

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128ga310t-i-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1: COMPLETE PIN FUNCTION DESCRIPTIONS FOR 121-PIN DEVICES (CONTINUED)

Pin	Function	Pin	Function
J1	AN3/C2INA/SEG4/CN5/RB3	K7	AN14/RP14/SEG8/CTPLS/CTED5/PMA1/CN32/RB14
J2	AN2/C2INB/RP13/SEG5/CTCMP/CTED13/CN4/RB2	K8	VDD
J3	PGED2/AN7/ RP7/ CN25/RB7	K9	RP5/SEG39/CN21/RD15
J4	AVDD	K10	RP16/SEG12/CN71/RF3
J5	AN11/PMA12/CN29/RB11	K11	RP30/SEG40/CN70/RF2
J6	TCK/CN34/RA1	L1	PGEC2/AN6/RP6/LCDBIAS3/CN24/RB6
J7	AN12/SEG18/CTED2/PMA11/CN30/RB12	L2	VREF-/SEG36/PMA7/CN41/RA9
J8	N/C	L3	AVss
J9	N/C	L4	AN9/RP9/COM6/SEG30/CN27/RB9
J10	RP15/SEG41/CN74/RF8	L5	CVREF/AN10/COM5/SEG29/PMA13/CN28/RB10
J11	SDA1/SEG47/CN73/RG3	L6	RP31/SEG54/CN76/RF13
K1	PGEC1/CVREF-/AN1/RP1/SEG6/CTED12/CN3/RB1	L7	AN13/SEG19/CTED1/PMA10/CN31/RB13
K2	PGD1/CVREF+/AN0/RP0/SEG7/CN2/RB0	L8	AN15/RP29/SEG9/CTED6/REFO/PMA0/CN12/RB15
K3	VREF+/SEG37/PMA6/CN42/RA10	L9	RPI43/SEG38/CN20/RD14
K4	AN8/RP8/COM7/SEG31/CN26/RB8	L10	RP10/SEG10/PMA9/CN17/RF4
K5	N/C	L11	RP17/SEG11/PMA8/CN18/RF5
K6	RPI32/SEG55/CTED7/PMA18/CN75/RF12		

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select functions.

2.6 External Oscillator Pins

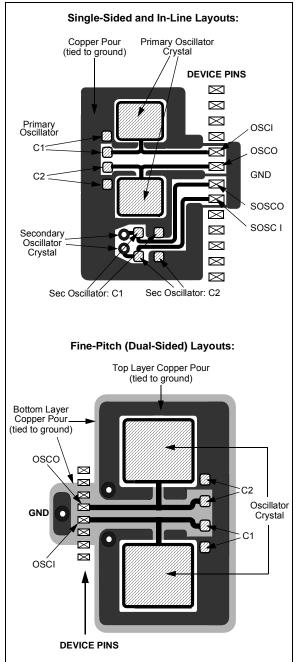
Many microcontrollers have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 9.0 "Oscillator Configuration**" for details).

The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in Figure 2-5. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.

In planning the application's routing and I/O assignments, ensure that adjacent port pins, and other signals in close proximity to the oscillator, are benign (i.e., free of high frequencies, short rise and fall times and other similar noise).


For additional information and design guidance on oscillator circuits, please refer to these Microchip Application Notes, available at the corporate web site (www.microchip.com):

- AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[™] and PICmicro[®] Devices"
- AN849, "Basic PICmicro[®] Oscillator Design"
- AN943, "Practical PICmicro[®] Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"

FIGURE 2-5:

PLACEMENT OF THE OSCILLATOR CIRCUIT

SUGGESTED

3.2 CPU Control Registers

REGISTER 3-1: SR: ALU STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0			
_			_	—	_	—	DC			
bit 15							bit 8			
R/W-0 ⁽¹		R/W-0 ⁽¹⁾	R-0	R/W-0	R/W-0	R/W-0,	R/W-0			
IPL2 ⁽²⁾	IPL1 ⁽²⁾	⁽²⁾ IPL0 ⁽²⁾ RA		Ν	OV	Z	С			
bit 7							bit 0			
Legend:										
R = Read	able bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'				
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unki	nown			
bit 15-9	Unimplemen	ted: Read as '0)'							
bit 8	DC: ALU Hal	f Carry/Borrow I	oit							
		out from the 4 th I	ow-order bit (f	or byte-sized da	ata) or 8 th low-o	order bit (for w	ord-sized data)			
	of the res	sult occurred out from the 4 th	or oth low or	lar hit of the rea		d				
hit 7 E	•					eu				
bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2)										
		 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 								
		101 = CPU Interrupt Priority Level is 5 (14)101 = CPU Interrupt Priority Level is 5 (13)								
		100 = CPU Interrupt Priority Level is 4 (12)								
		nterrupt Priority nterrupt Priority								
		Interrupt Priority)						
		nterrupt Priority								
bit 4	RA: REPEAT	Loop Active bit								
		loop is in progre								
	0 = REPEAT	loop is not in pr	ogress							
bit 3	N: ALU Nega									
	1 = Result w	Ų	(· · -)						
L:1 0		as not negative	(zero or positi	ve)						
bit 2			anod (2's som	nlamant) arithm	atia in this arith	amotio oporati				
		<pre>v occurred for signal for si</pre>	- · ·	plement) anthr	ieuc in this antr	imetic operatio	חכ			
bit 1	Z : ALU Zero									
		tion, which affeo	cts the Z bit. ha	as set it at some	e time in the pa	ist				
	•	recent operatio			•		esult)			
bit 0	C: ALU Carry	//Borrow bit								
	1 = A carry c	out from the Mos								
	0 = No carry	out from the Me	ost Significant	bit of the result	occurred					
Note 1:	The IPL Status bi	its are read-only	when NSTDI	S (INTCON1<1	5>) = 1.					
2:	The IPL Status bi	-				n the CPU Inte	errupt Priority			
	Level (IPL). The						· •			

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
NSTDIS —		—			—		—
bit 15	-						bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
—	—	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—
bit 7	-						bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unkn			iown
bit 15	NSTDIS: Inte	rrupt Nesting D	isable bit				
		nesting is disal nesting is enab					
bit 14-5	•	ted: Read as '					
bit 4	-	Arithmetic Error		t			
	1 = Overflow trap has occurred 0 = Overflow trap has not occurred						
bit 3 ADDRERR: Address Error Trap Status bit							

REGISTER 8-3: INTCON1: INTERRUPT CONTROL REGISTER 1

1 = Address error trap has occurred0 = Address error trap has not occurred

STKERR: Stack Error Trap Status bit 1 = Stack error trap has occurred 0 = Stack error trap has not occurred

Unimplemented: Read as '0'

OSCFAIL: Oscillator Failure Trap Status bit 1 = Oscillator failure trap has occurred 0 = Oscillator failure trap has not occurred

bit 2

bit 1

bit 0

REGISTER 8-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

- bit 2 OC1IF: Output Compare Channel 1 Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 1 IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 INTOIF: External Interrupt 0 Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

REGISTER 8-29: IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	—	—	—	—
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	SPI2IP2	SPI2IP1	SPI2IP0	—	SPF2IP2	SPF2IP1	SPF2IP0
bit 7							bit 0

Legend:							
R = Readal	ole bit	W = Writable bit	U = Unimplemented bit	, read as '0'			
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			
bit 15-7	Dit 15-7 Unimplemented: Read as '0'						
bit 6-4	SPI2IP<2	:0>: SPI2 Event Interrupt Pr	iority bits				
	111 = Inte	errupt is Priority 7 (highest p	riority interrupt)				
	•						
	•						
	•	arrupt in Drigrity 1					
		errupt is Priority 1 errupt source is disabled					
bit 3	Unimplen	nented: Read as '0'					
bit 2-0	SPF2IP<2	::0>: SPI2 Fault Interrupt Pr	iority bits				
	111 = Inte	errupt is Priority 7 (highest p	riority interrupt)				
	•						
	•						
	•						

001 = Interrupt is Priority 1

000 = Interrupt source is disabled

_	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-1		
ROI	DOZE2	DOZE1	DOZE0	DOZEN ⁽¹⁾	RCDIV2	RCDIV1	RCDIV0		
bit 15							bit		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—	_	_	—		_	—		
bit 7							bit		
Legend:									
R = Readabl	le bit	W = Writable	oit	U = Unimplem	ented bit, read	as '0'			
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkr	= Bit is unknown		
bit 14-12	DOZE<2:0>: 111 = 1:128 110 = 1:64 101 = 1:32 100 = 1:16	CPU Periphera	I Clock Ratio S	Select bits					
	011 = 1:8 010 = 1:4 001 = 1:2 000 = 1:1								
bit 11	010 = 1:4 001 = 1:2 000 = 1:1 DOZEN: DOZ 1 = DOZE<2	ZE Enable bit ⁽¹⁾ :0> bits specify pheral clock ra		oheral clock ratio)				

REGISTER 9-2: CLKDIV: CLOCK DIVIDER REGISTER

Note 1: This bit is automatically cleared when the ROI bit is set and an interrupt occurs.

10.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of this group of PIC24FJ devices. It is not intended to be a comprehensive reference source. For more information, refer to "Power-Saving Features with VBAT" (DS30622) in the "dsPIC33/PIC24 Family Reference Manual". The information in this data sheet supersedes the information in the FRM.

The PIC24FJ128GA310 family of devices provides the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked reduces consumed power.

PIC24FJ128GA310 family devices manage power consumption with five strategies:

- Instruction-Based Power Reduction Modes
- Hardware-Based Power Reduction Features
- Clock Frequency Control
- · Software Controlled Doze Mode
- · Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption, while still maintaining critical application features, such as timing-sensitive communications.

10.1 Overview of Power-Saving Modes

In addition to full-power operation, otherwise known as Run mode, the PIC24FJ128GA310 family of devices offers three Instruction-Based, Power-Saving modes and one Hardware-Based mode:

- Idle
- Sleep (Sleep and Low-Voltage Sleep)
- Deep Sleep
- VBAT (with and without RTCC)

All four modes can be activated by powering down different functional areas of the microcontroller, allowing progressive reductions of operating and Idle power consumption. In addition, three of the modes can be tailored for more power reduction, at a trade-off of some operating features. Table 10-1 lists all of the operating modes, in order of increasing power savings. Table 10-2 summarizes how the microcontroller exits the different modes. Specific information is provided in the following sections.

				Active Systems	6	
Mode	Entry	Core	Core Peripherals		RTCC ⁽¹⁾	DSGPR0/ DSGPR1 Retention
Run (default)	N/A	Y	Y	Y	Y	Y
Idle	Instruction	Ν	Y	Y	Y	Y
Sleep:						
Sleep	Instruction	Ν	S ⁽²⁾	Y	Y	Y
Low-Voltage Sleep	Instruction + RETEN bit	Ν	S ⁽²⁾	Y	Y	Y
Deep Sleep:						
Deep Sleep	Instruction + DSEN bit	Ν	Ν	Ν	Y	Y
VBAT:						
with RTCC	Hardware	Ν	N	Ν	Y	Y

TABLE 10-1: OPERATING MODES FOR PIC24FJ128GA310 FAMILY DEVICES

Note 1: If RTCC is otherwise enabled in firmware.

2: A select peripheral can operate during this mode from LPRC or some external clock.

TABLE 10-2: EXITING POWER SAVING MODES

	Exit Conditions							Code	
Mode	Interrupts Resets			RTCC	WDT	VDD	Execution		
	All	INT0	All	POR	MCLR	Alarm	WDI	Restore	Resumes ⁽²⁾
Idle	Y	Y	Y	Y	Y	Y	Y	N/A	Next Instruction
Sleep (all modes)	Y	Y	Y	Y	Y	Y	Y	N/A	
Deep Sleep	Ν	Y	Ν	Y	Y	Y	Y(1)	N/A	Reset Vector
VBAT	Ν	Ν	Ν	N	Ν	Ν	Ν	Y	Reset Vector

Note 1: Deep Sleep WDT.

2: Code execution resumption is also valid for all the exit conditions; for example, a MCLR and POR exit will cause code execution from the Reset vector.

10.1.1 INSTRUCTION-BASED POWER-SAVING MODES

Three of the power-saving modes are entered through the execution of the PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. Deep Sleep mode stops clock operation, code execution and all peripherals, except RTCC and DSWDT. It also freezes I/O states and removes power to Flash memory and may remove power to SRAM.

The assembly syntax of the PWRSAV instruction is shown in Example 10-1. Sleep and Idle modes are entered directly with a single assembler command. Deep Sleep requires an additional sequence to unlock and enable the entry into Deep Sleep, which is described in **Section 10.4.1 "Entering Deep Sleep Mode"**.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device. To enter Deep Sleep, the DSCON<0> bit should be cleared before setting the DSEN bit, Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

The features enabled with the low-voltage/retention regulator results in some changes to the way that Sleep mode behaves. See **Section 10.3** "**Sleep Mode**".

10.1.1.1 Interrupts Coincident with Power Save Instructions

Any interrupt that coincides with the execution of a PWRSAV instruction will be held off until entry into Sleep/Deep Sleep or Idle mode has completed. The device will then wake-up from Sleep/Deep Sleep or Idle mode.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

	// Synt PWRSAV		nter Sleep mode: #SLEEP_MODE	;	Put the device into SLEEP mode
	//				
	//Synat	x to en	ter Idle mode:		
	PWRSAV		#IDLE_MODE	;	Put the device into IDLE mode
	11				
l	// Synt	ax to en	nter Deep Sleep mode	э:	
	// Firs	st use tl	ne unlock sequence t	to	o set the DSEN bit (see Example 10-2)
	CLR	DSCON			
	CLR	DSCON		;	(repeat the command)
	BSET	DSCON,	#DSEN	;	Enable Deep Sleep
	BSET	DSCON,	#DSEN	;	Enable Deep Sleep (repeat the command)
	PWRSAV		#SLEEP_MODE	;	Put the device into Deep SLEEP mode

TyCON: TIMER3 AND TIMER5 CONTROL REGISTER⁽³⁾ **REGISTER 13-2:** R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 TON⁽¹⁾ TSIDL⁽¹⁾ ____ _ bit 15 bit 8 R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 U-0 R/W-0 TCS^(1,2) TGATE⁽¹⁾ TCKPS1⁽¹⁾ TCKPS0⁽¹⁾ bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown TON: Timery On bit⁽¹⁾ bit 15 1 = Starts 16-bit Timery 0 = Stops 16-bit Timery Unimplemented: Read as '0' bit 14 **TSIDL:** Timery Stop in Idle Mode bit⁽¹⁾ bit 13 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode Unimplemented: Read as '0' bit 12-7 bit 6 **TGATE:** Timery Gated Time Accumulation Enable bit⁽¹⁾ When TCS = 1: This bit is ignored. When TCS = 0: 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled bit 5-4 TCKPS<1:0>: Timery Input Clock Prescale Select bits⁽¹⁾ 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1bit 3-2 Unimplemented: Read as '0' TCS: Timery Clock Source Select bit^(1,2) bit 1 1 = External clock from pin, TyCK (on the rising edge) 0 = Internal clock (Fosc/2) bit 0 Unimplemented: Read as '0' Note 1: When 32-bit operation is enabled (T2CON<3> or T4CON<3> = 1), these bits have no effect on Timery operation; all timer functions are set through T2CON and T4CON.

- 2: If TCS = 1, RPINRx (TxCK) must be configured to an available RPn/RPIn pin. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.
- **3:** Changing the value of TyCON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.

NOTES:

For 32-bit cascaded operation, these steps are also necessary:

- 1. Set the OC32 bits for both registers (OCyCON2<8>) and (OCxCON2<8>). Enable the even numbered module first to ensure the modules will start functioning in unison.
- Clear the OCTRIG bit of the even module (OCyCON2<7>), so the module will run in Synchronous mode.
- 3. Configure the desired output and Fault settings for OCy.
- 4. Force the output pin for OCx to the output state by clearing the OCTRIS bit.
- If Trigger mode operation is required, configure the trigger options in OCx by using the OCTRIG (OCxCON2<7>), TRIGMODE (OCxCON1<3>) and SYNCSELx (OCxCON2<4:0>) bits.
- Configure the desired Compare or PWM mode of operation (OCM<2:0>) for OCy first, then for OCx.

Depending on the output mode selected, the module holds the OCx pin in its default state and forces a transition to the opposite state when OCxR matches the timer. In Double Compare modes, OCx is forced back to its default state when a match with OCxRS occurs. The OCxIF interrupt flag is set after an OCxR match in Single Compare modes and after each OCxRS match in Double Compare modes.

Single-shot pulse events only occur once, but may be repeated by simply rewriting the value of the OCxCON1 register. Continuous pulse events continue indefinitely until terminated.

15.3 Pulse-Width Modulation (PWM) Mode

In PWM mode, the output compare module can be configured for edge-aligned or center-aligned pulse waveform generation. All PWM operations are double-buffered (buffer registers are internal to the module and are not mapped into SFR space).

To configure the output compare module for PWM operation:

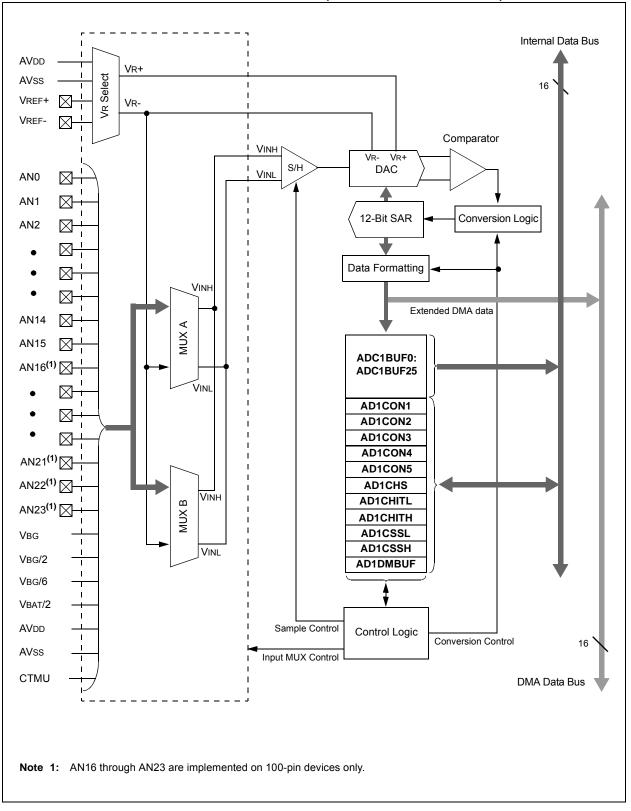
- 1. Configure the OCx output for one of the available Peripheral Pin Select pins.
- 2. Calculate the desired duty cycles and load them into the OCxR register.
- 3. Calculate the desired period and load it into the OCxRS register.
- Select the current OCx as the synchronization source by writing 0x1F to the SYNCSEL<4:0> bits (OCxCON2<4:0>) and '0' to the OCTRIG bit (OCxCON2<7>).
- 5. Select a clock source by writing to the OCTSEL<2:0> bits (OCxCON<12:10>).
- 6. Enable interrupts, if required, for the timer and output compare modules. The output compare interrupt is required for PWM Fault pin utilization.
- 7. Select the desired PWM mode with the OCM<2:0> bits (OCxCON1<2:0>).
- Appropriate Fault inputs may be enabled by using the ENFLT<2:0> bits as described in Register 15-1.
- 9. If a timer is selected as a clock source, set the selected timer prescale value. The selected timer's prescaler output is used as the clock input for the OCx timer and not the selected timer output.

Note: This peripheral contains input and output functions that may need to be configured by the Peripheral Pin Select. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 4 OCFLT0: PWM Fault 0 (OCFA pin) Condition Status bit^(2,4)
 - 1 = PWM Fault 0 has occurred
 - 0 = No PWM Fault 0 has occurred
- bit 3 TRIGMODE: Trigger Status Mode Select bit
 - 1 = TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software
 - 0 = TRIGSTAT is only cleared by software
- bit 2-0 OCM<2:0>: Output Compare x Mode Select bits⁽¹⁾
 - 111 = Center-Aligned PWM mode on OCx⁽²⁾
 - 110 = Edge-Aligned PWM mode on $OCx^{(2)}$
 - 101 = Double Compare Continuous Pulse mode: Initialize the OCx pin low; toggle the OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initialize the OCx pin low; toggle the OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare Continuous Pulse mode: Compare events continuously toggle the OCx pin
 - 010 = Single Compare Single-Shot mode: Initialize OCx pin high; compare event forces the OCx pin low
 - 001 = Single Compare Single-Shot mode: Initialize OCx pin low; compare event forces the OCx pin high
 - 000 = Output compare channel is disabled
- Note 1: The OCx output must also be configured to an available RPn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".
 - 2: The Fault input enable and Fault status bits are valid when OCM<2:0> = 111 or 110.
 - **3:** The Comparator 1 output controls the OC1-OC3 channels; Comparator 2 output controls the OC4-OC6 channels; Comparator 3 output controls the OC7-OC9 channels.
 - 4: The OCFA/OCFB Fault input must also be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

TABLE 20-2: ENHANCED PARALLEL MASTER PORT PIN DESCRIPTIONS


Pin Name (Alternate Function)	Туре	Description
PMA<22:16>	0	Address Bus bits<22:16>
PMA<15>	0	Address Bus bit 15
PINIAS 132	I/O	Data Bus bit 15 (16-bit port with multiplexed addressing)
(PMCS2)	0	Chip Select 2 (alternate location)
	0	Address Bus bit 14
PMA<14>	I/O	Data Bus bit 14 (16-bit port with multiplexed addressing)
(PMCS1)	0	Chip Select 1 (alternate location)
	0	Address Bus bits<13:8>
PMA<13:8>	I/O	Data Bus bits<13:8> (16-bit port with multiplexed addressing)
PMA<7:3>	0	Address Bus bits<7:3>
PMA<2>	0	Address Bus bit 2
(PMALU)	0	Address Latch Upper Strobe for Multiplexed Address
PMA<1>	I/O	Address Bus bit 1
(PMALH)	0	Address Latch High Strobe for Multiplexed Address
PMA<0>	I/O	Address Bus bit 0
(PMALL)	0	Address Latch Low Strobe for Multiplexed Address
PMD<15:8>	I/O	Data Bus bits<15:8> (demultiplexed addressing)
	I/O	Data Bus bits<7:4>
PMD<7:4>	0	Address Bus bits<7:4> (4-bit port with 1-phase multiplexed addressing)
PMD<3:0>	I/O	Data Bus bits<3:0>
PMCS1 ⁽¹⁾	I/O	Chip Select 1
PMCS2 ⁽²⁾	0	Chip Select 2
PMWR	I/O	Write Strobe ⁽³⁾
(PMENB)	I/O	Enable Signal ⁽³⁾
PMRD	I/O	Read Strobe ⁽³⁾
(PMRD/PMWR)	I/O	Read/Write Signal ⁽³⁾
PMBE1	0	Byte Indicator
PMBE0	0	Nibble or Byte Indicator
PMACK1	Ι	Acknowledgment Signal 1
PMACK2	I	Acknowledgment Signal 2

Note 1: These pins are implemented in 80-pin and 100-pin devices only.

2: These pins are implemented in 100-pin devices only.

3: Signal function depends on the setting of the MODE<1:0> and SM bits (PMCON1<9:8> and PMCSxCF<8>).

NOTES:

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
BTSS	BTSS f,#bit4		Bit Test f, Skip if Set	1	1 (2 or 3)	None
	BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
BTST	BTST	f,#bit4	Bit Test f	1	1	Z
	BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
	BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
	BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
	BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
	BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
	BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
CALL	CALL	lit23	Call Subroutine	2	2	None
	CALL	Wn	Call Indirect Subroutine	1	2	None
CLR	CLR	f	f = 0x0000	1	1	None
	CLR	WREG	WREG = 0x0000	1	1	None
	CLR	Ws	Ws = 0x0000	1	1	None
CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO, Sleep
СОМ	СОМ	f	f = f	1	1	N, Z
	СОМ	f,WREG	WREG = f	1	1	N, Z
	COM	Ws,Wd	Wd = Ws	1	1	N, Z
CP	CP	f	Compare f with WREG	1	1	C, DC, N, OV, 2
01	CP	Wb,#lit5	Compare Wb with lit5	1	1	C, DC, N, OV, 2
	CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C, DC, N, OV, Z
CP0	CP0	f	Compare f with 0x0000	1	1	C, DC, N, OV, Z
CFU	CP0	Ws	Compare Ws with 0x0000	1	1	C, DC, N, OV, Z
CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C, DC, N, OV, Z
010	CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C, DC, N, OV, 2
	CPB	Wb,Ws	Compare Wb with Ws, with Borrow	1	1	C, DC, N, OV, 2
			$(Wb - Ws - \overline{C})$			
CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None
CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None
CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None
CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, Skip if ≠	1	1 (2 or 3)	None
DAW	DAW.B	Wn	Wn = Decimal Adjust Wn	1	1	С
DEC	DEC	f	f = f - 1	1	1	C, DC, N, OV, 2
	DEC	f,WREG	WREG = f-1	1	1	C, DC, N, OV, 2
	DEC	Ws,Wd	Wd = Ws - 1	1	1	C, DC, N, OV, 2
DEC2	DEC2	f	f = f - 2	1	1	C, DC, N, OV, 2
	DEC2	f,WREG	WREG = $f - 2$	1	1	C, DC, N, OV, 2
	DEC2	Ws,Wd	Wd = Ws - 2	1	1	C, DC, N, OV, 2
DISI	DISI	#lit14	Disable Interrupts for k Instruction Cycles	1	1	None
DIV	DIV.SW	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UW	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N, Z, C, OV
EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С

TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

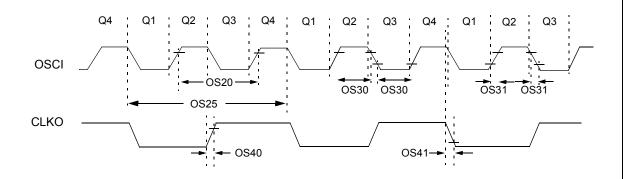
TABLE 32-11: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Operating Conditions: -40°C < TA < +85°C (unless otherwise stated)									
Param No.	Symbol	Characteristics		Тур	Max	Units	Comments		
	Vrgout	Regulator Output Voltage	_	1.8	—	V			
	Vbg	Internal Band Gap Reference	1.14	1.2	1.26	V			
	CEFC	External Filter Capacitor Value	4.7	10	-	μF	Series resistance < 3 Ohm recommended; < 5 Ohm required		
	TVREG	Voltage Regulator Start-up Time	_	10	_	μS	VREGS = 1 with any POR or BOR		
	Tbg	Band Gap Reference Start-up Time		1	-	ms			
	Vlvr	Low-Voltage Regulator Output Voltage	_	1.2	_	V	RETEN = 1, LPCFG = 0		

TABLE 32-12: VBAT OPERATING VOLTAGE SPECIFICATIONS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Comments
	Vbt	Operating Voltage	1.6		3.6	V	Battery connected to the VBAT pin
	VBTADC	VBAT ADC Monitoring Voltage Specification ⁽¹⁾	1.6	_	3.6	V	ADC monitoring the VBAT pin using the internal ADC channel
	VBTRTC		_	1.65	_	V	RTCC Reset voltage with VBTBOR (CW3<7>) = 1
	VBTRST			0.65		V	VBPOR bit (RCON2<1>) Reset voltage

Note 1: Measuring the ADC value, using the ADC, is represented by the equation: Measured Voltage = ((VBAT/2)/VDD) * 1024) for 10-bit ADC and Measured Voltage = ((VBAT/2)VDD) * 4096) for 12-bit ADC.


TABLE 32-13: CTMU CURRENT SOURCE SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 2V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial								
Param No.	Sym Characteristic		Min	Min Typ ⁽¹⁾ Max Units		Units	Comments	Conditions			
	IOUT1	CTMU Current Source, Base Range	—	550	—	nA	CTMUICON<1:0> = 00	- 2.5V < VDD < VDDMAX			
	IOUT2	CTMU Current Source, 10x Range	_	5.5		μΑ	CTMUICON<1:0> = 01				
	IOUT3	CTMU Current Source, 100x Range	_	55	_	μΑ	CTMUICON<1:0> = 10				
	IOUT4	CTMU Current Source, 1000x Range	—	550	—	μΑ	CTMUICON<1:0> = 11 ⁽²⁾				
	VΔ	Voltage Change per Degree Celsius	—	3	—	mV/°C					

Note 1: Nominal value at center point of current trim range (CTMUICON<7:2> = 000000).

2: Do not use this current range with temperature sensing diode.

TABLE 32-19:	EXTERNAL CLOCK TIMING REQUIREMENTS

AC CH	ARACTE	RISTICS	Standard Operating Conditions: 2V to 3.6V (unless otherwise stated)							
			Operating ter	nperature	-40°C ≤ T	A ≤ +85°C	for Industrial			
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions			
OS10	Fosc	External CLKI Frequency (External clocks allowed only in EC mode)	DC 4		32 8	MHz MHz	EC ECPLL			
		Oscillator Frequency	3.5 4 10 4 31		10 8 32 8 33	MHz MHz MHz MHz kHz	XT XTPLL HS HSPLL SOSC			
OS20	Tosc	Tosc = 1/Fosc		_	_		See Parameter OS10 for Fosc value			
OS25	Тсү	Instruction Cycle Time ⁽²⁾	62.5	_	DC	ns				
OS30	TosL, TosH	External Clock in (OSCI) High or Low Time	0.45 x Tosc	—	_	ns	EC			
OS31	TosR, TosF	External Clock in (OSCI) Rise or Fall Time	—	_	20	ns	EC			
OS40	TckR	CLKO Rise Time ⁽³⁾	_	6	10	ns				
OS41	TckF	CLKO Fall Time ⁽³⁾	—	6	10	ns				

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSCI/CLKI pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

3: Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin. CLKO is low for the Q1-Q2 period (1/2 TcY) and high for the Q3-Q4 period (1/2 TcY).

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support