

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128ga310-i-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS3000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

Features	PIC24FJ64GA310	PIC24FJ128GA310
Operating Frequency	DC – 3	32 MHz
Program Memory (bytes)	64K	128K
Program Memory (instructions)	22,016	44,032
Data Memory (bytes)	8	ĸ
Interrupt Sources (soft vectors/NMI traps)	66 (6	62/4)
I/O Ports	Ports A, B, 0	C, D, E, F, G
Total I/O Pins	8	35
Remappable Pins	44 (32 I/Os, 1	12 input only)
Timers:	· · · · · ·	
Total Number (16-bit)	5((1)
32-Bit (from paired 16-bit timers)	2	2
Input Capture Channels	7((1)
Output Compare/PWM Channels	7((1)
Input Change Notification Interrupt	8	32
Serial Communications:		
UART	4	(1)
SPI (3-wire/4-wire)	20	(1)
l ² C™	2	2
Digital Signal Modulator	Ye	es
Parallel Communications (EPMP/PSP)	Ye	es
JTAG Boundary Scan	Ye	es
12/10-Bit Analog-to-Digital Converter (ADC) Module (input channels)	2	24
Analog Comparators	3	3
CTMU Interface	Ye	es
LCD Controller (available pixels)	480 (60 SE	G x 8 COM)
Resets (and delays)	MCLR, WDT, Illegal Opc Hardware Traps, Config	POR, BOR, RESET Instruction, ode, REPEAT Instruction, guration Word Mismatch LL Lock)
Instruction Set	76 Base Instructions, Multiple	e Addressing Mode Variations
Packages	100-Pin TQFP a	Ind 121-Pin BGA

TABLE 1-3: DEVICE FEATURES FOR THE PIC24FJ128GA310 FAMILY: 100-PIN DEVICES

Note 1: Peripherals are accessible through remappable pins.

TABLE 4-8: OUTPUT COMPARE REGISTER MAP (CONTINUED)

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC7CON1	01CC	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC7CON2	01CE	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC7RS	01D0							0	utput Compa	are 7 Second	ary Register							0000
OC7R	01D2								Output C	Compare 7 Re	egister							0000
OC7TMR	01D4								Timer	Value 7 Regi	ster							xxxx

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-9: I²C[™] REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	—	—	—	_	_	—	—	_				2C1 Receiv	ve Register				0000
I2C1TRN	0202	—	_	—	—	—	-	—	_			I	2C1 Transr	nit Register				OOFF
I2C1BRG	0204	—	_	—	—	_	_	—				Baud Rate	e Generato	r Register				0000
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
I2C1ADD	020A	—	_	—	—	—	-	I2C1 Address Register 0						0000				
I2C1MSK	020C	—	_	_	_	_	_	I2C1 Address Mask Register 0						0000				
I2C2RCV	0210	—	_	—	—	_	_	_	—				2C2 Receiv	ve Register				0000
I2C2TRN	0212	—	_	—	—	_	_	—	—			I	2C2 Transr	nit Register				OOFF
I2C2BRG	0214	—	_	—	—	_	_	—				Baud Rate	e Generato	r Register				0000
I2C2CON	0216	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN 1						1000				
I2C2STAT	0218	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
I2C2ADD	021A	—	_	—	—	—	-					2C2 Addre	ss Register					0000
I2C2MSK	021C	—		_	_	_					I2C	2 Address	Mask Regis	ster				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-26: REAL-TIME CLOCK AND CALENDAR (RTCC) REGISTER MAP

							<u> </u>											
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ALRMVAL	0620						Alarm V	alue Register	Window Bas	ed on ALR	MPTR<1:0	>						xxxx
ALCFGRPT	0622	ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0	ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0	0000
RTCVAL	0624						RTCC	Value Registe	r Window Ba	sed on RT	CPTR<1:0>							xxxx
RCFGCAL	0626	RTCEN	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPTR1	RTCPTR0	CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	Note 1
RTCPWC	0628	PWCEN	PWCPOL	PWCPRE	PWSPRE	RTCLK1	RTCLK0	RTCOUT1	RTCOUT0		_	_	_	_	_	_	_	Note 1

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The status of the RCFGCAL and RTCPWR registers on POR is '0000', and on other Resets, it is unchanged.

TABLE 4-27: DATA SIGNAL MODULATOR (DSM) REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
MDCON	062A	MDEN		MDSIDL	_	_	_			—	MDOE	MDSLR	MDOPOL	_	_		MDBIT	0020
MDSRC	062C	_	—	—	_	—	_	—	_	SODIS	—	—	—	MS3	MS2	MS1	MS0	000x
MDCAR	062E	CHODIS	CHPOL	CHSYNC	_	CH3	CH2	CH1	CH0	CLODIS	CLPOL	CLSYNC	—	CL3	CL2	CL1	CL0	0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-28: COMPARATORS REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMSTAT	0630	CMIDL	—	_	_		C3EVT	C2EVT	C1EVT	—	_	_	—		C3OUT	C2OUT	C10UT	0000
CVRCON	0632	_	_	_	_	_	CVREFP	CVREFM1	CVREFM0	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	0000
CM1CON	0634	CON	COE	CPOL	_	_	_	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
CM2CON	0636	CON	COE	CPOL	-		_	CEVT	COUT	EVPOL1	EVPOL0	—	CREF	-	—	CCH1	CCH0	0000
CM3CON	0638	CON	COE	CPOL	_	_	_	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	—	_	CCH1	CCH0	0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 8-27: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	T4IP2	T4IP1	T4IP0	—	OC4IP2	OC4IP1	OC4IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	OC3IP2	OC3IP1	OC3IP0	—	DMA2IP2	DMA2IP1	DMA2IP0
bit 7							bit
Legend:	- 1-:4		L :4			l = = (0)	
R = Readable		W = Writable		-	mented bit, read		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN
bit 15	Unimplemen	ted: Read as '	כי				
bit 14-12		imer4 Interrupt					
		pt is Priority 7 (-	interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 11	Unimplemen	ted: Read as '	כי				
bit 10-8		Output Compa		-	y bits		
	111 = Interru	pt is Priority 7 (highest priority	interrupt)			
	•						
	•						
		pt is Priority 1	ablad				
bit 7		pt source is dis ited: Read as '					
bit 6-4	-	: Output Compa		Intorrunt Priorit	v bite		
Dit 0-4		pt is Priority 7 (-	y bits		
	•	prior nonty / (interrupt)			
	•						
	• 001 - Interru	pt is Priority 1					
		pt source is dis	abled				
bit 3	Unimplemen	ted: Read as '	כ'				
bit 2-0	DMA2IP<2:0	>: DMA Chann	el 2 Interrupt F	riority bits			
	111 = Interru	pt is Priority 7 (highest priority	interrupt)			
	•						
	•						
	• 001 = Interru	pt is Priority 1					

REGISTER 8-29: IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	—	—	—	—
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	SPI2IP2	SPI2IP1	SPI2IP0	—	SPF2IP2	SPF2IP1	SPF2IP0
bit 7							bit 0

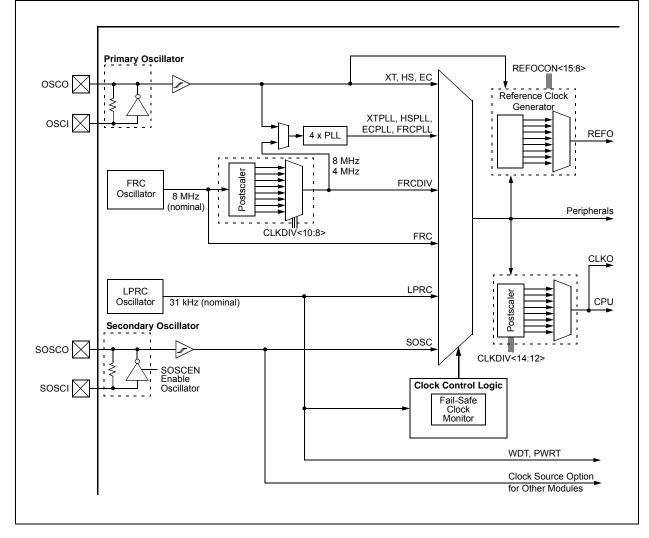
Legend:					
R = Readal	ole bit	W = Writable bit	U = Unimplemented bit	, read as '0'	
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	
bit 15-7	Unimplen	nented: Read as '0'			
bit 6-4	SPI2IP<2	:0>: SPI2 Event Interrupt Pr	iority bits		
	111 = Inte	errupt is Priority 7 (highest p	riority interrupt)		
	•				
	•				
	•	arrupt in Drigrity 1			
		errupt is Priority 1 errupt source is disabled			
bit 3	Unimplen	nented: Read as '0'			
bit 2-0	SPF2IP<2	::0>: SPI2 Fault Interrupt Pr	iority bits		
	111 = Inte	errupt is Priority 7 (highest p	riority interrupt)		
	•				
	•				
	•				

001 = Interrupt is Priority 1

000 = Interrupt source is disabled

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	—	_	—	INT4IP2	INT4IP1	INT4IP0
pit 15							bit 8
	D/// 4	DAMA	DAMO				
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	INT3IP2	INT3IP1	INT3IP0	—	—	_	
oit 7							bit (
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
	• • 001 = Interrup 000 = Interrup	ot source is dis	abled	interrupt)			
bit 7	Unimplement	ted: Read as ')'				
bit 6-4	111 = Interrup • •	External Interr ot is Priority 7 (
	001 = Interrup 000 = Interrup	ot is Priority 1 ot source is dis	abled				

REGISTER 8-34: IPC13: INTERRUPT PRIORITY CONTROL REGISTER 13


9.0 OSCILLATOR CONFIGURATION

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to "Oscillator" (DS39700) in the "dsPIC33/PIC24 Family Reference Manual". The information in this data sheet supersedes the information in the FRM.

The oscillator system for PIC24FJ128GA310 family devices has the following features:

- A total of four external and internal oscillator options as clock sources, providing 11 different clock modes
- On-chip 4x PLL to boost internal operating frequency on select internal and external oscillator sources

- Software-controllable switching between various clock sources
- Software-controllable postscaler for selective clocking of CPU for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown
- A separate and independently configurable system clock output for synchronizing external hardware
- A simplified diagram of the oscillator system is shown in Figure 9-1.

FIGURE 9-1: PIC24FJ128GA310 FAMILY CLOCK DIAGRAM

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

bit 7	CLKLOCK: Clock Selection Lock Enabled bit
	If FSCM is Enabled (FCKSM1 = 1):
	1 = Clock and PLL selections are locked
	0 = Clock and PLL selections are not locked and may be modified by setting the OSWEN bit
	If FSCM is Disabled (FCKSM1 = 0):
	Clock and PLL selections are never locked and may be modified by setting the OSWEN bit.
bit 6	IOLOCK: I/O Lock Enable bit ⁽²⁾
	1 = I/O lock is active
	0 = I/O lock is not active
bit 5	LOCK: PLL Lock Status bit ⁽³⁾
	1 = PLL module is in lock or PLL module start-up timer is satisfied
	0 = PLL module is out of lock, PLL start-up timer is running or PLL is disabled
bit 4	Unimplemented: Read as '0'
bit 3	CF: Clock Fail Detect bit
	1 = FSCM has detected a clock failure
	0 = No clock failure has been detected
bit 2	POSCEN: Primary Oscillator Sleep Enable bit
	1 = Primary oscillator continues to operate during Sleep mode
	0 = Primary oscillator is disabled during Sleep mode
bit 1	SOSCEN: 32 kHz Secondary Oscillator (SOSC) Enable bit
	1 = Enables Secondary Oscillator
	0 = Disables Secondary Oscillator
bit 0	OSWEN: Oscillator Switch Enable bit
	1 = Initiates an oscillator switch to a clock source specified by the NOSC<2:0> bits
	0 = Oscillator switch is complete
Note 1	Poppet values for those bits are determined by the ENOSCY Configuration bits

- **Note 1:** Reset values for these bits are determined by the FNOSCx Configuration bits.
 - 2: The state of the IOLOCK bit can only be changed once an unlocking sequence has been executed. In addition, if the IOL1WAY Configuration bit is '1' once the IOLOCK bit is set, it cannot be cleared.
 - 3: This bit also resets to '0' during any valid clock switch or whenever a Non-PLL Clock mode is selected.

REGISTER 11-29:	RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2
-----------------	---

— — RP5R5 ⁽¹⁾ RP5R4 ⁽¹⁾ RP5R3 ⁽¹⁾ RP5R2 ⁽¹⁾ RP5R1 ⁽¹⁾ RI bit 15	R/W-0
bit 15	95R0 ⁽¹⁾
	bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP4R5	RP4R4	RP4R3	RP4R2	RP4R1	RP4R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
-----------	----------------------------

- RP5R<5:0>: RP5 Output Pin Mapping bits⁽¹⁾ bit 13-8
- Peripheral Output Number n is assigned to pin, RP5 (see Table 11-4 for peripheral function numbers).
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP4R<5:0>:** RP4 Output Pin Mapping bits
 - Peripheral Output Number n is assigned to pin, RP4 (see Table 11-4 for peripheral function numbers).

Note 1: These bits are unimplemented in 64-pin devices; read as '0'.

REGISTER 11-30: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP7R5	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP6R5	RP6R4	RP6R3	RP6R2	RP6R1	RP6R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP7R<5:0>: RP7 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP7 (see Table 11-4 for peripheral function numbers).
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP6R<5:0>: RP6 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP6 (see Table 11-4 for peripheral function numbers).

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0		
TON		TSIDL		_		TIECS1	TIECS0		
bit 15							bit 8		
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0		
	TGATE	TCKPS1	TCKPS0	_	TSYNC	TCS	_		
bit 7							bit 0		
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15	TON: Timer1 1 = Starts 16 0 = Stops 16	bit Timer1							
bit 14	Unimplemen	ted: Read as '	0'						
bit 13	TSIDL: Time	r1 Stop in Idle M	/lode bit						
		nues module op es module opera			dle mode				
bit 12-10	Unimplemen	ted: Read as '	0'						
bit 9-8	TIECS<1:0>: Timer1 Extended Clock Source Select bits (selected when TCS = 1)								
	 11 = Unimplemented, do not use 10 = LPRC oscillator 01 = T1CK external clock input 00 = SOSC 								
bit 7	Unimplemen	ted: Read as '	0'						
bit 6	TGATE: Time	er1 Gated Time	Accumulation	Enable bit					
	When TCS = 1: This bit is ignored. When TCS = 0: 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled								
bit 5-4	TCKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1								
bit 3	Unimplemen	nted: Read as '	0'						
bit 2		er1 External Clo	ock Input Sync	hronization Sel	ect bit				
		nizes external o t synchronize e		nput					
	This bit is ign								
bit 1	TCS: Timer1	Clock Source S	Select bit						
		d clock is selec clock (Fosc/2)	ted by the time	er					
bit 0	Unimplemen	ted: Read as '	0'						
	hanging the val		hile the timer	is running (TON	l = 1) causes t	he timer presca	le counter to		

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER⁽¹⁾

14.1.2 CASCADED (32-BIT) MODE

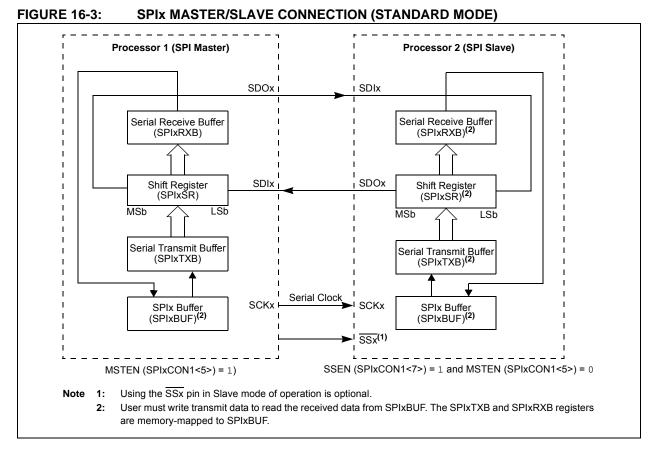
By default, each module operates independently with its own 16-bit timer. To increase resolution, adjacent even and odd modules can be configured to function as a single 32-bit module. (For example, Modules 1 and 2 are paired, as are Modules 3 and 4, and so on.) The odd numbered module (ICx) provides the Least Significant 16 bits of the 32-bit register pairs and the even module (ICy) provides the Most Significant 16 bits. Wraparounds of the ICx registers cause an increment of their corresponding ICy registers.

Cascaded operation is configured in hardware by setting the IC32 bits (ICxCON2<8>) for both modules.

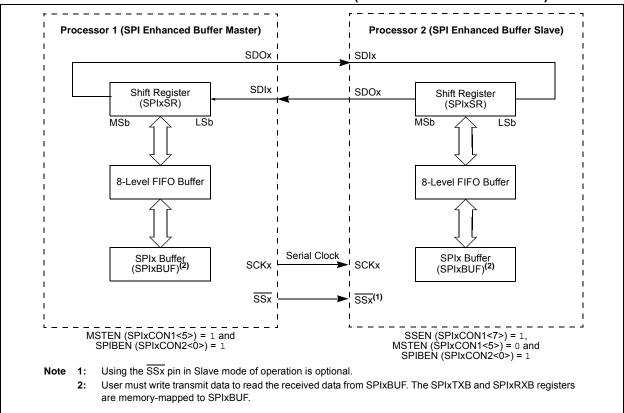
14.2 Capture Operations

The input capture module can be configured to capture timer values and generate interrupts on rising edges on ICx or all transitions on ICx. Captures can be configured to occur on all rising edges or just some (every 4^{th} or 16^{th}). Interrupts can be independently configured to generate on each event or a subset of events.

To set up the module for capture operations:


- 1. Configure the ICx input for one of the available Peripheral Pin Select pins.
- 2. If Synchronous mode is to be used, disable the sync source before proceeding.
- 3. Make sure that any previous data has been removed from the FIFO by reading ICxBUF until the ICBNE bit (ICxCON1<3>) is cleared.
- 4. Set the SYNCSELx bits (ICxCON2<4:0>) to the desired sync/trigger source.
- 5. Set the ICTSELx bits (ICxCON1<12:10>) for the desired clock source.
- 6. Set the ICIx bits (ICxCON1<6:5>) to the desired interrupt frequency
- 7. Select Synchronous or Trigger mode operation:
 - a) Check that the SYNCSELx bits are not set to '00000'.
 - b) For Synchronous mode, clear the ICTRIG bit (ICxCON2<7>).
 - c) For Trigger mode, set ICTRIG, and clear the TRIGSTAT bit (ICxCON2<6>).
- 8. Set the ICMx bits (ICxCON1<2:0>) to the desired operational mode.
- 9. Enable the selected sync/trigger source.

For 32-bit cascaded operations, the setup procedure is slightly different:


- 1. Set the IC32 bits for both modules (ICyCON2<8>) and (ICxCON2<8>), enabling the even numbered module first. This ensures the modules will start functioning in unison.
- 2. Set the ICTSELx and SYNCSELx bits for both modules to select the same sync/trigger and time base source. Set the even module first, then the odd module. Both modules must use the same ICTSELx and SYNCSELx bits settings.
- Clear the ICTRIG bit of the even module (ICyCON2<7>). This forces the module to run in Synchronous mode with the odd module, regardless of its trigger setting.
- 4. Use the odd module's ICIx bits (ICxCON1<6:5>) to set the desired interrupt frequency.
- Use the ICTRIG bit of the odd module (ICxCON2<7>) to configure Trigger or Synchronous mode operation.
- **Note:** For Synchronous mode operation, enable the sync source as the last step. Both input capture modules are held in Reset until the sync source is enabled.
- Use the ICMx bits of the odd module (ICxCON1<2:0>) to set the desired Capture mode.

The module is ready to capture events when the time base and the sync/trigger source are enabled. When the ICBNE bit (ICxCON1<3>) becomes set, at least one capture value is available in the FIFO. Read input capture values from the FIFO until the ICBNE clears to '0'.

For 32-bit operation, read both the ICxBUF and ICyBUF for the full 32-bit timer value (ICxBUF for the Isw, ICyBUF for the msw). At least one capture value is available in the FIFO buffer when the odd module's ICBNE bit (ICxCON1<3>) becomes set. Continue to read the buffer registers until ICBNE is cleared (performed automatically by hardware).

FIGURE 16-4: SPIX MASTER/SLAVE CONNECTION (ENHANCED BUFFER MODES)

NOTES:

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CTMUEN	—	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—	—	_		_	_	_			
bit 7							bit (
Legend:										
R = Readabl	e bit	W = Writable b	bit	U = Unimple	mented bit, read	as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	iown			
bit 15	CTMUEN: CT	MU Enable bit								
	1 = Module is enabled									
	0 = Module is	s disabled								
bit 14	Unimplemen	ted: Read as '0	,							
bit 13	CTMUSIDL: CTMU Stop in Idle Mode bit									
		ues module opera			dle mode					
bit 12	TGEN: Time Generation Enable bit									
		edge delay gen edge delay gen								
bit 11	EDGEN: Edg	e Enable bit								
	1 = Edges are not blocked									
	0 = Edges are blocked									
bit 10	EDGSEQEN: Edge Sequence Enable bit									
		vent must occur sequence is ne		2 event can o	ccur					
	IDISSEN: Analog Current Source Control bit									
bit 9	-	-	urce Control b	oit						
bit 9	IDISSEN: Ana 1 = Analog c	-	utput is groun	ded						
bit 9 bit 8	IDISSEN: Ana 1 = Analog ci 0 = Analog ci	alog Current So urrent source or	utput is ground utput is not gro	ded						
	IDISSEN: Ana 1 = Analog cu 0 = Analog cu CTTRIG: CTM 1 = Trigger o	alog Current So urrent source ou urrent source ou /IU Trigger Con utput is enabled	utput is ground utput is not gro trol bit I	ded						
	IDISSEN: Ana 1 = Analog cu 0 = Analog cu CTTRIG: CTM 1 = Trigger o	alog Current So urrent source ou urrent source ou MU Trigger Con	utput is ground utput is not gro trol bit I	ded						

REGISTER 27-1: CTMUCON1: CTMU CONTROL REGISTER 1

29.0 SPECIAL FEATURES

- **Note:** This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the following sections of the *"dsPIC33/PIC24 Family Reference Manual"*. The information in this data sheet supersedes the information in the FRMs.
 - "Watchdog Timer (WDT)" (DS39697)
 - "High-Level Device Integration" (DS39719)
 - "Programming and Diagnostics" (DS39716)

PIC24FJ128GA310 family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™]
- In-Circuit Emulation

29.1 Configuration Bits

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location, F80000h. A detailed explanation of the various bit functions is provided in Register 29-1 through Register 29-6.

Note that address, F80000h, is beyond the user program memory space. In fact, it belongs to the configuration memory space (800000h-FFFFFFh) which can only be accessed using Table Reads and Table Writes.

29.1.1 CONSIDERATIONS FOR CONFIGURING PIC24FJ128GA310 FAMILY DEVICES

In PIC24FJ128GA310 family devices, the Configuration bytes are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data is stored in the three words at the top of the on-chip program memory space, known as the Flash Configuration Words. Their specific locations are shown in Table 29-1. These are packed representations of the actual device Configuration bits, whose actual locations are distributed among several locations in configuration space. The configuration data is automatically loaded from the Flash Configuration Words to the proper Configuration registers during device Resets.

Note:	Configuration data is reloaded on all types
	of device Resets.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration Word for configuration data. This is to make certain that program code is not stored in this address when the code is compiled.

The upper byte of all Flash Configuration Words in program memory should always be '0000 0000'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '0's to these locations has no effect on device operation.

Note: Performing a page erase operation on the last page of program memory clears the Flash Configuration Words, enabling code protection as a result. Therefore, users should avoid performing page erase operations on the last page of program memory.

TABLE 29-1: FLASH CONFIGURATION WORD LOCATIONS FOR PIC24FJ128GA310 FAMILY DEVICES

Device	Configuration Word Addresses					
	1	2	3	4		
PIC24FJ64GA3XX	ABFEh	ABFCh	ABFAh	ABF8h		
PIC24FJ128GA3XX	157FEh	157FCh	157FAh	157F8h		

29.4.3 CONFIGURATION REGISTER PROTECTION

The Configuration registers are protected against inadvertent or unwanted changes or reads in two ways. The primary protection method is the same as that of the RP registers – shadow registers contain a complimentary value which is constantly compared with the actual value.

To safeguard against unpredictable events, Configuration bit changes resulting from individual cell level disruptions (such as ESD events) will cause a parity error and trigger a device Reset.

The data for the Configuration registers is derived from the Flash Configuration Words in program memory. When the GCP bit is set, the source data for device configuration is also protected as a consequence. Even if General Segment protection is not enabled, the device configuration can be protected by using the appropriate code segment protection setting.

29.5 JTAG Interface

PIC24FJ128GA310 family devices implement a JTAG interface, which supports boundary scan device testing.

29.6 In-Circuit Serial Programming

PIC24FJ128GA310 family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock (PGECx) and data (PGEDx), and three other lines for power (VDD), ground (VSS) and MCLR. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

29.7 In-Circuit Debugger

When MPLAB[®] ICD 3 is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pins.

To use the in-circuit debugger function of the device, the design must implement ICSP connections to MCLR, VDD, VSS and the PGECx/PGEDx pin pair designated by the ICSx Configuration bits. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

DC CHARACTERISTICS		Standard Operating Conditions: 2V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Parameter No.	Typical ⁽¹⁾	Мах	Units	Operating Temperature	Vdd	Conditions	
Power-Dov	vn Current (IPD)					
DC60			μA	-40°C	2.0V		
	3.7		μA	+25°C			
	6.2		μA	+60°C			
	13.6	27.5	μA	+85°C			
	_		μA	-40°	3.3V	Sleep ⁽²⁾	
	3.8		μA	+25°C			
	6.3		μA	+60°C			
	13.7	28	μA	+85°C			
DC61	_		μA	-40°	2.0V		
	0.33		μA	+25°C		- Low-Voltage Sleep ⁽³⁾	
	2		μA	+60°C			
	7.7	14.5	μA	+85°C			
	_		μΑ	-40°	3.3V		
	0.34	_	μΑ	+25°C			
	2	_	μA	+60°C			
	7.9	15	μA	+85°C			
DC70	_	_	μA	-40°	2.0V 3.3V		
	0.01	—	μA	+25°C		– Deep Sleep	
	—	_	μA	+60°C			
		1.1	μA	+85°C			
	_	_	μA	-40°			
	0.04	_	μA	+25°C			
	_	_	μA	+60°C			
	—	1.4	μA	+85°C			
	0.4	2.0	μA	-40°C to +85°C	0V	RTCC with VBAT mode (LPRC/SOSC) ⁽⁴⁾	

TABLE 32-6: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated. IPD is measured with all peripherals and clocks (PMD) shutdown; all the ports are made output and driven low.

2: The retention low-voltage regulator is disabled; RETEN (RCON<12>) = 0, LPCFG (CW1<10>) = 1.

3: The retention low-voltage regulator is enabled; RETEN (RCON<12>) = 1, LPCFG (CW1<10>) = 0.

4: The VBAT pin is connected to the battery and RTCC is running with VDD = 0.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Product Group Pin Count Tape and Reel FI		Exa a) b) c)	Amples: PIC24FJ64GA306-I/MR: PIC24F device with LCD Controller and XLP Technology, 64-Kbyte program memory, 64-pin, Industrial temp., QFN package. PIC24FJ128GA308-I/PT: PIC24F device with LCD Controller and XLP Technology, 128-Kbyte program memory, 80-pin, Industrial temp., TQFP package. PIC24FJ128GA210-I/BG: PIC24FJ128GA210-I/BG: PIC24F device with LCD Controller and XLP Technology, 128-Kbyte program memory, 121-pin, Industrial temp., BGA package.
Architecture	24 = 16-bit modified Harvard without DSP		
Flash Memory Family	FJ = Flash program memory		
Product Group	GA3 = General purpose microcontrollers with LCD Controller and XLP Technology		
Pin Count	06 = 64-pin 08 = 80-pin 10 = 100-pin (TQFP) and 121-pin (BGA)		
Temperature Range	I = -40° C to $+85^{\circ}$ C (Industrial)		
Package	BG = 121-pin (10x10x1.4 mm) BGA package PT = 100-lead (12x12x1 mm) TQFP (Thin Quad Flatpack) PF = 100-lead (14x14x1 mm) TQFP (Thin Quad Flatpack) PT = 80-pin (12x12x1 mm) TQFP (Thin Quad Flatpack) PT = 64-lead (10x10x1 mm) TQFP (Thin Quad Flatpack) MR = 64-lead (9x9x0.9 mm) QFN (Quad Flatpack, No Lead)		
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample		

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355

Fax: 86-532-8502-7205 **China - Shanghai** Tel: 86-21-5407-5533

Fax: 86-21-5407-5066 China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Pforzheim Tel: 49-7231-424750

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

03/13/14