

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                         |
|----------------------------|--------------------------------------------------------------------------------|
| Core Processor             | PIC                                                                            |
| Core Size                  | 16-Bit                                                                         |
| Speed                      | 32MHz                                                                          |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                                |
| Peripherals                | Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT                                |
| Number of I/O              | 69                                                                             |
| Program Memory Size        | 128KB (43K x 24)                                                               |
| Program Memory Type        | FLASH                                                                          |
| EEPROM Size                | -                                                                              |
| RAM Size                   | 8K x 8                                                                         |
| Voltage - Supply (Vcc/Vdd) | 2V ~ 3.6V                                                                      |
| Data Converters            | A/D 16x10b/12b                                                                 |
| Oscillator Type            | Internal                                                                       |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                              |
| Mounting Type              | Surface Mount                                                                  |
| Package / Case             | 80-TQFP                                                                        |
| Supplier Device Package    | 80-TQFP (12x12)                                                                |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128ga308-i-pt |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## 1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

- PIC24FJ64GA306 PIC24FJ128GA306
- PIC24FJ64GA308 PIC24FJ128GA308
- PIC24FJ64GA310 PIC24FJ128GA310

The PIC24FJ128GA310 family adds many new features to Microchip's 16-bit microcontrollers, including new ultra low-power features, Direct Memory Access (DMA) for peripherals, and a built-in LCD Controller and Driver. Together, these provide a wide range of powerful features in one economical and power-saving package.

## 1.1 Core Features

## 1.1.1 16-BIT ARCHITECTURE

Central to all PIC24F devices is the 16-bit modified Harvard architecture, first introduced with Microchip's dsPIC<sup>®</sup> Digital Signal Controllers (DSCs). The PIC24F CPU core offers a wide range of enhancements, such as:

- 16-bit data and 24-bit address paths with the ability to move information between data and memory spaces
- Linear addressing of up to 12 Mbytes (program space) and 32 Kbytes (data)
- A 16-element Working register array with built-in software stack support
- A 17 x 17 hardware multiplier with support for integer math
- Hardware support for 32 by 16-bit division
- An instruction set that supports multiple addressing modes and is optimized for high-level languages, such as 'C'
- Operational performance up to 16 MIPS

### 1.1.2 XLP POWER-SAVING TECHNOLOGY

The PIC24FJ128GA310 family of devices introduces a greatly expanded range of power-saving operating modes for the ultimate in power conservation. The new modes include:

- Retention Sleep with essential circuits being powered from a separate low-voltage regulator
- Deep Sleep without RTCC for the lowest possible power consumption under software control
- VBAT mode (with or without RTCC) to continue limited operation from a backup battery when VDD is removed

Many of these new low-power modes also support the continuous operation of the low-power, on-chip Real-Time Clock/Calendar (RTCC), making it possible for an application to keep time while the device is otherwise asleep.

Aside from these new features, PIC24FJ128GA310 family devices also include all of the legacy power-saving features of previous PIC24F microcontrollers, such as:

- On-the-Fly Clock Switching, allowing the selection of a lower power clock during run time
- Doze Mode Operation, for maintaining peripheral clock speed while slowing the CPU clock
- Instruction-Based Power-Saving Modes, for quick invocation of Idle and the many Sleep modes.

## 1.1.3 OSCILLATOR OPTIONS AND FEATURES

All of the devices in the PIC24FJ128GA310 family offer five different oscillator options, allowing users a range of choices in developing application hardware. These include:

- · Two Crystal modes
- Two External Clock modes
- A Phase Lock Loop (PLL) frequency multiplier, which allows clock speeds of up to 32 MHz
- A Fast Internal Oscillator (FRC) (nominal 8 MHz output) with multiple frequency divider options
- A separate Low-Power Internal RC Oscillator (LPRC) (31 kHz nominal) for low-power, timing-insensitive applications.

The internal oscillator block also provides a stable reference source for the Fail-Safe Clock Monitor (FSCM). This option constantly monitors the main clock source against a reference signal provided by the internal oscillator and enables the controller to switch to the internal oscillator, allowing for continued low-speed operation or a safe application shutdown.

## 1.1.4 EASY MIGRATION

Regardless of the memory size, all devices share the same rich set of peripherals, allowing for a smooth migration path as applications grow and evolve. The consistent pinout scheme used throughout the entire family also aids in migrating from one device to the next larger, or even in jumping from 64-pin to 100-pin devices.

The PIC24F family is pin compatible with devices in the dsPIC33 family, and shares some compatibility with the pinout schema for PIC18 and dsPIC30. This extends the ability of applications to grow from the relatively simple, to the powerful and complex, yet still selecting a Microchip device.

|          | Pi             | n Number/      | Grid Loca       | ter            |     |                 |                                                   |
|----------|----------------|----------------|-----------------|----------------|-----|-----------------|---------------------------------------------------|
| Function | 64-Pin<br>TQFP | 80-Pin<br>TQFP | 100-Pin<br>TQFP | 121-Pin<br>BGA | I/O | Input<br>Buffer | Description                                       |
| PMD0     | 60             | 76             | 93              | A4             | I/O | ST/TTL          | Parallel Master Port Data (Demultiplexed Master   |
| PMD1     | 61             | 77             | 94              | B4             | I/O | ST/TTL          | mode) or Address/Data (Multiplexed Master modes). |
| PMD2     | 62             | 78             | 98              | B3             | I/O | ST/TTL          |                                                   |
| PMD3     | 63             | 79             | 99              | A2             | I/O | ST/TTL          |                                                   |
| PMD4     | 64             | 80             | 100             | A1             | I/O | ST/TTL          |                                                   |
| PMD5     | 1              | 1              | 3               | D3             | I/O | ST/TTL          |                                                   |
| PMD6     | 2              | 2              | 4               | C1             | I/O | ST/TTL          |                                                   |
| PMD7     | 3              | 3              | 5               | D2             | I/O | ST/TTL          |                                                   |
| PMD8     | _              | 75             | 90              | A5             | I/O | ST/TTL          |                                                   |
| PMD9     | _              | 74             | 89              | E6             | I/O | ST/TTL          |                                                   |
| PMD10    | _              | 73             | 88              | A6             | I/O | ST/TTL          |                                                   |
| PMD11    | _              | 72             | 87              | B6             | I/O | ST/TTL          |                                                   |
| PMD12    | _              | 64             | 79              | A9             | I/O | ST/TTL          |                                                   |
| PMD13    | _              | 65             | 80              | D8             | I/O | ST/TTL          |                                                   |
| PMD14    | _              | 68             | 83              | D7             | I/O | ST/TTL          |                                                   |
| PMD15    | _              | 69             | 84              | C7             | I/O | ST/TTL          |                                                   |
| PMRD     | 53             | 67             | 82              | B8             | 0   | —               | Parallel Master Port Read Strobe.                 |
| PMWR     | 52             | 66             | 81              | C8             | 0   | —               | Parallel Master Port Write Strobe.                |
| RA0      | —              | _              | 17              | G3             | I/O | ST              | PORTA Digital I/O.                                |
| RA1      | —              |                | 38              | J6             | I/O | ST              |                                                   |
| RA2      | _              | _              | 58              | H11            | I/O | ST              |                                                   |
| RA3      | _              | _              | 59              | G10            | I/O | ST              |                                                   |
| RA4      | _              |                | 60              | G11            | I/O | ST              |                                                   |
| RA5      | —              | _              | 61              | G9             | I/O | ST              |                                                   |
| RA6      | _              |                | 91              | C5             | I/O | ST              |                                                   |
| RA7      | _              |                | 92              | B5             | I/O | ST              |                                                   |
| RA9      | —              | 23             | 28              | L2             | I/O | ST              | ]                                                 |
| RA10     | —              | 24             | 29              | K3             | I/O | ST              | ]                                                 |
| RA14     | _              | 52             | 66              | E11            | I/O | ST              | ]                                                 |
| RA15     | —              | 53             | 67              | E8             | I/O | ST              |                                                   |

#### **TABLE 1-4:** PIC24FJ128GA310 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL input buffer

ANA = Analog level input/output

ST = Schmitt Trigger input buffer  $I^2C^{TM} = I^2C/SMBus$  input buffer

## 2.4.1 CONSIDERATIONS FOR CERAMIC CAPACITORS

In recent years, large value, low-voltage, surface-mount ceramic capacitors have become very cost effective in sizes up to a few tens of microfarad. The low-ESR, small physical size and other properties make ceramic capacitors very attractive in many types of applications.

Ceramic capacitors are suitable for use with the internal voltage regulator of this microcontroller. However, some care is needed in selecting the capacitor to ensure that it maintains sufficient capacitance over the intended operating range of the application.

Typical low-cost, 10  $\mu$ F ceramic capacitors are available in X5R, X7R and Y5V dielectric ratings (other types are also available, but are less common). The initial tolerance specifications for these types of capacitors are often specified as ±10% to ±20% (X5R and X7R), or -20%/+80% (Y5V). However, the effective capacitance that these capacitors provide in an application circuit will also vary based on additional factors, such as the applied DC bias voltage and the temperature. The total in-circuit tolerance is, therefore, much wider than the initial tolerance specification.

The X5R and X7R capacitors typically exhibit satisfactory temperature stability (ex:  $\pm 15\%$  over a wide temperature range, but consult the manufacturer's data sheets for exact specifications). However, Y5V capacitors typically have extreme temperature tolerance specifications of  $\pm 22\%$ . Due to the extreme temperature tolerance, a 10  $\mu$ F nominal rated Y5V type capacitor may not deliver enough total capacitance to meet minimum internal voltage regulator stability and transient response requirements. Therefore, Y5V capacitors are not recommended for use with the internal regulator if the application must operate over a wide temperature range.

In addition to temperature tolerance, the effective capacitance of large value ceramic capacitors can vary substantially, based on the amount of DC voltage applied to the capacitor. This effect can be very significant, but is often overlooked or is not always documented.

Typical DC bias voltage vs. capacitance graph for X7R type capacitors is shown in Figure 2-4.

#### DC BIAS VOLTAGE vs. FIGURE 2-4: CAPACITANCE **CHARACTERISTICS** Change (%) 0 -10 16V Capacitor -20 -30 Capacitance -40 10V Capacitor -50 -60 -70 6.3V Capacitor

When selecting a ceramic capacitor to be used with the internal voltage regulator, it is suggested to select a high-voltage rating, so that the operating voltage is a small percentage of the maximum rated capacitor voltage. For example, choose a ceramic capacitor rated at 16V for the 2.5V or 1.8V core voltage. Suggested capacitors are shown in Table 2-1.

9 10 11 12 13

15 16

8

DC Bias Voltage (VDC)

## 2.5 ICSP Pins

2

The PGECx and PGEDx pins are used for In-Circuit Serial Programming (ICSP) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed  $100\Omega$ .

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins), programmed into the device, matches the physical connections for the ICSP to the Microchip debugger/emulator tool.

For more information on available Microchip development tools connection requirements, refer to **Section 30.0 "Development Support"**.

## TABLE 4-30: PERIPHERAL PIN SELECT REGISTER MAP (CONTINUED)

| File Name | Addr | Bit 15 | Bit 14 | Bit 13                | Bit 12                | Bit 11                | Bit 10                | Bit 9                 | Bit 8                 | Bit 7 | Bit 6 | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | All<br>Resets |
|-----------|------|--------|--------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------|-------|--------|--------|--------|--------|--------|--------|---------------|
| RPOR0     | 06C0 | —      | _      | RP1R5                 | RP1R4                 | RP1R3                 | RP1R2                 | RP1R1                 | RP1R0                 | —     | —     | RP0R5  | RP0R4  | RP0R3  | RP0R2  | RP0R1  | RP0R0  | 0000          |
| RPOR1     | 06C2 | _      | —      | RP3R5                 | RP3R4                 | RP3R3                 | RP3R2                 | RP3R1                 | RP3R0                 | _     | _     | RP2R5  | RP2R4  | RP2R3  | RP2R2  | RP2R1  | RP2R0  | 0000          |
| RPOR2     | 06C4 | _      | —      | RP5R5 <sup>(1)</sup>  | RP5R4 <sup>(1)</sup>  | RP5R3 <sup>(1)</sup>  | RP5R2 <sup>(1)</sup>  | RP5R1 <sup>(1)</sup>  | RP5R0 <sup>(1)</sup>  | _     | _     | RP4R5  | RP4R4  | RP4R3  | RP4R2  | RP4R1  | RP4R0  | 0000          |
| RPOR3     | 06C6 | _      | —      | RP7R5                 | RP7R4                 | RP7R3                 | RP7R2                 | RP7R1                 | RP7R0                 | _     | _     | RP6R5  | RP6R4  | RP6R3  | RP6R2  | RP6R1  | RP6R0  | 0000          |
| RPOR4     | 06C8 | _      | —      | RP9R5                 | RP9R4                 | RP9R3                 | RP9R2                 | RP9R1                 | RP9R0                 | _     | _     | RP8R5  | RP8R4  | RP8R3  | RP8R2  | RP8R1  | RP8R0  | 0000          |
| RPOR5     | 06CA | _      | —      | RP11R5                | RP11R4                | RP11R3                | RP11R2                | RP11R1                | RP11R0                | _     | _     | RP10R5 | RP10R4 | RP10R3 | RP10R2 | RP10R1 | RP10R0 | 0000          |
| RPOR6     | 06CC | _      | —      | RP13R5                | RP13R4                | RP13R3                | RP13R2                | RP13R1                | RP13R0                | _     | _     | RP12R5 | RP12R4 | RP12R3 | RP12R2 | RP12R1 | RP12R0 | 0000          |
| RPOR7     | 06CE | _      | —      | RP15R5 <sup>(1)</sup> | RP15R4 <sup>(1)</sup> | RP15R3 <sup>(1)</sup> | RP15R2 <sup>(1)</sup> | RP15R1 <sup>(1)</sup> | RP15R0 <sup>(1)</sup> | _     | _     | RP14R5 | RP14R4 | RP14R3 | RP14R2 | RP14R1 | RP14R0 | 0000          |
| RPOR8     | 06D0 | _      | —      | RP17R5                | RP17R4                | RP17R3                | RP17R2                | RP17R1                | RP17R0                | _     | _     | RP16R5 | RP16R4 | RP16R3 | RP16R2 | RP16R1 | RP16R0 | 0000          |
| RPOR9     | 06D2 | _      | —      | RP19R5                | RP19R4                | RP19R3                | RP19R2                | RP19R1                | RP19R0                | _     | _     | RP18R5 | RP18R4 | RP18R3 | RP18R2 | RP18R1 | RP18R0 | 0000          |
| RPOR10    | 06D4 | _      | —      | RP21R5                | RP21R4                | RP21R3                | RP21R2                | RP21R1                | RP21R0                | _     | _     | RP20R5 | RP20R4 | RP20R3 | RP20R2 | RP20R1 | RP20R0 | 0000          |
| RPOR11    | 06D6 | _      | —      | RP23R5                | RP23R4                | RP23R3                | RP23R2                | RP23R1                | RP23R0                | _     | _     | RP22R5 | RP22R4 | RP22R3 | RP22R2 | RP22R1 | RP22R0 | 0000          |
| RPOR12    | 06D8 | _      | —      | RP25R5                | RP25R4                | RP25R3                | RP25R2                | RP25R1                | RP25R0                | _     | _     | RP24R5 | RP24R4 | RP24R3 | RP24R2 | RP24R1 | RP24R0 | 0000          |
| RPOR13    | 06DA | _      | —      | RP27R5                | RP27R4                | RP27R3                | RP27R2                | RP27R1                | RP27R0                | _     | _     | RP26R5 | RP26R4 | RP26R3 | RP26R2 | RP26R1 | RP26R0 | 0000          |
| RPOR14    | 06DC | —      | —      | RP29R5                | RP29R4                | RP29R3                | RP29R2                | RP29R1                | RP29R0                | —     | _     | RP28R5 | RP28R4 | RP28R3 | RP28R2 | RP28R1 | RP28R0 | 0000          |
| RPOR15    | 06DE | _      | —      | RP31R5 <sup>(2)</sup> | RP31R4 <sup>(2)</sup> | RP31R3 <sup>(2)</sup> | RP31R2 <sup>(2)</sup> | RP31R1 <sup>(2)</sup> | RP31R0 <sup>(2)</sup> | —     | _     | RP30R5 | RP30R4 | RP30R3 | RP30R2 | RP30R1 | RP30R0 | 0000          |

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits are unimplemented in 64-pin devices, read as '0'.

2: These bits are unimplemented in 64-pin and 80-pin devices, read as '0'.

### TABLE 4-31: SYSTEM CONTROL (CLOCK AND RESET) REGISTER MAP

| File Name | Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9  | Bit 8  | Bit 7   | Bit 6  | Bit 5  | Bit 4 | Bit 3  | Bit 2  | Bit 1  | Bit 0  | All<br>Resets |
|-----------|------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--------|--------|-------|--------|--------|--------|--------|---------------|
| RCON      | 0740 | TRAPR  | IOPUWR | _      | RETEN  | —      | DPSLP  | СМ     | VREGS  | EXTR    | SWR    | SWDTEN | WDTO  | SLEEP  | IDLE   | BOR    | POR    | Note 1        |
| OSCCON    | 0742 | _      | COSC2  | COSC1  | COSC0  | _      | NOSC2  | NOSC1  | NOSC0  | CLKLOCK | IOLOCK | LOCK   | _     | CF     | POSCEN | SOSCEN | OSWEN  | Note 2        |
| CLKDIV    | 0744 | ROI    | DOZE2  | DOZE1  | DOZE0  | DOZEN  | RCDIV2 | RCDIV1 | RCDIV0 | _       | _      | _      | _     | _      | _      | _      | _      | 3100          |
| OSCTUN    | 0748 | _      | _      | _      | _      | _      | _      | _      | _      | _       | _      |        |       | TUN    | <5:0>  | -      |        | 0000          |
| REFOCON   | 074E | ROEN   | _      | ROSSLP | ROSEL  | RODIV3 | RODIV2 | RODIV1 | RODIV0 | _       | _      | _      | _     | _      | _      | _      | _      | 0000          |
| HLVDCON   | 0756 | HLVDEN | _      | HLSIDL | _      | _      | _      | _      | _      | VDIR    | BGVST  | IRVST  | _     | HLVDL3 | HLVDL2 | HLVDL1 | HLVDL0 | 0000          |
| RCON2     | 0762 | —      | _      | _      | —      | _      | —      | _      | —      | _       |        | —      | r     | VDDBOR | VDDPOR | VBPOR  | VBAT   | Note 1        |

Legend: — = unimplemented, read as '0'; r = reserved. Reset values are shown in hexadecimal.

Note 1: The Reset value of the RCON register is dependent on the type of Reset event. See Section 7.0 "Resets" for more information.

2: The Reset value of the OSCCON register is dependent on both the type of Reset event and the device configuration. See Section 9.0 "Oscillator Configuration" for more information.

## 8.0 INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to "Interrupts" (DS39707) in the "dsPIC33/PIC24 Family Reference Manual". The information in this data sheet supersedes the information in the FRM.

The PIC24F interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the PIC24F CPU. It has the following features:

- Up to 8 processor exceptions and software traps
- Seven user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- Unique vector for each interrupt or exception source
- · Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- Fixed interrupt entry and return latencies

## 8.1 Interrupt Vector Table

The Interrupt Vector Table (IVT) is shown in Figure 8-1. The IVT resides in program memory, starting at location, 000004h. The IVT contains 126 vectors, consisting of 8 non-maskable trap vectors, plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority; this is linked to their position in the vector table. All other things being equal, lower addresses have a higher natural priority. For example, the interrupt associated with Vector 0 will take priority over interrupts at any other vector address.

PIC24FJ128GA310 family devices implement non-maskable traps and unique interrupts. These are summarized in Table 8-1 and Table 8-2.

### 8.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 8-1. The ALTIVT (INTCON2<15>) control bit provides access to the AIVT. If the ALTIVT bit is set, all interrupt and exception processes will use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports emulation and debugging efforts by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

## 8.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The PIC24F devices clear their registers in response to a Reset, which forces the PC to zero. The micro-controller then begins program execution at location, 000000h. The user programs a GOTO instruction at the Reset address, which redirects program execution to the appropriate start-up routine.

**Note:** Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

| U-0     | R/W-0                          | R/W-0                            | R/W-0            | R/W-0                           | R/W-0          | R/W-0                    | R/W-0  |
|---------|--------------------------------|----------------------------------|------------------|---------------------------------|----------------|--------------------------|--------|
|         | DMA1IF                         | AD1IF                            | U1TXIF           | U1RXIF                          | SPI1IF         | SPF1IF                   | T3IF   |
| bit 15  |                                | -                                |                  |                                 |                |                          | bit 8  |
|         |                                |                                  |                  |                                 |                |                          |        |
| R/W-0   | R/W-0                          | R/W-0                            | R/W-0            | R/W-0                           | R/W-0,         | R/W-0                    | R/W-0  |
| T2IF    | OC2IF                          | IC2IF                            | DMA0IF           | T1IF                            | OC1IF          | IC1IF                    | INTOIF |
| bit 7   |                                |                                  |                  |                                 |                |                          | bit 0  |
| 1       |                                |                                  |                  |                                 |                |                          |        |
| Legena: | la hit                         | W = Writchlo                     | hit.             |                                 | nanted bit rea | d aa 'O'                 |        |
|         |                                | '1' - Bit is sof                 | DIL              | $0^{\circ} = \text{Driftiplen}$ | arod           | u as u<br>v – Ritic unkr |        |
|         | ILFOR                          |                                  | •                |                                 | aieu           |                          | IOWIT  |
| bit 15  | Unimplemer                     | nted: Read as '                  | 0'               |                                 |                |                          |        |
| bit 14  | DMA1IF: DM                     | IA Channel 1 In                  | terrupt Flag St  | atus bit                        |                |                          |        |
|         | 1 = Interrupt                  | request has oc                   | curred           |                                 |                |                          |        |
|         | 0 = Interrupt                  | request has no                   | ot occurred      |                                 |                |                          |        |
| bit 13  | AD1IF: ADC                     | 1 Conversion C                   | omplete Interr   | upt Flag Status                 | bit            |                          |        |
|         | 1 = Interrupt                  | request has or                   | curred           |                                 |                |                          |        |
| hit 12  |                                | Tequest has he                   | r Intorrunt Elag | Status bit                      |                |                          |        |
|         |                                | request has or                   | curred           | Status bit                      |                |                          |        |
|         | 0 = Interrupt                  | request has no                   | ot occurred      |                                 |                |                          |        |
| bit 11  | U1RXIF: UA                     | RT1 Receiver li                  | nterrupt Flag S  | tatus bit                       |                |                          |        |
|         | 1 = Interrupt                  | request has or                   | curred           |                                 |                |                          |        |
|         | 0 = Interrupt                  | request has no                   | ot occurred      |                                 |                |                          |        |
| bit 10  | SPI1IF: SPI1                   | Event Interrup                   | t Flag Status b  | it                              |                |                          |        |
|         | 1 = Interrupt<br>0 = Interrupt | request has or<br>request has no | currea           |                                 |                |                          |        |
| bit 9   | SPF1IF: SPI                    | 1 Fault Interrup                 | t Flag Status b  | it                              |                |                          |        |
|         | 1 = Interrupt                  | request has or                   | curred           |                                 |                |                          |        |
|         | 0 = Interrupt                  | request has no                   | ot occurred      |                                 |                |                          |        |
| bit 8   | T3IF: Timer3                   | Interrupt Flag                   | Status bit       |                                 |                |                          |        |
|         | 1 = Interrupt                  | request has oc                   | curred           |                                 |                |                          |        |
| h:+ 7   |                                | request has no                   |                  |                                 |                |                          |        |
| DIL 7   | 1 = Interrupt                  | request has or                   | Status bit       |                                 |                |                          |        |
|         | 0 = Interrupt                  | request has no                   | ot occurred      |                                 |                |                          |        |
| bit 6   | OC2IF: Outp                    | ut Compare Ch                    | annel 2 Interru  | pt Flag Status I                | bit            |                          |        |
|         | 1 = Interrupt                  | request has oc                   | curred           |                                 |                |                          |        |
|         | 0 = Interrupt                  | request has no                   | t occurred       |                                 |                |                          |        |
| bit 5   | IC2IF: Input                   | Capture Chann                    | el 2 Interrupt F | lag Status bit                  |                |                          |        |
|         | 1 = Interrupt                  | request has or                   | curred           |                                 |                |                          |        |
| hit 4   |                                | 1 Channel 0 In                   | terrunt Elag St  | atus hit                        |                |                          |        |
|         |                                | request has or                   | curred           |                                 |                |                          |        |
|         | 0 = Interrupt                  | request has no                   | ot occurred      |                                 |                |                          |        |
| bit 3   | T1IF: Timer1                   | Interrupt Flag                   | Status bit       |                                 |                |                          |        |
|         | 1 = Interrupt                  | request has oc                   | curred           |                                 |                |                          |        |
|         | 0 = Interrupt                  | request has no                   | ot occurred      |                                 |                |                          |        |

## REGISTER 8-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

## REGISTER 8-29: IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8

| U-0    | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | U-0   |
|--------|-----|-----|-----|-----|-----|-----|-------|
|        | —   | —   | —   | —   |     |     | —     |
| bit 15 |     |     |     |     |     |     | bit 8 |

| U-0   | R/W-1   | R/W-0   | R/W-0   | U-0 | R/W-1   | R/W-0   | R/W-0   |
|-------|---------|---------|---------|-----|---------|---------|---------|
| —     | SPI2IP2 | SPI2IP1 | SPI2IP0 | —   | SPF2IP2 | SPF2IP1 | SPF2IP0 |
| bit 7 |         |         |         |     |         |         | bit 0   |

| Legend:       |                   |                              |                        |                    |
|---------------|-------------------|------------------------------|------------------------|--------------------|
| R = Readabl   | le bit            | W = Writable bit             | U = Unimplemented bit, | read as '0'        |
| -n = Value at | t POR             | '1' = Bit is set             | '0' = Bit is cleared   | x = Bit is unknown |
|               |                   |                              |                        |                    |
| bit 15-7      | Unimplemer        | nted: Read as '0'            |                        |                    |
| bit 6-4       | SPI2IP<2:0>       | : SPI2 Event Interrupt P     | riority bits           |                    |
|               | 111 = Interru     | upt is Priority 7 (highest   | priority interrupt)    |                    |
|               | •                 |                              |                        |                    |
|               | •                 |                              |                        |                    |
|               | •<br>001 = Interr | unt is Priority 1            |                        |                    |
|               | 000 = Interru     | upt source is disabled       |                        |                    |
| bit 3         | Unimplemer        | nted: Read as '0'            |                        |                    |
| bit 2-0       | SPF2IP<2:0        | SPI2 Fault Interrupt P       | riority bits           |                    |
|               | 111 = Interru     | ipt is Priority 7 (highest p | priority interrupt)    |                    |
|               | •                 |                              |                        |                    |
|               | •                 |                              |                        |                    |
|               | •                 |                              |                        |                    |

001 = Interrupt is Priority 1

000 = Interrupt source is disabled

## REGISTER 8-35: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15

| U-0                                                                        | U-0                | U-0                | U-0              | U-0                | R/W-1           | R/W-0    | R/W-0  |  |
|----------------------------------------------------------------------------|--------------------|--------------------|------------------|--------------------|-----------------|----------|--------|--|
| _                                                                          | —                  | _                  | _                | _                  | RTCIP2          | RTCIP1   | RTCIP0 |  |
| bit 15                                                                     |                    | ·                  |                  | ·                  |                 | ·        | bit 8  |  |
|                                                                            |                    |                    |                  |                    |                 |          |        |  |
| U-0                                                                        | R/W-1              | R/W-0              | R/W-0            | U-0                | U-0             | U-0      | U-0    |  |
| _                                                                          | DMA5IP2            | DMA5IP1            | DMA5IP0          | —                  | —               | —        | —      |  |
| bit 7                                                                      |                    | ·                  |                  |                    |                 | •        | bit 0  |  |
|                                                                            |                    |                    |                  |                    |                 |          |        |  |
| Legend:                                                                    |                    |                    |                  |                    |                 |          |        |  |
| R = Readable                                                               | e bit              | W = Writable       | bit              | U = Unimplem       | nented bit, rea | d as '0' |        |  |
| -n = Value at POR (1' = Bit is set (0' = Bit is cleared x = Bit is unknown |                    |                    |                  |                    |                 |          |        |  |
|                                                                            |                    |                    |                  |                    |                 |          |        |  |
| bit 15-11                                                                  | Unimplemen         | ted: Read as '     | 0'               |                    |                 |          |        |  |
| bit 10-8                                                                   | RTCIP<2:0>:        | Real-Time Clo      | ck and Calend    | lar Interrupt Prio | ority bits      |          |        |  |
|                                                                            | 111 = Interru      | pt is Priority 7 ( | highest priority | v interrupt)       |                 |          |        |  |
|                                                                            | •                  |                    |                  |                    |                 |          |        |  |
|                                                                            | •                  |                    |                  |                    |                 |          |        |  |
|                                                                            | •<br>001 = Interru | nt is Priority 1   |                  |                    |                 |          |        |  |
|                                                                            | 000 = Interru      | pt source is dis   | abled            |                    |                 |          |        |  |
| bit 7                                                                      | Unimplemen         | ted: Read as '     | 0'               |                    |                 |          |        |  |
| bit 6-4                                                                    | DMA5IP<2:0         | >: DMA Chann       | el 5 Interrupt F | Priority bits      |                 |          |        |  |
|                                                                            | 111 = Interru      | pt is Priority 7 ( | highest priority | (interrupt)        |                 |          |        |  |
|                                                                            | •                  |                    | 5                |                    |                 |          |        |  |
|                                                                            | •                  |                    |                  |                    |                 |          |        |  |
|                                                                            | •                  |                    |                  |                    |                 |          |        |  |
|                                                                            | 001 = Interru      | pt is Priority 1   | ablad            |                    |                 |          |        |  |
|                                                                            | 000 = merru        | pi source is dis   |                  |                    |                 |          |        |  |
| bit 3-0                                                                    | Unimplemen         | ted: Read as '     | 0'               |                    |                 |          |        |  |

## 10.1.2 HARDWARE-BASED POWER-SAVING MODE

The hardware-based VBAT mode does not require any action by the user during code development. Instead, it is a hardware design feature that allows the micro-controller to retain critical data (using the DSGPRx registers) and maintain the RTCC when VDD is removed from the application. This is accomplished by supplying a backup power source to a specific power pin. VBAT mode is described in more detail in **Section 10.5 "Vbat Mode"**.

## 10.1.3 LOW-VOLTAGE/RETENTION REGULATOR

PIC24FJ128GA310 family devices incorporate a second on-chip voltage regulator, designed to provide power to select microcontroller features at 1.2V nominal. This regulator allows features, such as data RAM and the WDT, to be maintained in power-saving modes where they would otherwise be inactive, or maintain them at a lower power than would otherwise be the case.

The low-voltage/retention regulator is only available when Sleep or Deep Sleep modes are invoked. It is controlled by the LPCFG Configuration bit (CW1<10>) and in firmware by the RETEN bit (RCON<12>). LPCFG must be programmed (= 0) and the RETEN bit must be set (= 1) for the regulator to be enabled.

## 10.2 Idle Mode

Idle mode has these features:

- The CPU will stop executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.8 "Selective Peripheral Module Control").
- If the WDT or FSCM is enabled, the LPRC will also remain active.

The device will wake from Idle mode on any of these events:

- Any interrupt that is individually enabled
- Any device Reset
- A WDT time-out

On wake-up from Idle, the clock is reapplied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

## 10.3 Sleep Mode

Sleep mode includes these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption will be reduced to a minimum provided that no I/O pin is sourcing current.
- The I/O pin directions and states are frozen.
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled.
- The LPRC clock will continue to run in Sleep mode if the WDT or RTCC, with LPRC as clock source, is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate in Sleep mode. This includes items, such as the Input Change Notification on the I/O ports, or peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation will be disabled in Sleep mode.

The device will wake-up from Sleep mode on any of these events:

- On any interrupt source that is individually enabled
- · On any form of device Reset
- · On a WDT time-out

On wake-up from Sleep, the processor will restart with the same clock source that was active when Sleep mode was entered.

### 10.3.1 LOW-VOLTAGE/RETENTION SLEEP MODE

Low-Voltage/Retention Sleep mode functions as Sleep mode with the same features and wake-up triggers. The difference is that the low-voltage/retention regulator allows core digital logic voltage (VCORE) to drop to 1.2V nominal. This permits an incremental reduction of power consumption over what would be required if VCORE was maintained at a 1.8V (minimum) level.

Low-Voltage Sleep mode requires a longer wake-up time than Sleep mode, due to the additional time required to bring VCORE back to 1.8V (known as TREG). In addition, the use of the low-voltage/retention regulator limits the amount of current that can be sourced to any active peripherals, such as the RTCC/LCD, etc.

## **REGISTER 11-5:** ANSE: PORTE ANALOG FUNCTION SELECTION REGISTER<sup>(1)</sup>

| U-0           | U-0       | U-0              | U-0   | U-0               | U-0              | R/W-1                | U-0   |
|---------------|-----------|------------------|-------|-------------------|------------------|----------------------|-------|
| _             | _         | —                | —     | —                 | —                | ANSE9 <sup>(2)</sup> | —     |
| bit 15        |           |                  |       |                   |                  |                      | bit 8 |
|               |           |                  |       |                   |                  |                      |       |
| R/W-1         | R/W-1     | R/W-1            | R/W-1 | U-0               | U-0              | U-0                  | U-0   |
|               | ANS       | E<7:4>           |       | —                 | —                | —                    | —     |
| bit 7         |           |                  |       |                   |                  |                      | bit 0 |
|               |           |                  |       |                   |                  |                      |       |
| Legend:       |           |                  |       |                   |                  |                      |       |
| R = Readable  | e bit     | W = Writable     | bit   | U = Unimplem      | nented bit, read | 1 as '0'             |       |
| -n = Value at | POR       | '1' = Bit is set |       | '0' = Bit is clea | ared             | x = Bit is unkr      | iown  |
|               |           |                  |       |                   |                  |                      |       |
| bit 15-10     | Unimpleme | nted: Read as '  | י)    |                   |                  |                      |       |

| bit 9   | ANSE9: Analog Function Selection bit <sup>(2)</sup>                                                                                                          |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | <ul> <li>1 = Pin is configured in Analog mode; I/O port read is disabled</li> <li>0 = Pin is configured in Digital mode; I/O port read is enabled</li> </ul> |
| bit 8   | Unimplemented: Read as '0'                                                                                                                                   |
| bit 7-4 | ANSE<7:4>: Analog Function Selection bits <sup>(1)</sup>                                                                                                     |
|         | 1 = Pin is configured in Analog mode; I/O port read is disabled                                                                                              |
|         | $\circ$ = Dip is configured in Digital mode: I/O part road is enabled                                                                                        |
|         |                                                                                                                                                              |

## **Note 1:** This register is not available in 64-pin and 80-pin devices.

2: This bit is unimplemented on 64-pin devices. In 80-pin devices, this bit needs to be cleared to get digital functionality on RE9.

## REGISTER 11-6: ANSG: PORTG ANALOG FUNCTION SELECTION REGISTER

| U-0           | U-0        | U-0              | U-0        | U-0               | U-0              | R/W-1           | R/W-1  |
|---------------|------------|------------------|------------|-------------------|------------------|-----------------|--------|
|               | —          | _                | —          | —                 | —                | ANSO            | 6<9:8> |
| bit 15        |            |                  |            |                   |                  |                 | bit 8  |
|               |            |                  |            |                   |                  |                 |        |
| R/W-1         | R/W-1      | U-0              | U-0        | U-0               | U-0              | U-0             | U-0    |
| ANS           | G<7:6>     | —                | —          | —                 | —                | —               | —      |
| bit 7         |            |                  |            |                   |                  |                 | bit 0  |
|               |            |                  |            |                   |                  |                 |        |
| Legend:       |            |                  |            |                   |                  |                 |        |
| R = Readabl   | e bit      | W = Writable     | bit        | U = Unimplem      | nented bit, read | l as '0'        |        |
| -n = Value at | POR        | '1' = Bit is set |            | '0' = Bit is clea | ared             | x = Bit is unkr | nown   |
|               |            |                  |            |                   |                  |                 |        |
| bit 15 10     | Unimplomor | tod: Dood on "   | <u>.</u> , |                   |                  |                 |        |

| DIT 15-10 | Unimplemented: Read as "0"                                                                                                                                   |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 9-6   | ANSG<9:6>: Analog Function Selection bits                                                                                                                    |
|           | <ul> <li>1 = Pin is configured in Analog mode; I/O port read is disabled</li> <li>0 = Pin is configured in Digital mode; I/O port read is enabled</li> </ul> |
| bit 5-0   | Unimplemented: Read as '0'                                                                                                                                   |

## REGISTER 11-25: RPINR30: PERIPHERAL PIN SELECT INPUT REGISTER 30

| U-0    | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | U-0   |
|--------|-----|-----|-----|-----|-----|-----|-------|
| —      | —   | —   | —   | —   | —   | —   | —     |
| bit 15 |     |     |     |     |     |     | bit 8 |

| U-0   | U-0 | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  |
|-------|-----|--------|--------|--------|--------|--------|--------|
| —     | —   | MDMIR5 | MDMIR4 | MDMIR3 | MDMIR2 | MDMIR1 | MDMIR0 |
| bit 7 |     |        |        |        |        |        | bit 0  |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | 1 as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-6 Unimplemented: Read as '0'

bit 5-0 MDMIR<5:0>: Assign TX Modulation Input (MDMI) to Corresponding RPn or RPIn Pin bits

## REGISTER 11-26: RPINR31: PERIPHERAL PIN SELECT INPUT REGISTER 31

| U-0    | U-0 | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  |
|--------|-----|--------|--------|--------|--------|--------|--------|
| —      | —   | MDC2R5 | MDC2R4 | MDC2R3 | MDC2R2 | MDC2R1 | MDC2R0 |
| bit 15 |     |        |        |        |        |        | bit 8  |

| U-0   | U-0 | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1   | R/W-1  |
|-------|-----|--------|--------|--------|--------|---------|--------|
| —     | —   | MDC1R5 | MDC1R4 | MDC1R3 | MDC1R2 | MDC21R1 | MDC1R0 |
| bit 7 |     |        |        |        |        |         | bit 0  |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | l as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-14 Unimplemented: Read as '0'

bit 13-8 MDC2R<5:0>: Assign TX Carrier 2 Input (MDCIN2) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 MDC1R<5:0>: Assign TX Carrier 1 Input (MDCIN1) to Corresponding RPn or RPIn Pin bits

| REGISTER     | 12-1: T1C                                              | ON: TIMER1 C                                        | ONTROL RE                          | EGISTER <sup>(1)</sup>  |                  |                 |               |
|--------------|--------------------------------------------------------|-----------------------------------------------------|------------------------------------|-------------------------|------------------|-----------------|---------------|
| R/W-0        | U-0                                                    | R/W-0                                               | U-0                                | U-0                     | U-0              | R/W-0           | R/W-0         |
| TON          | _                                                      | TSIDL                                               | —                                  | _                       | _                | TIECS1          | TIECS0        |
| bit 15       |                                                        |                                                     |                                    |                         |                  |                 | bit 8         |
| 11.0         | P/M/0                                                  | P///_0                                              | P/M/_0                             | 11_0                    |                  | P/M/-0          | 11-0          |
| 0-0          |                                                        |                                                     |                                    | 0-0                     |                  |                 | 0-0           |
| bit 7        | TOAL                                                   | 101101                                              | 1011 00                            |                         | 101110           | 100             | bit 0         |
|              |                                                        |                                                     |                                    |                         |                  |                 |               |
| Legend:      |                                                        |                                                     |                                    |                         |                  |                 |               |
| R = Readab   | le bit                                                 | W = Writable                                        | bit                                | U = Unimpler            | nented bit, reac | l as '0'        |               |
| -n = Value a | t POR                                                  | '1' = Bit is set                                    |                                    | '0' = Bit is cle        | ared             | x = Bit is unkr | iown          |
| bit 15       | TON: Timer1                                            | 1 On hit                                            |                                    |                         |                  |                 |               |
|              | 1 = Starts 10                                          | 6-bit Timer1                                        |                                    |                         |                  |                 |               |
|              | 0 = Stops 16                                           | 6-bit Timer1                                        |                                    |                         |                  |                 |               |
| bit 14       | Unimpleme                                              | nted: Read as 'o                                    | )'                                 |                         |                  |                 |               |
| bit 13       | TSIDL: Time                                            | er1 Stop in Idle M                                  | lode bit                           |                         |                  |                 |               |
|              | 1 = Disconti<br>0 = Continu                            | nues module op<br>es module opera                   | eration when o<br>ation in Idle mo | device enters lo<br>ode | dle mode         |                 |               |
| bit 12-10    | Unimpleme                                              | nted: Read as 'o                                    | )'                                 |                         |                  |                 |               |
| bit 9-8      | TIECS<1:0>                                             | : Timer1 Extend                                     | ed Clock Sour                      | ce Select bits (        | selected when    | TCS = 1)        |               |
|              | 11 = Unimpl<br>10 = LPRC 0<br>01 = T1CK 0<br>00 = SOSC | emented, do not<br>oscillator<br>external clock inp | use<br>out                         |                         |                  |                 |               |
| bit 7        | Unimpleme                                              | nted: Read as '                                     | )'                                 |                         |                  |                 |               |
| bit 6        | TGATE: Tim                                             | er1 Gated Time                                      | Accumulation                       | Enable bit              |                  |                 |               |
|              | When TCS =                                             | <u>= 1:</u>                                         |                                    |                         |                  |                 |               |
|              | This bit is igr                                        | nored.                                              |                                    |                         |                  |                 |               |
|              | <u>When TCS =</u><br>1 = Gated ti                      | <u>= 0:</u><br>me accumulatio                       | n is enabled                       |                         |                  |                 |               |
|              | 0 = Gated ti                                           | me accumulation                                     | n is disabled                      |                         |                  |                 |               |
| bit 5-4      | TCKPS<1:0                                              | >: Timer1 Input                                     | Clock Prescale                     | e Select bits           |                  |                 |               |
|              | 11 = 1:256                                             |                                                     |                                    |                         |                  |                 |               |
|              | 10 = 1:64<br>01 = 1:8                                  |                                                     |                                    |                         |                  |                 |               |
|              | 00 = 1:1                                               |                                                     |                                    |                         |                  |                 |               |
| bit 3        | Unimpleme                                              | nted: Read as 'o                                    | )'                                 |                         |                  |                 |               |
| bit 2        | TSYNC: Tim                                             | er1 External Clo                                    | ock Input Syncl                    | hronization Sel         | ect bit          |                 |               |
|              | When TCS =                                             | <u>= 1:</u>                                         | 1 <b>1</b> . <sup>1</sup>          |                         |                  |                 |               |
|              | 1 = Synchro0 = Does no                                 | onizes external c                                   | iock input<br>kternal clock in     | nout                    |                  |                 |               |
|              | When TCS =                                             | <u>= 0:</u>                                         |                                    | put                     |                  |                 |               |
|              | This bit is igr                                        | nored.                                              |                                    |                         |                  |                 |               |
| bit 1        | TCS: Timer1                                            | Clock Source S                                      | Select bit                         |                         |                  |                 |               |
|              | 1 = Extende                                            | d clock is select                                   | ed by the time                     | r                       |                  |                 |               |
| bit 0        |                                                        | nted: Read as '                                     | )'                                 |                         |                  |                 |               |
| Note 1.      | banging the va                                         |                                                     | hile the timer i                   | s running (TON          | l = 1) causes th | ne timer presca | le counter to |

NOTES:

| R/W-0               | U-0                                                                     | R/W-0                                                                     | R/W-0                                                             | R/W-0                                                                  | U-0                                                          | R/W-0                                                      | R/W-0                                       |
|---------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------|
| UARTEN <sup>(</sup> | 1)                                                                      | USIDL                                                                     | IREN <sup>(2)</sup>                                               | RTSMD                                                                  |                                                              | UEN1                                                       | UEN0                                        |
| bit 15              |                                                                         |                                                                           |                                                                   |                                                                        |                                                              |                                                            | bit 8                                       |
|                     |                                                                         |                                                                           |                                                                   |                                                                        |                                                              |                                                            |                                             |
| R/W-0, H0           | C R/W-0                                                                 | R/W-0, HC                                                                 | R/W-0                                                             | R/W-0                                                                  | R/W-0                                                        | R/W-0                                                      | R/W-0                                       |
| WAKE                | LPBACK                                                                  | ABAUD                                                                     | RXINV                                                             | BRGH                                                                   | PDSEL1                                                       | PDSEL0                                                     | STSEL                                       |
| bit 7               |                                                                         |                                                                           |                                                                   |                                                                        |                                                              |                                                            | bit 0                                       |
| r                   |                                                                         |                                                                           |                                                                   |                                                                        |                                                              |                                                            |                                             |
| Legend:             |                                                                         | HC = Hardware                                                             | e Clearable bi                                                    | t                                                                      |                                                              |                                                            |                                             |
| R = Reada           | ble bit                                                                 | W = Writable b                                                            | it                                                                | U = Unimplem                                                           | nented bit, read                                             | l as '0'                                                   |                                             |
| -n = Value          | at POR                                                                  | '1' = Bit is set                                                          |                                                                   | '0' = Bit is clea                                                      | ared                                                         | x = Bit is unkn                                            | own                                         |
| bit 15              | <b>UARTEN:</b> UA<br>1 = UARTx is<br>0 = UARTx is                       | ARTx Enable bit <sup>(*</sup><br>s enabled; all UA<br>s disabled; all UAF | I)<br>.RTx pins are<br>RTx pins are o                             | controlled by U,<br>ontrolled by port                                  | ARTx as define<br>latches; UARTx                             | ed by UEN<1:0><br>power consump                            | tion is minimal                             |
| bit 14              | Unimplemen                                                              | ted: Read as '0'                                                          |                                                                   |                                                                        |                                                              |                                                            |                                             |
| bit 13              | USIDL: UAR                                                              | Tx Stop in Idle M                                                         | ode bit                                                           |                                                                        |                                                              |                                                            |                                             |
|                     | 1 = Discontin<br>0 = Continue                                           | nues module ope<br>es module operat                                       | ration when d<br>ion in Idle mo                                   | levice enters Idl<br>de                                                | e mode                                                       |                                                            |                                             |
| bit 12              | IREN: IrDA <sup>®</sup>                                                 | Encoder and De                                                            | coder Enable                                                      | bit <sup>(2)</sup>                                                     |                                                              |                                                            |                                             |
|                     | 1 = IrDA enc<br>0 = IrDA enc                                            | oder and decode                                                           | er are enableo<br>er are disableo                                 | l<br>d                                                                 |                                                              |                                                            |                                             |
| bit 11              | RTSMD: Mod<br>1 = <u>UxRTS</u> p<br>0 = UxRTS p                         | le Selection for Ū<br>vin is in Simplex i<br>vin is in Flow Cor           | JxRTS Pin bit<br>mode<br>ntrol mode                               |                                                                        |                                                              |                                                            |                                             |
| bit 10              | Unimplemen                                                              | ted: Read as '0'                                                          |                                                                   |                                                                        |                                                              |                                                            |                                             |
| bit 9-8             | UEN<1:0>: U                                                             | IARTx Enable bit                                                          | s                                                                 |                                                                        |                                                              |                                                            |                                             |
|                     | 11 = UxTX, U<br>10 = UxTX, U<br>01 = UxTX, U<br>00 = UxTX ar<br>latches | JxRX and BCLK3<br>JxRX, UxCTS an<br>JxRX and UxRTS<br>nd UxRX pins are    | c pins are ena<br>d UxRTS pins<br>5 pins are ena<br>e enabled and | bled and used;<br>s are enabled an<br>abled and used;<br>used; UxCTS a | UxCTS pin is c<br>nd used<br>UxCTS pin is c<br>and UxRTS/BCI | controlled by por<br>controlled by por<br>LKx pins are cor | t latches<br>rt latches<br>htrolled by port |
| bit 7               | WAKE: Wake                                                              | e-up on Start Bit                                                         | Detect During                                                     | Sleep Mode Er                                                          | nable bit                                                    |                                                            |                                             |
|                     | 1 = UARTx w<br>in hardwa<br>0 = No wake                                 | vill continue to sa<br>are on the follow<br>-up is enabled                | mple the UxR<br>ing rising edg                                    | X pin; interrupt i<br>e                                                | is generated or                                              | the falling edge                                           | e, bit is cleared                           |
| bit 6               | LPBACK: UA                                                              | ARTx Loopback I                                                           | Node Select b                                                     | bit                                                                    |                                                              |                                                            |                                             |
|                     | 1 = Enables<br>0 = Loopbacl                                             | Loopback mode<br>k mode is disable                                        | ed                                                                |                                                                        |                                                              |                                                            |                                             |
| bit 5               | ABAUD: Auto                                                             | o-Baud Enable b                                                           | it                                                                |                                                                        |                                                              |                                                            |                                             |
|                     | 1 = Enables<br>cleared in<br>0 = Baud rate                              | baud rate meas<br>n hardware upon<br>e measurement i                      | urement on the completion is disabled or                          | ne next characte<br>completed                                          | er – requires re                                             | eception of a Sy                                           | nc field (55h);                             |
| Note 1:             | If UARTEN = 1, <b>Section 11.4 "P</b>                                   | the peripheral in<br>eripheral Pin Se                                     | puts and outp<br>elect (PPS)" f                                   | uts must be cor<br>for more informa                                    | nfigured to an a<br>ation.                                   | vailable RPn/RF                                            | PIn pin. See                                |
| 2:                  | This feature is or                                                      | nly available for t                                                       | the 16x BRG                                                       | mode (BRGH =                                                           | 0).                                                          |                                                            |                                             |

## REGISTER 18-1: UXMODE: UARTX MODE REGISTER

## REGISTER 22-11: RTCCSWT: POWER CONTROL AND SAMPLE WINDOW TIMER REGISTER<sup>(1)</sup>

| R/W-x    |
|----------|----------|----------|----------|----------|----------|----------|----------|
| PWCSTAB7 | PWCSTAB6 | PWCSTAB5 | PWCSTAB4 | PWCSTAB3 | PWCSTAB2 | PWCSTAB1 | PWCSTAB0 |
| bit 15   |          |          |          |          |          |          | bit 8    |

| R/W-x       |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| PWCSAMP7(2) | PWCSAMP6(2) | PWCSAMP5(2) | PWCSAMP4(2) | PWCSAMP3(2) | PWCSAMP2(2) | PWCSAMP1(2) | PWCSAMP0(2) |
| bit 7       |             |             |             |             |             |             | bit 0       |

| Legend:                           |                                 |                        |                    |  |
|-----------------------------------|---------------------------------|------------------------|--------------------|--|
| R = Readable bit W = Writable bit |                                 | U = Unimplemented bit, | read as '0'        |  |
| -n = Value at POR                 | '1' = Bit is set                | '0' = Bit is cleared   | x = Bit is unknown |  |
| bit 15-8 PWCS                     | TAB<7:0>: Power Control Stabili | ty Window Timer bits   |                    |  |

|         | 11111111 = Stability Window is 255 TPWCCLK clock periods                                                                                    |  |  |  |  |  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|         |                                                                                                                                             |  |  |  |  |  |
|         | 00000001 = Stability Window is 1 TPWCCLK clock period<br>00000000 = No Stability Window: Sample Window starts when the alarm event triggers |  |  |  |  |  |
| bit 7-0 | <b>PWCSAMP&lt;7:0&gt;:</b> Power Control Sample Window Timer bits <sup>(2)</sup>                                                            |  |  |  |  |  |
|         | 11111111 = Sample Window is always enabled, even when PWCEN = 0<br>11111110 = Sample Window is 254 TPWCCLK clock periods                    |  |  |  |  |  |
|         | <br>00000001 = Sample Window is 1 TPWCCLK clock period<br>00000000 = No Sample Window                                                       |  |  |  |  |  |

**Note 1:** A write to this register is only allowed when RTCWREN = 1.

2: The Sample Window always starts when the Stability Window timer expires, except when its initial value is 00h.

## 24.0 12-BIT A/D CONVERTER (ADC) WITH THRESHOLD SCAN

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the 12-Bit ADC, refer to "12-Bit A/D Converter with Threshold Detect" (DS39739) in the "dsPIC33/PIC24 Family Reference Manual". The information in this data sheet supersedes the information in the FRM.

The 12-bit A/D Converter (ADC) has the following key features:

- Successive Approximation Register (SAR)
   Conversion
- Conversion Speeds of up to 200 ksps
- Up to 32 Analog Input Channels (internal and external)
- Selectable 10-Bit (default) or 12-Bit Conversion Resolution
- Multiple Internal Reference Input Channels
- External Voltage Reference Input Pins
- Unipolar Differential Sample-and-Hold (S/H)
   Amplifier
- Automated Threshold Scan and Compare
   Operation to Pre-Evaluate Conversion Results
- Selectable Conversion Trigger Source
- Fixed Length (one word per channel), Configurable Conversion Result Buffer
- · Four Options for Results Alignment
- · Configurable Interrupt Generation
- Enhanced DMA Operations with Indirect Address Generation
- · Operation During CPU Sleep and Idle modes

The 12-bit ADC module is an enhanced version of the 10-bit module offered in earlier PIC24 devices. It is a Successive Approximation Register (SAR) Converter, enhanced with 12-bit resolution, a wide range of automatic sampling options, tighter integration with other analog modules and a configurable results buffer.

It also includes a unique Threshold Detect feature that allows the module itself to make simple decisions based on the conversion results, and enhanced operation with the DMA controller through Peripheral Indirect Addressing (PIA).

A simplified block diagram for the module is shown in Figure 24-1.

## 24.1 Basic Operation

To perform a standard ADC conversion:

- 1. Configure the module:
  - a) Configure port pins as analog inputs by setting the appropriate bits in the ANSx registers (see Section 11.2 "Configuring Analog Port Pins (ANSx)" for more information).
  - b) Select the voltage reference source to match expected range on analog inputs (AD1CON2<15:13>).
  - c) Select the positive and negative multiplexer inputs for each channel (AD1CHS<15:0>).
  - Select the analog conversion clock to match the desired data rate with the processor clock (AD1CON3<7:0>).
  - e) Select the appropriate sample/conversion sequence (AD1CON1<7:5> and AD1CON3<12:8>).
  - For Channel A scanning operations, select the positive channels to be included (AD1CSSH and AD1CSSL registers).
  - g) Select how conversion results are presented in the buffer (AD1CON1<9:8> bits and AD1CON5 register).
  - h) Select the interrupt rate (AD1CON2<5:2>).
  - i) Turn on ADC module (AD1CON1<15>).
- 2. Configure the ADC interrupt (if required):
  - a) Clear the AD1IF bit (IFS0<13>).
  - b) Enable the AD1IE interrupt (IEC0<13>).
  - c) Select the ADC interrupt priority (IPC3<6:4>).
- If the module is configured for manual sampling, set the SAMP bit (AD1CON1<1>) to begin sampling.

| R/W-0         | U-0                           | R/W-0                              | R/W-0                               | R/W-0                  | R/W-0            | R/W-0           | R/W-0  |
|---------------|-------------------------------|------------------------------------|-------------------------------------|------------------------|------------------|-----------------|--------|
| CTMUEN        | _                             | CTMUSIDL                           | TGEN                                | EDGEN                  | EDGSEQEN         | IDISSEN         | CTTRIG |
| bit 15        |                               |                                    |                                     |                        |                  |                 | bit 8  |
| -             |                               |                                    |                                     |                        |                  |                 |        |
| U-0           | U-0                           | U-0                                | U-0                                 | U-0                    | U-0              | U-0             | U-0    |
|               | _                             |                                    | _                                   |                        |                  | —               | —      |
| bit 7         |                               |                                    |                                     |                        |                  |                 | bit 0  |
|               |                               |                                    |                                     |                        |                  |                 |        |
| Legend:       |                               |                                    |                                     |                        |                  |                 |        |
| R = Readable  | e bit                         | W = Writable                       | bit                                 | U = Unimpler           | nented bit, read | as '0'          |        |
| -n = Value at | POR                           | '1' = Bit is set                   |                                     | '0' = Bit is cle       | ared             | x = Bit is unkn | iown   |
|               |                               |                                    |                                     |                        |                  |                 |        |
| bit 15        | CTMUEN: CT                    | MU Enable bit                      |                                     |                        |                  |                 |        |
|               | 1 = Module is                 | s enabled                          |                                     |                        |                  |                 |        |
|               | 0 = Module is                 | s disabled                         |                                     |                        |                  |                 |        |
| bit 14        | Unimplemen                    | ted: Read as '0                    | )'                                  |                        |                  |                 |        |
| bit 13        | CTMUSIDL: (                   | CTMU Stop in I                     | dle Mode bit                        |                        |                  |                 |        |
|               | 1 = Discontin<br>0 = Continue | ues module op<br>s module opera    | eration when c<br>ation in Idle mo  | levice enters lo<br>de | dle mode         |                 |        |
| bit 12        | TGEN: Time                    | Generation Ena                     | able bit                            |                        |                  |                 |        |
|               | 1 = Enables                   | edge delay gen                     | eration                             |                        |                  |                 |        |
| <b>L:1</b> 44 |                               | euge delay gel                     | leration                            |                        |                  |                 |        |
| DIT           |                               | e Enable bit                       |                                     |                        |                  |                 |        |
|               | 1 = Euges ar<br>0 = Edges ar  | e blocked                          |                                     |                        |                  |                 |        |
| bit 10        | EDGSEQEN:                     | Edge Seguend                       | e Enable bit                        |                        |                  |                 |        |
|               | 1 = Edge 1 e                  | vent must occu                     | r before Edge                       | 2 event can oc         | cur              |                 |        |
|               | 0 = No edge                   | sequence is ne                     | eded                                |                        |                  |                 |        |
| bit 9         | IDISSEN: Ana                  | alog Current So                    | ource Control b                     | oit                    |                  |                 |        |
|               | 1 = Analog c<br>0 = Analog c  | urrent source o<br>urrent source o | utput is ground<br>utput is not gro | led<br>ounded          |                  |                 |        |
| bit 8         | CTTRIG: CTM                   | MU Trigger Con                     | trol bit                            |                        |                  |                 |        |
|               | 1 = Trigger o                 | utput is enable                    | d                                   |                        |                  |                 |        |
|               | 0 = Trigger o                 | utput is disable                   | d                                   |                        |                  |                 |        |
| bit 7-0       | Unimplemen                    | ted: Read as 'o                    | )'                                  |                        |                  |                 |        |
|               |                               |                                    |                                     |                        |                  |                 |        |

## REGISTER 27-1: CTMUCON1: CTMU CONTROL REGISTER 1

### REGISTER 29-1: CW1: FLASH CONFIGURATION WORD 1

| U-1    |
|--------|--------|--------|--------|--------|--------|--------|--------|
| —      | —      | —      | —      | —      | —      | —      | —      |
| bit 23 |        |        |        |        |        |        | bit 16 |
|        |        |        |        |        |        |        |        |
| r-x    | R/PO-1 |
| r      | JTAGEN | GCP    | GWRP   | DEBUG  | LPCFG  | ICS1   | ICS0   |
| bit 15 |        |        |        |        |        |        | bit 8  |

| 511 10 | bit | 15 |
|--------|-----|----|
|--------|-----|----|

| R/PO-1 | R/PO-1  | R/PO-1  | R/PO-1 | R/PO-1 | R/PO-1 | R/PO-1 | R/PO-1 |
|--------|---------|---------|--------|--------|--------|--------|--------|
| WINDIS | FWDTEN1 | FWDTEN0 | FWPSA  | WDTPS3 | WDTPS2 | WDTPS1 | WDTPS0 |
| bit 7  |         |         |        |        |        |        | bit 0  |

| Legend:           | r = Reserved bit | PO = Program once bit       |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | d as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

| bit 23-16 | Unimplemented: Read as '1'                                                                            |
|-----------|-------------------------------------------------------------------------------------------------------|
| bit 15    | Reserved: The value is unknown; program as '0'                                                        |
| bit 14    | JTAGEN: JTAG Port Enable bit                                                                          |
|           | 1 = JTAG port is enabled                                                                              |
| 1.1.40    |                                                                                                       |
| DIT 13    | GCP: General Segment Program Memory Code Protection bit                                               |
|           | 1 = Code protection is disabled                                                                       |
| L:10      | CWDD: Concept Code Flock Write Protection bit                                                         |
| DIT 12    | GwRP: General Segment Code Flash while Protection bit                                                 |
|           | $\perp$ = Writes to program memory are allowed                                                        |
| L:1 4 4   |                                                                                                       |
| DICTI     | DEBUG: Background Debugger Enable bit                                                                 |
|           | <ul> <li>Device resets into Operational mode</li> <li>0 = Device resets into Debug mode</li> </ul>    |
| hit 10    | <b>IPCEC:</b> Low Voltage/Retention Regulator Configuration bit                                       |
|           |                                                                                                       |
|           | 0 = Low-power, low-voltage/retention regulator is enabled and controlled in firmware by the RETEN bit |
| bit 9-8   | ICS<1:0>: Emulator Pin Placement Select bits                                                          |
|           | 11 = Emulator functions are shared with PGEC1/PGED1                                                   |
|           | 10 = Emulator functions are shared with PGEC2/PGED2                                                   |
|           | 01 = Emulator functions are shared with PGEC3/PGED3                                                   |
|           | 00 = Reserved; do not use                                                                             |
| bit 7     | WINDIS: Windowed Watchdog Timer Disable bit                                                           |
|           | 1 = Standard Watchdog Timer is enabled                                                                |
|           | 0 = Windowed Watchdog Timer is enabled; (FWDTEN<1:0> must not be '00')                                |
| bit 6-5   | FWDTEN<1:0>: Watchdog Timer Configuration bits                                                        |
|           | 11 = WDT is always enabled; SWDTEN bit has no effect                                                  |
|           | 10 = WDT is enabled and controlled in firmware by the SWDTEN bit is disabled                          |
|           | 00 = WDT is disabled: SWDTEN bit is disabled                                                          |
|           |                                                                                                       |

## 32.2 AC Characteristics and Timing Parameters

The information contained in this section defines the PIC24FJ128GA310 family AC characteristics and timing parameters.

## TABLE 32-17: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

|                    | Standard Operating Conditions: 2V to 3.6V (unless otherwise stated)                    |
|--------------------|----------------------------------------------------------------------------------------|
| AC CHARACTERISTICS | Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial            |
|                    | Operating voltage VDD range as described in <b>Section 32.1 "DC Characteristics"</b> . |

## FIGURE 32-2: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS



## TABLE 32-18: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

| Param<br>No. | Symbol | Characteristic        | Min | Typ <sup>(1)</sup> | Max | Units | Conditions                                                         |
|--------------|--------|-----------------------|-----|--------------------|-----|-------|--------------------------------------------------------------------|
| DO50         | Cosco  | OSCO/CLKO Pin         | _   | —                  | 15  | pF    | In XT and HS modes when<br>external clock is used to drive<br>OSCI |
| DO56         | Сю     | All I/O Pins and OSCO | _   | —                  | 50  | pF    | EC mode                                                            |
| DO58         | Св     | SCLx, SDAx            | —   | —                  | 400 | pF    | In I <sup>2</sup> C™ mode                                          |

**Note 1:** Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

| RCFGCAL (RTCC Calibration                                                                                                                   |        |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------|
| and Configuration)278                                                                                                                       | 3      |
| RCON (Reset Control)                                                                                                                        | )      |
| RCON2 (Reset and System Control 2) 164                                                                                                      | Ł      |
| RCON2 (Reset Control 2)92                                                                                                                   | 2      |
| REFOCON (Reference Oscillator Control) 153                                                                                                  | 3      |
| RPINR0 (PPS Input 0) 178                                                                                                                    | 3      |
| RPINR1 (PPS Input 1) 178                                                                                                                    | 3      |
| RPINR10 (PPS Input 10) 182                                                                                                                  | 2      |
| RPINR11 (PPS Input 11) 182                                                                                                                  | 2      |
| RPINR17 (PPS Input 17) 183                                                                                                                  | 3      |
| RPINR18 (PPS Input 18) 183                                                                                                                  | 3      |
| RPINR19 (PPS Input 19)                                                                                                                      | ł      |
| RPINR2 (PPS Input 2)                                                                                                                        | )      |
| RPINR20 (PPS Input 20)                                                                                                                      | ł      |
| RPINR21 (PPS Input 21)                                                                                                                      | )      |
| RPINR22 (PPS Input 22)                                                                                                                      | >      |
| RPINR23 (PPS Input 23)                                                                                                                      | >      |
| RPINR27 (PPS input 27)                                                                                                                      | )<br>\ |
| RPINR3 (PPS Input 3)                                                                                                                        | 1      |
| RPINR30 (PPS input 30)                                                                                                                      | ,      |
| RPINR31 (PPS Input 31)                                                                                                                      | 'n     |
| RPINR4 (PPS Input 4)                                                                                                                        | י<br>ר |
| PDIND8 (PPS Input 8) 191                                                                                                                    | ,<br>1 |
| REINRO (FES Input 0)                                                                                                                        | !<br>1 |
| $RFINR9 (FF3   II put 9) \dots \dots$ | 2      |
| RPORT (PPS Output 1)                                                                                                                        | 2      |
| RPOR10 (PPS Output 10) 103                                                                                                                  | ,<br>X |
| RPOR11 (PPS Output 11) 193                                                                                                                  | ,<br>X |
| RPOR12 (PPS Output 12) 194                                                                                                                  | ,<br>1 |
| RPOR13 (PPS Output 13) 194                                                                                                                  | r<br>1 |
| RPOR14 (PPS Output 14)                                                                                                                      | 5      |
| RPOR15 (PPS Output 15) 195                                                                                                                  | 5      |
| RPOR2 (PPS Output 2)                                                                                                                        | à      |
| RPOR3 (PPS Output 3)                                                                                                                        | ,<br>) |
| RPOR4 (PPS Output 4)                                                                                                                        | )      |
| RPOR5 (PPS Output 5)                                                                                                                        | )      |
| RPOR6 (PPS Output 6)                                                                                                                        | 1      |
| RPOR7 (PPS Output 7) 191                                                                                                                    | I      |
| RPOR8 (PPS Output 8)                                                                                                                        | 2      |
| RPOR9 (PPS Output 9)                                                                                                                        | 2      |
| RTCCSWT (Power Control and Sample                                                                                                           |        |
| Window Timer)                                                                                                                               | 3      |
| RTCPWC (RTCC Power Control)                                                                                                                 | )      |
| SPIxCON1 (SPIx Control 1)                                                                                                                   | 5      |
| SPIxCON2 (SPIx Control 2)                                                                                                                   | 3      |
| SPIxSTAT (SPIx Status and Control)                                                                                                          | Ł      |
| SR (ALU STATUS)                                                                                                                             | )      |
| T1CON (Timer1 Control) 198                                                                                                                  | 3      |
| TxCON (Timer2 and Timer4 Control)                                                                                                           | 2      |
| TyCON (Timer3 and Timer5 Control)                                                                                                           | 3      |
| UxMODE (UARTx Mode)244                                                                                                                      | ł      |
| UxSTA (UARTx Status and Control)246                                                                                                         | 3      |
| WKDYHR (RTCC Weekday and Hours Value)                                                                                                       | 3      |
| YEAR (RTCC Year Value)282                                                                                                                   | 2      |
| Resets                                                                                                                                      |        |
| BOR (Brown-out Reset)                                                                                                                       | )      |
| Brown-out Reset (BOR)                                                                                                                       | 3      |
| Clock Source Selection                                                                                                                      | 3      |
| CM (Configuration Mismatch Reset)                                                                                                           | )      |
| Delay Times                                                                                                                                 | ł      |
| Device Times                                                                                                                                | 3      |
| IOPUWR (Illegal Opcode Reset)                                                                                                               | )      |
| MCLR (Pin Reset)                                                                                                                            | J      |

| POR (Power-on Reset)                 | 89  |
|--------------------------------------|-----|
| RCON Flags Operation                 | 93  |
|                                      | 00  |
| SFR States                           | 93  |
| SWR (RESET Instruction)              | 89  |
| TRAPR (Trap Conflict Reset)          | 89  |
| UWR (Uninitialized W Register Reset) | 89  |
| WDT (Watchdog Timer Reset)           | 89  |
| Revision History                     | 107 |
| RTCC                                 |     |
| Alarm Configuration 2                | 287 |
| Alarm Mask Settings (figure) 2       | 288 |
| Calibration                          | 287 |
| Clock Source Selection 2             | 277 |
| Control Registers 2                  | 278 |
| Power Control                        | 288 |
| Register Mapping 2                   | 277 |
| Source Clock                         | 275 |
| VBAT Operation                       | 288 |
| Write Lock 2                         | 277 |

## S

| Selective Peripheral Power Control    | 165 |
|---------------------------------------|-----|
| Serial Peripheral Interface (SPI)     | 221 |
| Serial Peripheral Interface. See SPI. |     |
| SFR Space                             | 44  |
| Software Simulator (MPLAB SIM)        | 349 |
| Software Stack                        |     |
| Special Features                      | 12  |
| SPI                                   |     |

## т

| Timer1                                 | 197 |
|----------------------------------------|-----|
| Timer2/3 and Timer4/5                  | 199 |
| Timing Diagrams                        |     |
| CLKO and I/O Timing                    | 372 |
| External Clock                         | 370 |
| I2Cx Bus Data (Master Mode)            | 377 |
| I2Cx Bus Data (Slave Mode)             | 378 |
| I2Cx Bus Start/Stop Bits (Master Mode) | 376 |
| I2Cx Bus Start/Stop Bits (Slave Mode)  | 378 |
| ICx (Input Capture Mode)               | 375 |
| Input Capture x                        | 374 |
| Output Compare x                       | 375 |
| PWM Requirements                       | 375 |
| SPIx Master Mode (CKE = 0)             | 380 |
| SPIx Slave Mode (CKE = 0)              | 382 |
| SPIx Slave Mode (CKE = 1)              | 383 |
| Timer1/2/3/4/5 External Clock Input    | 374 |
| UARTx Baud Rate Generator Output       | 384 |
| UARTx Start Bit Edge Detection         | 384 |
| Timing Requirements                    |     |
| I2Cx Bus Data (Master Mode)            | 377 |
| I2Cx Bus Data (Slave Mode)             | 379 |
| I2Cx Bus Start/Stop Bits (Master Mode) | 376 |
| I2Cx Bus Start/Stop Bits (Slave Mode)  | 378 |
| Input Capture x                        | 375 |
| Output Compare 1                       | 375 |
| PWM                                    | 376 |
| SPIx Master Mode (CKE = 0)             | 380 |
| SPIx Slave Mode (CKE = 0)              | 382 |
| SPIx Slave Mode (CKE = 1)              | 383 |
| Timer1/2/3/4/5 External Clock Input    | 374 |
| Triple Comparator                      | 315 |
| Triple Comparator Module               | 315 |
| h h                                    |     |