	RP16R3	RP16R2	RP16R1	RP16R0
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

- bit 13-8RP17R<5:0>: RP17 Output Pin Mapping bits
Peripheral Output Number n is assigned to pin, RP17 (see Table 11-4 for peripheral function numbers).bit 7-6Unimplemented: Read as '0'bit 5-0RP16R<5:0>: RP16 Output Pin Mapping bits
 - Peripheral Output Number n is assigned to pin, RP16 (see Table 11-4 for peripheral function numbers).

REGISTER 11-36: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9

U-0	U-0	R/W-0	R/W-0	-0 R/W-0 R/W-0		R/W-0	R/W-0
	—	RP19R5	RP19R4	RP19R4 RP19R3 RP19R2		RP19R1	RP19R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	RP18R5	RP18R4	RP18R3	RP18R2	RP18R1	RP18R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP19R<5:0>:** RP19 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP19 (see Table 11-4 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP18R<5:0>:** RP18 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP18 (see Table 11-4 for peripheral function numbers).

REGISTER 18-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

- bit 4 **RXINV:** Receive Polarity Inversion bit
 - 1 = UxRX Idle state is '0'
 - 0 = UxRX Idle state is '1'
- bit 3 BRGH: High Baud Rate Enable bit
 - 1 = High-Speed mode (4 BRG clock cycles per bit)
 - 0 = Standard Speed mode (16 BRG clock cycles per bit)
- bit 2-1 **PDSEL<1:0>:** Parity and Data Selection bits
 - 11 = 9-bit data, no parity
 - 10 = 8-bit data, odd parity
 - 01 = 8-bit data, even parity
 - 00 = 8-bit data, no parity
- bit 0 STSEL: Stop Bit Selection bit
 - 1 = Two Stop bits
 - 0 = One Stop bit
- Note 1: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.
 - 2: This feature is only available for the 16x BRG mode (BRGH = 0).

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 7-6	URXISEL<1:0>: UARTx Receive Interrupt Mode Selection bits
	 11 = Interrupt is set on an RSR transfer, making the receive buffer full (i.e., has 4 data characters) 10 = Interrupt is set on an RSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters) 0x = Interrupt is set when any character is received and transferred from the RSR to the receive buffer; receive buffer has one or more characters
bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode is enabled (if 9-bit mode is not selected, this does not take effect) 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	 1 = Framing error has been detected for the current character (character at the top of the receive FIFO) 0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (clear/read-only)
	1 = Receive buffer has overflowed
	 0 = Receive buffer has not overflowed (clearing a previously set OERR bit (1 → 0 transition); will reset the receiver buffer and the RSR to the empty state
bit 0	URXDA: UARTx Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty
Note 1:	The value of the bit only affects the transmit properties of the module when the IrDA [®] encoder is enabled (IREN = 1).
2:	If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.

3: The TRMT bit will be active only after two instruction cycles once the UTXREG is loaded.

NOTES:

FIGURE 27-1: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR CAPACITANCE MEASUREMENT

27.2 Measuring Time

Time measurements on the pulse width can be similarly performed using the ADC module's internal capacitor (CAD) and a precision resistor for current calibration. Figure 27-2 displays the external connections used for time measurements, and how the CTMU and ADC modules are related in this application. This example also shows both edge events coming from the external CTEDG pins, but other configurations using internal edge sources are possible.

27.3 Pulse Generation and Delay

The CTMU module can also generate an output pulse with edges that are not synchronous with the device's system clock. More specifically, it can generate a pulse with a programmable delay from an edge event input to the module. When the module is configured for pulse generation delay by setting the TGEN bit (CTMUCON1<12>), the internal current source is connected to the B input of Comparator 2. A capacitor (CDELAY) is connected to the Comparator 2 pin, C2INB, and the comparator voltage reference, CVREF, is connected to C2INA. CVREF is then configured for a specific trip point. The module begins to charge CDELAY when an edge event is detected. When CDELAY charges above the CVREF trip point, a pulse is output on CTPLS. The length of the pulse delay is determined by the value of CDELAY and the CVREF trip point.

Figure 27-3 illustrates the external connections for pulse generation, as well as the relationship of the different analog modules required. While CTED1 is shown as the input pulse source, other options are available. A detailed discussion on pulse generation with the CTMU module is provided in the "dsPIC33/ PIC24 Family Reference Manual".

REGISTER 29-5: DEVID: DEVICE ID REGISTER

U-1	U-1	U-1	U-1	U-1 U-1		U-1	U-1		
_		_	—	_	_	_	_		
bit 23							bit 16		
R	R	R	R	R	R	R	R		
FAMID7	FAMID6	FAMID5	FAMID4	FAMID3	FAMID2	FAMID1	FAMID0		
bit 15							bit 8		
R	R	R	R	R	R	R	R		
DEV7	DEV6	DEV5	DEV4	DEV3	DEV2	DEV1	DEV0		
bit 7							bit 0		
Legend: R	= Readable bit			U = Unimplem	nented bit				
bit 23-16	Unimplement	ted: Read as 'a	l'						
bit 15-8	FAMID<7:0>:	Device Family	Identifier bits						
	0100 0110 = PIC24FJ128GA310 family								
bit 7-0	-0 DEV<7:0>: Individual Device Identifier bits								
	1100 0000 =	PIC24FJ64G	4306						
	1100 0010 =	= PIC24FJ1280	GA306						
	1100 0100 = PIC24FJ64GA308								

- 1100 0100 = PIC24FJ04GA308 1100 0110 = PIC24FJ128GA308
- 1100 1000 = PIC24FJ64GA310
- 1100 1010 = PIC24FJ128GA310

REGISTER 29-6: DEVREV: DEVICE REVISION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_		—	—	—	—	_
bit 23							bit 16
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—		—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R	R	R	R
—	—		_		REV<	<3:0>	
bit 7							bit 0
Legend:	R = Readable bit			U = Unimpler	mented bit		

bit 23-4 Unimplemented: Read as '0'

bit 3-0 **REV<3:0>:** Device revision identifier bits

DC CHARAC	TERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Parameter No.	Typical ⁽¹⁾	Max	Units	Operating Temperature	Vdd	Conditions	
Incremental (Current Brov	vn-out Rese	t (∆BOR) ⁽²⁾				
DC20	3.1	5	μA	-40°C to +85°C	2.0V	ABOD(2)	
	4.3	6	μA	-40°C to +85°C	3.3V		
Incremental (Current Wate	h Dog Time	r (∆WDT) ⁽²⁾				
DC71	0.8	1.5	μA	-40°C to +85°C	2.0V		
	0.8	1.5	μA	-40°C to +85°C	3.3V		
Incremental (Current HLVI	O (∆HLVD) ⁽²⁾					
DC75	5.7	15	μA	-40°C to +85°C	2.0V		
	5.7	15	μA	-40°C to +85°C	3.3V		
Incremental (Current Real	-Time Clock	and Calend	dar (RTCC) ⁽²⁾			
DC77	0.4	1	μA	-40°C to +85°C	2.0V	∆RTCC ⁽²⁾ ,	
	0.4	1	μA	-40°C to +85°C	3.3V	RTCC with SOSC	
Incremental (Current Real	-Time Clock	and Calend	dar (RTCC) ⁽²⁾			
DC77a	0.4	1	μA	-40°C to +85°C	2.0V	ΔRTCC ⁽²⁾ ,	
	0.4	1	μA	-40°C to +85°C	3.3V	RTCC with LPRC	
Incremental (Current Deep	Sleep BOR) ⁽²⁾			
DC81	0.07	0.3	μA	-40°C to +85°C	2.0V	ADaan Slaan BOD(2)	
	0.07	0.3	μA	-40°C to +85°C	3.3V		
Incremental (Current Deep	Sleep Wate	chdog Time	r Reset (∆ DSWD	T) ⁽²⁾		
DC80	0.27	0.4	μA	-40°C to +85°C	2.0V		
	0.27	0.4	μA	-40°C to +85°C	3.3V		
Incremental (Current LCD	(A LCD) ⁽²⁾					
	0.8	3	μA	-40°C to +85°C	3.3V	∆LCD External/Internal ^(2,3) , 1/8 MUX, 1/3 Bias	
DC90	20	30	μA	-40°C to +85°C	2.0V	∆LCD Charge Pump ^(2,4) ,	
	24	40	μA	-40°C to +85°C	3.3V	1/8 MUX, 1/3 Bias	
VBAT ADC MO	onitor ⁽⁵⁾	-			-	•	
DC91	1.5	_	μA	-40°C to +85°C	3.3V	VBAT = 2V	
	4	_	μA	-40°C to +85°C	3.3V	VBAT = 3.3V	
	.						

TABLE 32-7: DC CHARACTERISTICS: \(\triangle CURRENT (BOR, WDT, DSBOR, DSWDT, LCD)\)

Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated. IPD is measured with all peripherals and clocks (PMD) shut down; all the ports are made output and driven low.

2: Incremental current while the module is enabled and running.

3: LCD is enabled and running; no glass is connected; the resistor ladder current is not included.

4: LCD is enabled and running; no glass is connected.

5: The ADC channel is connected to the VBAT pin internally; this is the current during ADC VBAT operation.

TABLE 32-19.	FXTERNΔI	CLOCK	TIMING	REQUIREMENTS
IADLE JZ-13.		CLOCK		

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Мах	Units	Conditions
OS10	OS10 Fosc External CLKI Frequer (External clocks allowed only in EC mode)		DC 4		32 8	MHz MHz	EC ECPLL
		Oscillator Frequency	3.5 4 10 4 31		10 8 32 8 33	MHz MHz MHz MHz kHz	XT XTPLL HS HSPLL SOSC
OS20	Tosc	Tosc = 1/Fosc	—	_	—	—	See Parameter OS10 for Fosc value
OS25	Тсү	Instruction Cycle Time ⁽²⁾	62.5	—	DC	ns	
OS30	TosL, TosH	External Clock in (OSCI) High or Low Time	0.45 x Tosc	_	_	ns	EC
OS31	TosR, TosF	External Clock in (OSCI) Rise or Fall Time	—	_	20	ns	EC
OS40	TckR	CLKO Rise Time ⁽³⁾	—	6	10	ns	
OS41	TckF	CLKO Fall Time ⁽³⁾	—	6	10	ns	

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSCI/CLKI pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

3: Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin. CLKO is low for the Q1-Q2 period (1/2 TcY) and high for the Q3-Q4 period (1/2 TcY).

33.3 Package Details

The following sections give the technical details of the packages.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.15 x 7.15 Exposed Pad [QFN]

Microchip Technology Drawing C04-149C Sheet 1 of 2