

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128ga310t-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP (CONTINUED)

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC16	00C4	_	CRCIP2	CRCIP1	CRCIP0		U2ERIP2	U2ERIP1	U2ERIP0	_	U1ERIP2	U1ERIP1	U1ERIP0	_		_	_	4440
IPC18	00C8	_	_	_	_	_	_	_	_	_	_	_	_	_	HLVDIP2	HLVDIP1	HLVDIP0	0004
IPC19	00CA	_	_	_	_	_	_	_	_	_	CTMUIP2	CTMUIP1	CTMUIP0	_	_	_	_	0040
IPC20	00CC	_	U3TXIP2	U3TXIP1	U3TXIP0	_	U3RXIP2	U3RXIP1	U3RXIP0	_	U3ERIP2	U3ERIP1	U3ERIP0	_	_	_	_	4440
IPC21	00CE	_	U4ERIP2	U4ERIP1	U4ERIP0			_	_		_	_	_	_			—	4000
IPC22	00D0	_		_				_	_		U4TXIP2	U4TXIP1	U4TXIP0	_	U4RXIP2	U4RXIP1	U4RXIP0	0044
IPC25	00D6	_		_				_	_		_	_	_	_	LCDIP2	LCDIP1	LCDIP0	0004
IPC29	00DE	_	_	_	_	_	_	_	_		JTAGIP2	JTAGIP1	JTAGIP0	_	_	_	_	0040
INTTREG	00E0	CPUIRQ		VHOLD		ILR3	ILR2	ILR1	ILR0		VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-6: TIMER REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1 F	Register								0000
PR1	0102		Timer1 Period Register									FFFF						
T1CON	0104	TON	_	TSIDL	_	_	_	TIECS1	TIECS0	_	TGATE	TCKPS1	TCKPS0	_	TSYNC	TCS	—	0000
TMR2	0106								Timer2 F	Register								0000
TMR3HLD	0108						Timer	3 Holding R	egister (for	32-bit time	operations	only)						0000
TMR3	010A								Timer3 F	Register								0000
PR2	010C		Timer2 Period Register FF								FFFF							
PR3	010E								Timer3 Peri	od Register								FFFF
T2CON	0110	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	—	0000
T3CON	0112	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	—	0000
TMR4	0114								Timer4 F	Register								0000
TMR5HLD	0116						Tin	ner5 Holding	g Register (or 32-bit op	perations or	nly)						0000
TMR5	0118								Timer5 F	Register								0000
PR4	011A		Timer4 Period Register FF							FFFF								
PR5	011C		Timer5 Period Register FF							FFFF								
T4CON	011E	TON		TSIDL		—	—	_		_	TGATE	TCKPS1	TCKPS0	T45	—	TCS	—	0000
T5CON	0120	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	—	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-30: PERIPHERAL PIN SELECT REGISTER MAP (CONTINUED)

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06C0	_	_	RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0	—	—	RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0	0000
RPOR1	06C2	_	_	RP3R5	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0	_	_	RP2R5	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0	0000
RPOR2	06C4	—	_	RP5R5 ⁽¹⁾	RP5R4 ⁽¹⁾	RP5R3 ⁽¹⁾	RP5R2 ⁽¹⁾	RP5R1 ⁽¹⁾	RP5R0 ⁽¹⁾	_	_	RP4R5	RP4R4	RP4R3	RP4R2	RP4R1	RP4R0	0000
RPOR3	06C6	—	_	RP7R5	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0	_	_	RP6R5	RP6R4	RP6R3	RP6R2	RP6R1	RP6R0	0000
RPOR4	06C8	_	_	RP9R5	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0	_	_	RP8R5	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0	0000
RPOR5	06CA	_	_	RP11R5	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0	_	_	RP10R5	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0	0000
RPOR6	06CC	—	_	RP13R5	RP13R4	RP13R3	RP13R2	RP13R1	RP13R0	_	_	RP12R5	RP12R4	RP12R3	RP12R2	RP12R1	RP12R0	0000
RPOR7	06CE	—	_	RP15R5 ⁽¹⁾	RP15R4 ⁽¹⁾	RP15R3 ⁽¹⁾	RP15R2 ⁽¹⁾	RP15R1 ⁽¹⁾	RP15R0 ⁽¹⁾	_	_	RP14R5	RP14R4	RP14R3	RP14R2	RP14R1	RP14R0	0000
RPOR8	06D0	_	_	RP17R5	RP17R4	RP17R3	RP17R2	RP17R1	RP17R0	_	_	RP16R5	RP16R4	RP16R3	RP16R2	RP16R1	RP16R0	0000
RPOR9	06D2	—	_	RP19R5	RP19R4	RP19R3	RP19R2	RP19R1	RP19R0	_	_	RP18R5	RP18R4	RP18R3	RP18R2	RP18R1	RP18R0	0000
RPOR10	06D4	_	_	RP21R5	RP21R4	RP21R3	RP21R2	RP21R1	RP21R0	_	_	RP20R5	RP20R4	RP20R3	RP20R2	RP20R1	RP20R0	0000
RPOR11	06D6	_	_	RP23R5	RP23R4	RP23R3	RP23R2	RP23R1	RP23R0	_	_	RP22R5	RP22R4	RP22R3	RP22R2	RP22R1	RP22R0	0000
RPOR12	06D8	_	_	RP25R5	RP25R4	RP25R3	RP25R2	RP25R1	RP25R0	_	_	RP24R5	RP24R4	RP24R3	RP24R2	RP24R1	RP24R0	0000
RPOR13	06DA	_	_	RP27R5	RP27R4	RP27R3	RP27R2	RP27R1	RP27R0	_	_	RP26R5	RP26R4	RP26R3	RP26R2	RP26R1	RP26R0	0000
RPOR14	06DC	—	_	RP29R5	RP29R4	RP29R3	RP29R2	RP29R1	RP29R0	_	_	RP28R5	RP28R4	RP28R3	RP28R2	RP28R1	RP28R0	0000
RPOR15	06DE			RP31R5 ⁽²⁾	RP31R4 ⁽²⁾	RP31R3 ⁽²⁾	RP31R2 ⁽²⁾	RP31R1 ⁽²⁾	RP31R0 ⁽²⁾	_		RP30R5	RP30R4	RP30R3	RP30R2	RP30R1	RP30R0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits are unimplemented in 64-pin devices, read as '0'.

2: These bits are unimplemented in 64-pin and 80-pin devices, read as '0'.

TABLE 4-31: SYSTEM CONTROL (CLOCK AND RESET) REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	_	RETEN	—	DPSLP	CM	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	Note 1
OSCCON	0742	_	COSC2	COSC1	COSC0	_	NOSC2	NOSC1	NOSC0	CLKLOCK	IOLOCK	LOCK	_	CF	POSCEN	SOSCEN	OSWEN	Note 2
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	RCDIV2	RCDIV1	RCDIV0	_	_	_	_	_	_	_	_	3100
OSCTUN	0748	_	_	_	_	_	_	_	_	_	_			TUN	<5:0>			0000
REFOCON	074E	ROEN	_	ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0	_	_	_	_	_	_	_	_	0000
HLVDCON	0756	HLVDEN		HLSIDL		_			—	VDIR	BGVST	IRVST	_	HLVDL3	HLVDL2	HLVDL1	HLVDL0	0000
RCON2	0762	_	_	_		_	_	_	_	_	_		r	VDDBOR	VDDPOR	VBPOR	VBAT	Note 1

Legend: — = unimplemented, read as '0'; r = reserved. Reset values are shown in hexadecimal.

Note 1: The Reset value of the RCON register is dependent on the type of Reset event. See Section 7.0 "Resets" for more information.

2: The Reset value of the OSCCON register is dependent on both the type of Reset event and the device configuration. See Section 9.0 "Oscillator Configuration" for more information.

Flag Bit	Setting Event	Clearing Event
TRAPR (RCON<15>)	Trap Conflict Event	POR
IOPUWR (RCON<14>)	Illegal Opcode or Uninitialized W Register Access	POR
CM (RCON<9>)	Configuration Mismatch Reset	POR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET Instruction	POR
WDTO (RCON<4>)	WDT Time-out	CLRWDT, PWRSAV Instruction, POR
SLEEP (RCON<3>)	PWRSAV #0 Instruction	POR
DPSLP (RCON<10>)	PWRSAV #0 Instruction while DSEN bit is Set	POR
IDLE (RCON<2>)	PWRSAV #1 Instruction	POR
BOR (RCON<1>)	POR, BOR	—
POR (RCON<0>)	POR	—

TABLE 7-1: RESET FLAG BIT OPERATION

Note: All Reset flag bits may be set or cleared by the user software.

7.1 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the PIC24F CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of four registers. The Reset value for the Reset Control register, RCON, will depend on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, will depend on the type of Reset and the programmed values of the FNOSC<2:0> bits in Flash Configuration Word 2 (CW2) (see Table 7-2). The RCFGCAL and NVMCON registers are only affected by a POR.

7.2 Device Reset Times

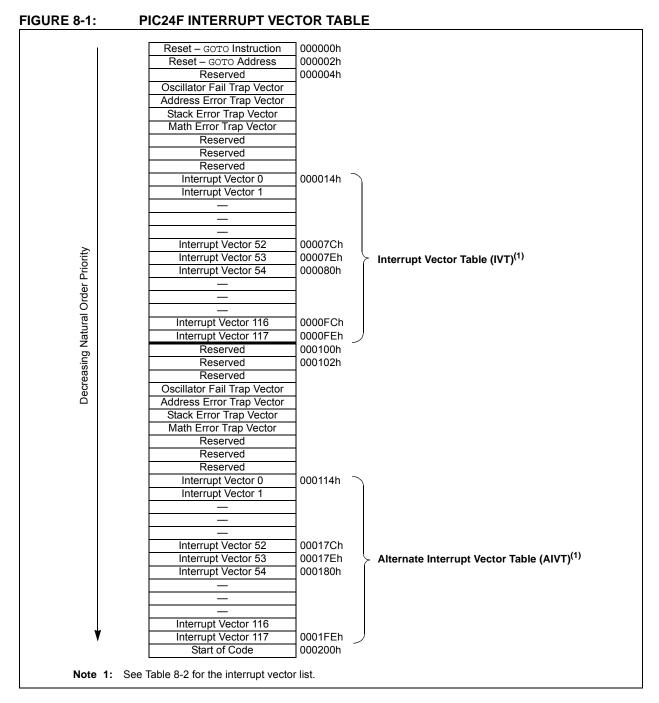
The Reset times for various types of device Reset are summarized in Table 7-3. Note that the system Reset signal, SYSRST, is released after the POR delay time expires.

The time at which the device actually begins to execute code will also depend on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The Fail-Safe Clock Monitor (FSCM) delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

7.3 Brown-out Reset (BOR)

PIC24FJ128GA310 family devices implement a BOR circuit that provides the user with several configuration and power-saving options. The BOR is controlled by the BOREN (CW3<12>) Configuration bit.


When BOR is enabled, any drop of VDD below the BOR threshold results in a device BOR. Threshold levels are described in **Section 32.1** "**DC Characteristics**" (Parameter DC17).

7.4 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 7-2. If clock switching is disabled, the system clock source is always selected according to the Oscillator Configuration bits. Refer to **"Oscillator"** (DS39700) in the *"dsPIC33/PIC24 Family Reference Manual"* for further details.

TABLE 7-2: OSCILLATOR SELECTION vs. TYPE OF RESET (CLOCK SWITCHING ENABLED)

Reset Type	Clock Source Determinant
POR	FNOSC<2:0> Configuration bits
BOR	(CW2<10:8>)
MCLR	
WDTO	COSC2:0> Control bits (OSCCON<14:12>)
SWR	(00000114.122)

TABLE 8-1: TRAP VECTOR DETAILS

Vector Number	IVT Address	AIVT Address	Trap Source
0	000004h	000104h	Reserved
1	000006h	000106h	Oscillator Failure
2	000008h	000108h	Address Error
3	00000Ah	00010Ah	Stack Error
4	00000Ch	00010Ch	Math Error
5	00000Eh	00010Eh	Reserved
6	000010h	000110h	Reserved
7	000012h	000112h	Reserved

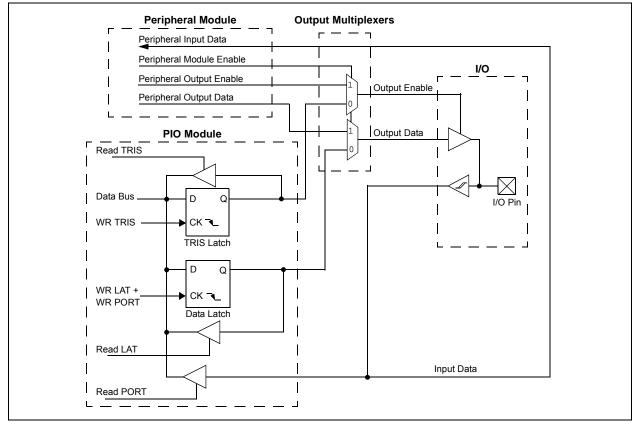
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
_	IC5IP2	IC5IP1	IC5IP0	_	IC4IP2	IC4IP1	IC4IP0			
oit 15							bit 8			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
	IC3IP2	IC3IP1	IC3IP0		DMA3IP2	DMA3IP1	DMA3IP0			
oit 7						2	bit C			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown			
bit 15	Unimplemen	ted: Read as '	0'							
bit 14-12	-	Input Capture C		rrupt Priority bi	ts					
	111 = Interru	pt is Priority 7 (highest priority	y interrupt)						
	•									
	•									
	001 = Interru									
	000 = Interrupt source is disabled									
bit 11	-	ted: Read as '								
bit 10-8		Input Capture C			ts					
	111 = Interru	pt is Priority 7 (highest priority	y interrupt)						
	•									
	•									
	001 = Interru	pt is Priority 1 pt source is dis	ablad							
bit 7		ited: Read as '								
bit 6-4	-	Input Capture C		rrupt Priority bi	te					
DIL 0-4		pt is Priority 7 (15					
	•			y meen apty						
	•									
	• 001 = Interru	nt is Priority 1								
		pt source is dis	abled							
bit 3		ted: Read as '								
bit 2-0	DMA3IP<2:0	>: DMA Chann	el 3 Interrupt F	Priority bits						
	111 = Interru	pt is Priority 7 (highest priority	y interrupt)						
	•									
	•									
	• 001 = Interru	pt is Priority 1								

11.0 I/O PORTS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to "I/O Ports with Peripheral Pin Select (PPS)" (DS39711) in the "dsPIC33/PIC24 Family Reference Manual". The information in this data sheet supersedes the information in the FRM.

All of the device pins (except VDD, VSS, MCLR and OSCI/CLKI) are shared between the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger (ST) inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports


A Parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected. When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin may be driven by a port.

All port pins have three registers directly associated with their operation as digital I/Os and one register associated with their operation as analog inputs. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Output Latch register (LATx), read the latch; writes to the latch, write the latch. Reads from the port (PORTx), read the port pins; writes to the port pins, write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers, and the port pin will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is regarded as a dedicated port because there is no other competing source of inputs. RC13 and RC14 can be input ports only; they cannot be configured as outputs.

FIGURE 11-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE

11.1.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

11.1.2 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx and TRISx registers for data control, each port pin can also be individually configured for either a digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired digital only pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

11.2 Configuring Analog Port Pins (ANSx)

The ANSx and TRISx registers control the operation of the pins with analog function. Each port pin with analog function is associated with one of the ANSx bits (see Register 11-1 through Register 11-6), which decides if the pin function should be analog or digital. Refer to Table 11-1 for detailed behavior of the pin for different ANSx and TRISx bit settings.

When reading the PORTx register, all pins configured as analog input channels will read as cleared (a low level).

11.2.1 ANALOG INPUT PINS AND VOLTAGE CONSIDERATIONS

The voltage tolerance of pins used as device inputs is dependent on the pin's input function. Most input pins are able to handle DC voltages of up to 5.5V, a level typical for digital logic circuits. However, several pins can only tolerate voltages up to VDD. Voltage excursions beyond VDD on these pins should always be avoided.

Table 11-2 summarizes the different voltage tolerances. Refer to **Section 32.0 "Electrical Characteristics"** for more details.

TABLE 11-1: CONFIGURING ANALOG/DIGITAL FUNCTION OF AN I/O PIN

Pin Function	ANSx Setting	TRISx Setting	Comments
Analog Input	1	1	It is recommended to keep ANSx = 1.
Analog Output	1	1	It is recommended to keep ANSx = 1.
Digital Input	0	1	Firmware must wait at least one instruction cycle after configuring a pin as a digital input before a valid input value can be read.
Digital Output	0	0	Make sure to disable the analog output function on the pin if any is present.

TABLE 11-2: INPUT VOLTAGE LEVELS FOR PORT OR PIN TOLERATED DESCRIPTION INPUT

Port or Pin	Tolerated Input	Description
PORTA<15:14, 7:0> ⁽¹⁾		
PORTB<15:7, 5:2>		
PORTC<3:1>(1)		
PORTD<15:8, 5:0>(1)	5.5V	Tolerates input levels above VDD; useful for most standard logic.
PORTE<9:8, 4:0> ⁽¹⁾		ior most standard logic.
PORTF<13:12, 8:0>(1)		
PORTG<15:12, 9, 6:0> ⁽¹⁾		
PORTA<10:9> ⁽¹⁾		
PORTB<6, 1:0>		
PORTC<15:12, 4> ⁽¹⁾		
PORTD<7:6>	VDD	Only VDD input levels are tolerated.
PORTE<7:5>(1)		
PORTG<8:7>		

Note 1: Not all of these pins are implemented on 64-pin or 80-pin devices. Refer to **Section 1.0 "Device Overview"** for a complete description of port pin implementation.

11.4 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. In an application that needs to use more than one peripheral multiplexed on a single pin, inconvenient work arounds in application code, or a complete redesign, may be the only option.

The Peripheral Pin Select (PPS) feature provides an alternative to these choices by enabling the user's peripheral set selection and its placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of any one of many digital peripherals to any one of these I/O pins. PPS is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

11.4.1 AVAILABLE PINS

The PPS feature is used with a range of up to 44 pins, depending on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the designation, "RPn" or "RPIn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions, while "RPI" indicates pins that support remappable input functions only.

PIC24FJ128GA310 family devices support a larger number of remappable input only pins than remappable input/output pins. In this device family, there are up to 32 remappable input/output pins, depending on the pin count of the particular device selected. These pins are numbered, RP0 through RP31. Remappable input only pins are numbered above this range, from RPI32 to RPI43 (or the upper limit for that particular device).

See Table 1-4 for a summary of pinout options in each package offering.

11.4.2 AVAILABLE PERIPHERALS

The peripherals managed by the PPS are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer related peripherals (input capture and output compare) and external interrupt inputs. Also included are the outputs of the comparator module, since these are discrete digital signals. PPS is not available for these peripherals:

- I^2C^{TM} (input and output)
- Change Notification inputs
- RTCC alarm output(s)
- EPMP signals (input and output)
- LCD signals
- · Analog inputs
- INT0

A key difference between pin select and non-pin select peripherals is that pin select peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-pin select peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

11.4.2.1 Peripheral Pin Select Function Priority

Pin-selectable peripheral outputs (e.g., OCx, UARTx transmit) will take priority over general purpose digital functions on a pin, such as EPMP and port I/O. Specialized digital outputs (e.g., USB on USB-enabled devices) will take priority over PPS outputs on the same pin. The pin diagrams list peripheral outputs in the order of priority. Refer to them for priority concerns on a particular pin.

Unlike PIC24F devices with fixed peripherals, pin-selectable peripheral inputs will never take ownership of a pin. The pin's output buffer will be controlled by the TRISx setting or by a fixed peripheral on the pin. If the pin is configured in Digital mode then the PPS input will operate correctly. If an analog function is enabled on the pin, the PPS input will be disabled.

11.4.3 CONTROLLING PERIPHERAL PIN SELECT

PPS features are controlled through two sets of Special Function Registers (SFRs): one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on if an input or an output is being mapped.

11.4.5 CONSIDERATIONS FOR PERIPHERAL PIN SELECTION

The ability to control Peripheral Pin Selection introduces several considerations into application design that could be overlooked. This is particularly true for several common peripherals that are available only as remappable peripherals.

The main consideration is that the Peripheral Pin Selects are not available on default pins in the device's default (Reset) state. Since all RPINRx registers reset to '111111' and all RPORx registers reset to '000000', all Peripheral Pin Select inputs are tied to Vss and all Peripheral Pin Select outputs are disconnected.

Note:	In tying Peripheral Pin Select inputs to
	RP63, RP63 need not exist on a device for
	the registers to be reset to it.

This situation requires the user to initialize the device with the proper peripheral configuration before any other application code is executed. Since the IOLOCK bit resets in the unlocked state, it is not necessary to execute the unlock sequence after the device has come out of Reset. For application safety, however, it is best to set IOLOCK and lock the configuration after writing to the control registers.

Because the unlock sequence is timing-critical, it must be executed as an assembly language routine in the same manner as changes to the oscillator configuration. If the bulk of the application is written in 'C', or another high-level language, the unlock sequence should be performed by writing in-line assembly.

Choosing the configuration requires the review of all Peripheral Pin Selects and their pin assignments, especially those that will not be used in the application. In all cases, unused pin-selectable peripherals should be disabled completely. Unused peripherals should have their inputs assigned to an unused RPn/RPIn pin function. I/O pins with unused RPn functions should be configured with the null peripheral output.

The assignment of a peripheral to a particular pin does not automatically perform any other configuration of the pin's I/O circuitry. In theory, this means adding a pin-selectable output to a pin may mean inadvertently driving an existing peripheral input when the output is driven. Users must be familiar with the behavior of other fixed peripherals that share a remappable pin and know when to enable or disable them. To be safe, fixed digital peripherals that share the same pin should be disabled when not in use. Along these lines, configuring a remappable pin for a specific peripheral does not automatically turn that feature on. The peripheral must be specifically configured for operation, and enabled as if it were tied to a fixed pin. Where this happens in the application code (immediately following device Reset and peripheral configuration, or inside the main application routine) depends on the peripheral and its use in the application.

A final consideration is that Peripheral Pin Select functions neither override analog inputs nor reconfigure pins with analog functions for digital I/O. If a pin is configured as an analog input on device Reset, it must be explicitly reconfigured as digital I/O when used with a Peripheral Pin Select.

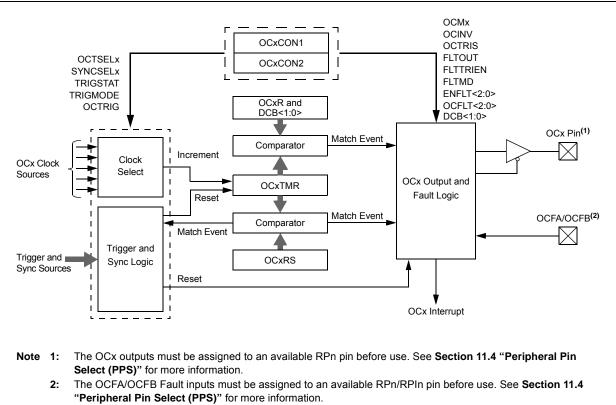
Example 11-3 shows a configuration for bidirectional communication with flow control using UART1. The following input and output functions are used:

- Input Functions: U1RX, U1CTS
- Output Functions: U1TX, U1RTS

EXAMPLE 11-3: CONFIGURING UART1 INPUT AND OUTPUT FUNCTIONS

	1 011			
// Unlock Regi	sters			
asm volatile(
		#0x46,	w2	
	"MOV	#0x57,	w3	\n"
	"MOV.b	w2,	[w1]	\n"
	"MOV.b	w3,	[w1]	\n"
	"BCLR (SCCON,#6")	;	
// or use C30 //builtin_v			SN &	0xbf);
// Configure I // Assign T RPINR18bit:	JIRX TO	Pin RPO	ble 11-	2))
// Assign W RPINR18bit:				
// Configure O // Assign T RPOR1bits.P	JITX To	Pin RP2	able 11	I-4)
// Assign W RPOR1bits.P				
// Lock Regist	ers			
asm volatile	("MOV	#OSCCON,	wl	\n"
	"MOV	#0x46,	w2	\n"
	"MOV	#0x57,	w3	\n"
	"MOV.b		[w1]	
	"MOV.b	w3,	[w1]	\n"
	"BSET	OSCCON,	#6"	;
// or use C30	built-ir	macro:		
//builtin_w			NTLO	x 10) ·
//DuiituiiW	TTCE_OSC	CONT(OPCCO		A40//

REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2


U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	IC32
bit 15							bit 8

R/W-0	R/W-0, HS	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1
ICTRIG	TRIGSTAT	—	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-9	Unimplemented: Read as '0'
bit 8	IC32: Cascade Two IC Modules Enable bit (32-bit operation)
	 1 = ICx and ICy operate in cascade as a 32-bit module (this bit must be set in both modules) 0 = ICx functions independently as a 16-bit module
bit 7	ICTRIG: ICx Sync/Trigger Select bit
	 1 = Trigger ICx from the source designated by the SYNCSELx bits 0 = Synchronize ICx with the source designated by the SYNCSELx bits
bit 6	TRIGSTAT: Timer Trigger Status bit
	 1 = Timer source has been triggered and is running (set in hardware, can be set in software) 0 = Timer source has not been triggered and is being held clear
bit 5	Unimplemented: Read as '0'

- Note 1: Use these inputs as trigger sources only and never as sync sources.
 - 2: Never use an IC module as its own trigger source, by selecting this mode.

FIGURE 15-1: OUTPUT COMPARE x BLOCK DIAGRAM (16-BIT MODE)

15.2 Compare Operations

In Compare mode (Figure 15-1), the output compare module can be configured for single-shot or continuous pulse generation. It can also repeatedly toggle an output pin on each timer event.

To set up the module for compare operations:

- 1. Configure the OCx output for one of the available Peripheral Pin Select pins.
- Calculate the required values for the OCxR and (for Double Compare modes) OCxRS Duty Cycle registers:
 - a) Determine the instruction clock cycle time. Take into account the frequency of the external clock to the timer source (if one is used) and the timer prescaler settings.
 - b) Calculate time to the rising edge of the output pulse relative to the timer start value (0000h).
 - c) Calculate the time to the falling edge of the pulse based on the desired pulse width and the time to the rising edge of the pulse.

- 3. Write the rising edge value to OCxR and the falling edge value to OCxRS.
- 4. Set the Timer Period register, PRy, to a value equal to or greater than the value in OCxRS.
- 5. Set the OCM<2:0> bits for the appropriate compare operation (= 0xx).
- For Trigger mode operations, set OCTRIG to enable Trigger mode. Set or clear TRIGMODE to configure trigger operation and TRIGSTAT to select a hardware or software trigger. For Synchronous mode, clear OCTRIG.
- Set the SYNCSEL<4:0> bits to configure the trigger or synchronization source. If free-running timer operation is required, set the SYNCSELx bits to '00000' (no sync/trigger source).
- Select the time base source with the OCTSEL<2:0> bits. If necessary, set the TON bit for the selected timer, which enables the compare time base to count. Synchronous mode operation starts as soon as the time base is enabled; Trigger mode operation starts after a trigger source event occurs.

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	DISSCK ⁽¹⁾	DISSDO ⁽²⁾	MODE16	SMP	CKE ⁽³⁾
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN ⁽⁴⁾	-	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0
bit 7				-			bit (
Legend:							
R = Reada	ıble bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-13	Unimplomen	ted: Dood oo '	0'				
bit 12	-	ted: Read as '		modes only) ⁽¹⁾			
DIL 12	1 = Internal S		abled; pin funct				
bit 11		able SDOx Pin					
		n is not used by n is controlled I		in functions as	I/O		
bit 10	-		unication Sele	ct bit			
	1 = Commun	ication is word	-wide (16 bits)				
bit 9	SMP: SPIx D	ata Input Samp	ble Phase bit				
		a is sampled a	t the end of dat t the middle of (a output time data output time	9		
	Slave mode:		SPIx is used in	-			
bit 8	CKE: SPIx C	lock Edge Sele	ect bit ⁽³⁾				
				n from active cl n from Idle cloc			
bit 7			(Slave mode) b	oit ⁽⁴⁾			
		s used for Slav s not used by t		is controlled by	the port function	on	
bit 6	CKP: Clock F	Polarity Select I	bit				
				ctive state is a ctive state is a h			
bit 5	MSTEN: Mas	ter Mode Enab	ole bit				
	1 = Master m 0 = Slave mo						
	If DISSCK = 0, S Select (PPS)" for			available RPn	pin. See Sectio	on 11.4 "Perip	heral Pin
	If DISSDO = 0, S Select (PPS)" for			available RPn	pin. See Secti	on 11.4 "Perip	heral Pin
	The CKE bit is no SPI modes (FRM		ramed SPI mod	les. The user s	hould program	this bit to '0' fo	r the Framed
	If SSEN = 1, SSx Select (PPS)" for			ilable RPn/PRI	n pin. See Sec t	tion 11.4 "Peri	pheral Pin

REGISTER 22-11: RTCCSWT: POWER CONTROL AND SAMPLE WINDOW TIMER REGISTER⁽¹⁾

| R/W-x |
|----------|----------|----------|----------|----------|----------|----------|----------|
| PWCSTAB7 | PWCSTAB6 | PWCSTAB5 | PWCSTAB4 | PWCSTAB3 | PWCSTAB2 | PWCSTAB1 | PWCSTAB0 |
| bit 15 | | | | | | | bit 8 |

| R/W-x |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| PWCSAMP7(2) | PWCSAMP6(2) | PWCSAMP5(2) | PWCSAMP4(2) | PWCSAMP3(2) | PWCSAMP2(2) | PWCSAMP1(2) | PWCSAMP0(2) |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
		· · · · · · · · · · · · · · · · · · ·	
bit 15-8 PWCST	AB<7:0>: Power Control Stabil	ity Window Timer bits	

	11111111 = Stability Window is 255 TPWCCLK clock periods 11111110 = Stability Window is 254 TPWCCLK clock periods
	 00000001 = Stability Window is 1 TPWCCLK clock period 00000000 = No Stability Window; Sample Window starts when the alarm event triggers
bit 7-0	PWCSAMP<7:0>: Power Control Sample Window Timer bits ⁽²⁾
	11111111 = Sample Window is always enabled, even when PWCEN = 0 11111110 = Sample Window is 254 TPWCCLK clock periods
	 00000001 = Sample Window is 1 TPWCCLK clock period 00000000 = No Sample Window

Note 1: A write to this register is only allowed when RTCWREN = 1.

2: The Sample Window always starts when the Stability Window timer expires, except when its initial value is 00h.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NB2	CH0NB1	CH0NB0	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0
bit 15	•						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NA2	CH0NA1	CH0NA0	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0
bit 7							bit C
Lagandi							
Legend:	b :4		L :4		antad hit was	d a a (0)	
R = Readable		W = Writable		-	nented bit, read		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-13	CH0NB<2:0> 1xx = Unimp 011 = Unimp 010 = AN1 001 = Unimp 000 = VREF-/	lemented lemented	annel 0 Negati	ve Input Select	bits		
bit 12-8	11111 = VBA 11110 = AVD 11101 = AVS 11100 = Ban 11011 = VBG 11010 = VBG 11001 = CTM	T/2(1) DD(1) D	e (V _{BG}) ⁽¹⁾	e Input Select t		IH<8> to be set	;)

REGISTER 24-6: AD1CHS: ADC1 SAMPLE SELECT REGISTER

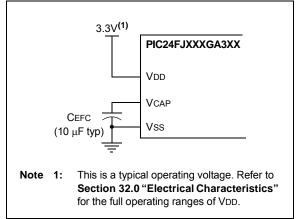
Note 1: These input channels do not have corresponding memory-mapped result buffers.

2: These channels are implemented in 100-pin devices only.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT
bit 15	•			•	•		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
EDG2MOD	EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0	—	_
bit 7	•				•		bit 0
Legend:							
R = Readable bit		W = Writable bit U = Unimplemented bit, read as '0'				as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	EDG1MOD: E	dge 1 Edge-Se	ensitive Select	bit			
	1 = Input is ec						
	0 = Input is lev						
bit 14		dge 1 Polarity S					
		programmed for					
	•	programmed fo	•	•			
bit 13-10		0>: Edge 1 Sou					
		1 source is Cor 1 source is Cor					
	Ų	1 source is Cor					
		1 source is IC3					
		1 source is IC2					
		1 source is IC1	-00				
		1 source is CTI 1 source is CTI					
		1 source is CTI					
		1 source is CTI					
	0101 = Edge	1 source is CTI					
	0100 = Edge						
	- · ·	1 source is CTI	ED3 ⁽¹⁾				
		1 source is CTE 1 source is CTE	ED3 ⁽¹⁾ ED1				
	0010 = Edge	1 source is CTE 1 source is CTE 1 source is CTE	ED3 ⁽¹⁾ ED1 ED2				
	0010 = Edge 0001 = Edge	1 source is CTE 1 source is CTE	ED3 ⁽¹⁾ ED1 ED2 1				
bit 9	0010 = Edge 0001 = Edge 0000 = Edge	1 source is CTI 1 source is CTI 1 source is CTI 1 source is OC	ED3 ⁽¹⁾ ED1 ED2 1 er1				
bit 9	0010 = Edge 0001 = Edge 0000 = Edge EDG2STAT: E	1 source is CTI 1 source is CTI 1 source is CTI 1 source is OC 1 source is Tim	ED3 ⁽¹⁾ ED1 ED2 1 er1 it	vritten to contro	ol current sourc	e.	
bit 9	0010 = Edge 0001 = Edge 0000 = Edge EDG2STAT: E Indicates the s 1 = Edge 2 ha	1 source is CTH 1 source is CTH 1 source is CTH 1 source is OC 1 source is Tim Edge 2 Status b status of Edge 2 is occurred	ED3 ⁽¹⁾ ED1 ED2 1 er1 it	vritten to contro	ol current sourc	e.	
	0010 = Edge 0001 = Edge EDG2STAT: E Indicates the s 1 = Edge 2 ha 0 = Edge 2 ha	1 source is CTH 1 source is CTH 1 source is CTH 1 source is OC 1 source is Tim Edge 2 Status b status of Edge 2 is occurred is not occurred	ED3 ⁽¹⁾ ED1 ED2 1 er1 it 2 and can be w	vritten to contro	ol current sourc	e.	
bit 9 bit 8	0010 = Edge 0001 = Edge 0000 = Edge EDG2STAT: E Indicates the s 1 = Edge 2 ha 0 = Edge 2 ha EDG1STAT: E	1 source is CTH 1 source is CTH 1 source is CTH 1 source is OC 1 source is Tim Edge 2 Status b status of Edge 2 as occurred as not occurred Edge 1 Status b	ED3 ⁽¹⁾ ED1 ED2 1 er1 it 2 and can be w				
	0010 = Edge 0001 = Edge EDG2STAT: E Indicates the s 1 = Edge 2 ha 0 = Edge 2 ha EDG1STAT: E Indicates the s	1 source is CTI 1 source is CTI 1 source is CTI 1 source is CTI 1 source is Tim Edge 2 Status b status of Edge 2 is occurred is not occurred Edge 1 Status b status of Edge 2	ED3 ⁽¹⁾ ED1 ED2 er1 it 2 and can be w				
	0010 = Edge 0001 = Edge 0000 = Edge EDG2STAT: E Indicates the s 1 = Edge 2 ha 0 = Edge 2 ha EDG1STAT: E Indicates the s 1 = Edge 1 ha	1 source is CTI 1 source is CTI 1 source is CTI 1 source is CTI 1 source is Tim Edge 2 Status b status of Edge 2 is occurred is not occurred Edge 1 Status b status of Edge 7 is occurred	ED3 ⁽¹⁾ ED1 ED2 er1 it 2 and can be w				
bit 8	0010 = Edge 0001 = Edge 0000 = Edge EDG2STAT: E Indicates the s 1 = Edge 2 ha 0 = Edge 2 ha EDG1STAT: E Indicates the s 1 = Edge 1 ha 0 = Edge 1 ha	1 source is CTH 1 source is CTH 1 source is CTH 1 source is OC 1 source is Tim Edge 2 Status b status of Edge 2 is occurred Edge 1 Status b status of Edge 7 is occurred is not occurred is not occurred	ED3 ⁽¹⁾ ED1 ED2 er1 it 2 and can be w it 1 and can be w	vritten to contro			
	0010 = Edge 0001 = Edge 0000 = Edge EDG2STAT: E Indicates the s 1 = Edge 2 has 0 = Edge 2 has EDG1STAT: E Indicates the s 1 = Edge 1 has 0 = Edge 1 has 0 = Edge 1 has EDG2MOD: E	1 source is CTH 1 source is CTH 1 source is CTH 1 source is OC 1 source is Tim Edge 2 Status b status of Edge 2 is occurred is not occurred is occurred is not occurred is not occurred is not occurred is not occurred	ED3 ⁽¹⁾ ED1 ED2 er1 it 2 and can be w it 1 and can be w	vritten to contro			
bit 8	0010 = Edge 0001 = Edge 0000 = Edge EDG2STAT: E Indicates the s 1 = Edge 2 ha 0 = Edge 2 ha EDG1STAT: E Indicates the s 1 = Edge 1 ha 0 = Edge 1 ha 0 = Edge 1 ha 1 = Input is edge	1 source is CTH 1 source is CTH 1 source is CTH 1 source is CTH 1 source is Tim Edge 2 Status b status of Edge 2 is occurred is not occurred is occurred is not occurred	ED3 ⁽¹⁾ ED1 ED2 er1 it 2 and can be w it 1 and can be w	vritten to contro			
bit 8	0010 = Edge 0001 = Edge 0000 = Edge EDG2STAT: E Indicates the s 1 = Edge 2 ha 0 = Edge 2 ha EDG1STAT: E Indicates the s 1 = Edge 1 ha 0 = Input is ed 0 = Input is left	1 source is CTH 1 source is CTH 1 source is CTH 1 source is CTH 1 source is Tim Edge 2 Status b status of Edge 2 as occurred as not occurred	ED3 ⁽¹⁾ ED1 ED2 1 er1 2 and can be w it 1 and can be w	vritten to contro			
bit 8 bit 7	0010 = Edge 0001 = Edge 0001 = Edge EDG2STAT: E Indicates the s 1 = Edge 2 ha 0 = Edge 2 ha EDG1STAT: E Indicates the s 1 = Edge 1 ha 0 = Edge 1 ha	1 source is CTH 1 source is CTH 1 source is CTH 1 source is CTH 1 source is Tim Edge 2 Status b status of Edge 2 is occurred is not occurred is occurred is not occurred	ED3(1) ED1 ED2 1 er1 it 2 and can be w it 1 and can be w ensitive Select	vritten to contro bit			

REGISTER 27-2: CTMUCON2: CTMU CONTROL REGISTER 2

Note 1: Edge sources, CTED3, CTED7, CTED10 and CTED11, are available in 100-pin devices only.


29.2 On-Chip Voltage Regulator

All PIC24FJ128GA310 family devices power their core digital logic at a nominal 1.8V. This may create an issue for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the PIC24FJ128GA310 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

This regulator is always enabled. It provides a constant voltage (1.8V nominal) to the digital core logic, from a VDD of about 2.1V all the way up to the device's VDDMAX. It does not have the capability to boost VDD levels. In order to prevent "brown-out" conditions when the voltage drops too low for the regulator, the Brown-out Reset occurs. Then the regulator output follows VDD with a typical voltage drop of 300 mV.

A low-ESR capacitor (such as ceramic) must be connected to the VCAP pin (Figure 29-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor (CEFC) is provided in **Section 32.1 "DC Characteristics"**.

FIGURE 29-1: CONNECTIONS FOR THE ON-CHIP REGULATOR

29.2.1 ON-CHIP REGULATOR AND POR

The voltage regulator takes approximately 10 μ s for it to generate output. During this time, designated as TVREG, code execution is disabled. TVREG is applied every time the device resumes operation after any power-down, including Sleep mode. TVREG is determined by the status of the VREGS bit (RCON<8>) and the WDTWINx Configuration bits (CW3<11:10>). Refer to Section 32.0 "Electrical Characteristics" for more information on TVREG.

Note:							
	"Electrical Characteristics". The infor-						
	mation in this data sheet supersedes the						
	information in the FRM.						

29.2.2 VOLTAGE REGULATOR STANDBY MODE

The on-chip regulator always consumes a small incremental amount of current over IDD/IPD, including when the device is in Sleep mode, even though the core digital logic does not require power. To provide additional savings in applications where power resources are critical, the regulator can be made to enter Standby mode on its own whenever the device goes into Sleep mode. This feature is controlled by the VREGS bit (RCON<8>). Clearing the VREGS bit enables the Standby mode. When waking up from Standby mode, the regulator needs to wait for TVREG to expire before wake-up.

29.2.3 LOW-VOLTAGE/RETENTION REGULATOR

When power-saving modes, such as Sleep and Deep Sleep are used, PIC24FJ128GA310 family devices may use a separate low-power, low-voltage/retention regulator to power critical circuits. This regulator, which operates at 1.2V nominal, maintains power to data RAM and the RTCC while all other core digital logic is powered down. It operates only in Sleep, Deep Sleep and VBAT modes.

The low-voltage/retention regulator is described in more detail in Section 10.1.3 "Low-Voltage/Retention Regulator".

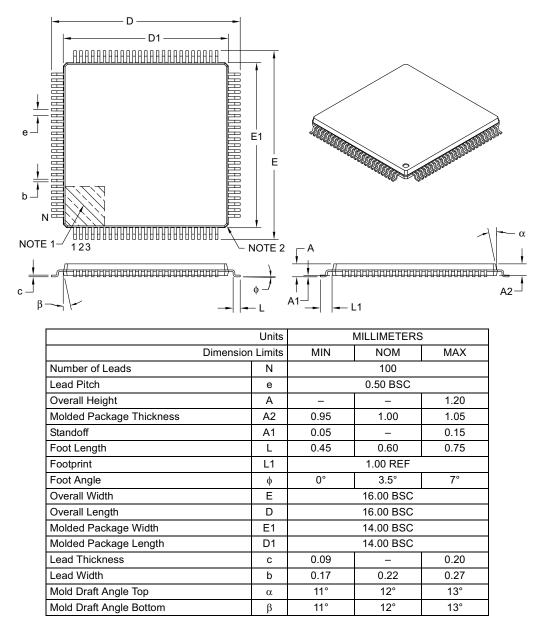
Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
	BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
BTST	BTST	f,#bit4	Bit Test f	1	1	Z
	BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
	BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
	BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
	BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
	BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
	BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
CALL	CALL	lit23	Call Subroutine	2	2	None
	CALL	Wn	Call Indirect Subroutine	1	2	None
CLR	CLR	f	f = 0x0000	1	1	None
	CLR	WREG	WREG = 0x0000	1	1	None
	CLR	Ws	Ws = 0x0000	1	1	None
CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO, Sleep
СОМ	СОМ	f	f = f	1	1	N, Z
	СОМ	f,WREG	WREG = f	1	1	N, Z
	COM	Ws,Wd	Wd = Ws	1	1	N, Z
CP	CP	f	Compare f with WREG	1	1	C, DC, N, OV, 2
01	CP	Wb,#lit5	Compare Wb with lit5	1	1	C, DC, N, OV, 2
	CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C, DC, N, OV, Z
CP0	CP0	f	Compare f with 0x0000	1	1	C, DC, N, OV, Z
CPU	CP0	Ws	Compare Ws with 0x0000	1	1	C, DC, N, OV, 2
СРВ	CPB	f	Compare f with WREG, with Borrow	1	1	C, DC, N, OV, Z
010	CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C, DC, N, OV, 2
	CPB	Wb,Ws	Compare Wb with Ws, with Borrow	1	1	C, DC, N, OV, 2
			$(Wb - Ws - \overline{C})$			
CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None
CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None
CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None
CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, Skip if ≠	1	1 (2 or 3)	None
DAW	DAW.B	Wn	Wn = Decimal Adjust Wn	1	1	С
DEC	DEC	f	f = f -1	1	1	C, DC, N, OV, 2
	DEC	f,WREG	WREG = f –1	1	1	C, DC, N, OV, 2
	DEC	Ws,Wd	Wd = Ws - 1	1	1	C, DC, N, OV, 2
DEC2	DEC2	f	f = f - 2	1	1	C, DC, N, OV, Z
	DEC2	f,WREG	WREG = $f - 2$	1	1	C, DC, N, OV, 2
	DEC2	Ws,Wd	Wd = Ws - 2	1	1	C, DC, N, OV, 2
DISI	DISI	#lit14	Disable Interrupts for k Instruction Cycles	1	1	None
DIV	DIV.SW	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UW	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N, Z, C, OV
EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С

TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

TABLE 32-3: DC CHARACTERISTICS: TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions	
Operat	Operating Voltage							
DC10	Vdd	Supply Voltage	2	_	3.6	V	With BOR disabled	
DC12	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.9	—	—	V		
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	Vss	—	—	V		
DC17	Svdd	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.05		—	V/ms	0-3.3V in 66 ms 0-2.5V in 50 ms	
	VBOR	Brown-out Reset Voltage on VDD Transition, High-to-Low	2	—	2.2	V		

Note 1: This is the limit to which the RAM data can be retained while the on-chip regulator output voltage starts following the VDD.


TABLE 32-4: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACTERISTICS			Standard Operating Conditions: 2V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Parameter No.	Typical ⁽¹⁾	Мах	Units	Operating Temperature	Vdd	Conditions		
Operating Current (IDD)								
DC19	0.15	_	mA	-40°C to +85°C	2.0V	0.5 MIPS,		
DC20A	0.15	_	mA	-40°C to +85°C	3.3V	Fosc = 1 MHz		
DC20	0.31	—	mA	-40°C to +85°C	2.0V	1 MIPS,		
	0.32	—	mA	-40°C to +85°C	3.3V	Fosc = 2 MHz		
DC23	1.2	1.2 — mA -40°C to +8	-40°C to +85°C	2.0V	4 MIPS,			
	1.25	—	mA	-40°C to +85°C	3.3V	Fosc = 8 MHz		
DC24	4.8	6.8	mA	-40°C to +85°C	2.0V	16 MIPS,		
	4.9	6.9	mA	-40°C to +85°C	3.3V	Fosc = 32 MHz		
DC31	26	78	μA	-40°C to +85°C	2.0V	LPRC (15.5 KIPS),		
	26	80	μΑ	-40°C to +85°C	3.3V	Fosc = 31 kHz		

Note 1: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Typical parameters are for design guidance only and are not tested.

100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-110B

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support