

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga306-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	U2TXIP2	U2TXIP1	U2TXIP0		U2RXIP2	U2RXIP1	U2RXIP0
bit 15			I			L	bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	INT2IP2	INT2IP1	INT2IP0	—	T5IP2	T5IP1	T5IP0
bit 7							bit
Legend:	1. 1.1		1.10				
R = Readab		W = Writable		-	nented bit, read		
-n = Value a	IT POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15	Unimpleme	nted: Read as '	ı'				
bit 14-12	-	>: UART2 Trans		t Priority bite			
511 14-12		pt is Priority 7 (•	•			
	•		inglicer priority	interrupt)			
	•						
	• 001 – Intorru	pt is Priority 1					
		ipt source is dis	abled				
bit 11		nted: Read as '					
bit 10-8	-	>: UART2 Rece		Priority bits			
		pt is Priority 7 (-	•			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 7	Unimplemer	nted: Read as '	כ'				
bit 6-4		: External Interr	• •				
	111 = Interru	pt is Priority 7 (highest priority	interrupt)			
	•						
	•						
		pt is Priority 1					
		pt source is dis					
bit 3	-	nted: Read as '					
bit 2-0		Timer5 Interrupt	-				
	111 = Interru	pt is Priority 7(nignest priority	interrupt)			
	•						
	•						
		pt is Priority 1	ablad				
	uuu = merru	pt source is dis	auleu				

10.6 Clock Frequency and Clock Switching

In Run and Idle modes, all PIC24FJ devices allow for a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSCx bits. The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 9.0** "Oscillator Configuration".

10.7 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default.

It is also possible to use Doze mode to selectively reduce power consumption in event driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

10.8 Selective Peripheral Module Control

Idle and Doze modes allow users to substantially reduce power consumption by slowing or stopping the CPU clock. Even so, peripheral modules still remain clocked, and thus, consume power. There may be cases where the application needs what these modes do not provide: the allocation of power resources to CPU processing with minimal power consumption from the peripherals.

PIC24F devices address this requirement by allowing peripheral modules to be selectively disabled, reducing or eliminating their power consumption. This can be done with two control bits:

- The Peripheral Enable bit, generically named, "XXXEN", located in the module's main control SFR.
- The Peripheral Module Disable (PMD) bit, generically named, "XXXMD", located in one of the PMD Control registers (XXXMD bits are in PMD1, PMD2, PMD3, PMD4, PMD6, PMD7 registers).

Both bits have similar functions in enabling or disabling its associated module. Setting the PMD bit for a module disables all clock sources to that module, reducing its power consumption to an absolute minimum. In this state, the control and status registers associated with the peripheral will also be disabled, so writes to those registers will have no effect and read values will be invalid. Many peripheral modules have a corresponding PMD bit.

In contrast, disabling a module by clearing its XXXEN bit disables its functionality, but leaves its registers available to be read and written to. Power consumption is reduced, but not by as much as the PMD bits are used. Most peripheral modules have an enable bit; exceptions include capture, compare and RTCC.

To achieve more selective power savings, peripheral modules can also be selectively disabled when the device enters Idle mode. This is done through the control bit of the generic name format, "XXXIDL". By default, all modules that can operate during Idle mode will do so. Using the disable on Idle feature disables the module while in Idle mode, allowing further reduction of power consumption during Idle mode, enhancing power savings for extremely critical power applications.

11.4.6 PERIPHERAL PIN SELECT REGISTERS

The PIC24FJ128GA310 family of devices implements a total of 35 registers for remappable peripheral configuration:

- Input Remappable Peripheral Registers (20)
- Output Remappable Peripheral Registers (16)

Note: Input and output register values can only be changed if IOLOCK (OSCCON<6>) = 0. See Section 11.4.4.1 "Control Register Lock" for a specific command sequence.

REGISTER 11-7: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown		nown	

bit 13-8	INT1R<5:0>: Assign External Interrupt 1 (INT1)	to Corresponding RPn or RPIn Pin hits

bit 7-0 Unimplemented: Read as '0'

REGISTER 11-8: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	INT3R5	INT3R4	INT3R3	INT3R2	INT3R1	INT3R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	INT2R5	INT2R4	INT2R3	INT2R2	INT2R1	INT2R0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14Unimplemented: Read as '0'bit 13-8INT3R<5:0>: Assign External Interrupt 3 (INT3) to Corresponding RPn or RPIn Pin bitsbit 7-6Unimplemented: Read as '0'bit 5-0INT2R<5:0>: Assign External Interrupt 2 (INT2) to Corresponding RPn or RPIn Pin bits

NOTES:

REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0		
I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN		
bit 15	bit								
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC		
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN		
bit 7							bit C		
Legend:		HC - Hardwa	re Clearable bit						
R = Reada	ble bit	W = Writable			ented bit, read	as 'O'			
			JIL	-			0.4/2		
-n = Value	atpor	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkn	own		
bit 15	12CEN: 12Cx E	Enable bit							
	1 = Enables t	he I2Cx module	e and configure	s the SDAx and	I SCLx pins as	serial port pins			
			e; all l ² C™ pins						
bit 14	Unimplement	ted: Read as '0	,						
bit 13	I2CSIDL: I2C	x Stop in Idle M	ode bit						
			eration when de tion in Idle mod		Idle mode				
bit 12	SCLREL: SC	Lx Release Cor	ntrol bit (when o	perating as I ² C	slave)				
		1 = Releases SCLx clock 0 = Holds SCLx clock low (clock stretch)							
	If STREN = 1:		write '0' to initi	ate stretch and	write '1' to rele	ase clock) Ha	rdware is clear		
			smission. Hard						
	If STREN = 0:								
	Bit is R/S (i.e. transmission.	, software may	only write '1' to	release clock)	. Hardware is o	clear at the beg	inning of slave		
bit 11	IPMIEN: Intell	igent Platform I	Management In	terface (IPMI) E	Enable bit				
	1 = IPMI Sup 0 = IPMI mod		abled; all addre	esses are Ackno	owledged				
bit 10	A10M: 10-Bit	Slave Addressi	ng bit						
	1 = I2CxADD	is a 10-bit slav	e address						
	0 = I2CxADD	is a 7-bit slave	address						
bit 9	DISSLW: Disa	able Slew Rate	Control bit						
		control is disal							
bit 8	SMEN: SMBu	s Input Levels	oit						
		/O pin threshol the SMBus inp	ds compliant wi ut thresholds	th SMBus spec	ifications				
bit 7	GCEN: Gener	al Call Enable	bit (when opera	ting as I ² C slav	e)				
	1 = Enables i reception	-	a general call a	address is rece	ived in the I2C	xRSR (module	is enabled for		
		all address is c	lisabled						
bit 6	STREN: SCL	k Clock Stretch	Enable bit (whe	en operating as	I ² C slave)				
		nction with the	SCLREL bit. eive clock stretc						

REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER

R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC				
ACKSTAT	TRSTAT				BCL	GCSTAT	ADD10				
bit 15							bit 8				
R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC				
IWCOL	I2COV	D/Ā	Р	S	R/W	RBF	TBF				
bit 7							bit 0				
Legend:	Legend: C = Clearable bit HS = Hardware Settable bit										
R = Readab	ole bit	W = Writabl			nted bit, read as	· 'O'					
-n = Value a		'1' = Bit is s		'0' = Bit is clear		x = Bit is unkno	wn				
	ware Settable										
bit 15	ACKSTAT:	Acknowledge	Status bit								
		was detected									
		as detected la set or cleare		of Acknowledge.							
bit 14		ansmit Status		, , , , , , , , , , , , , , , , , , ,							
				icable to master	transmit operati	on.)					
			progress (8 b	its + ACK)							
	 0 = Master transmit is not in progress Hardware is set at the beginning of master transmission; hardware is clear at the end of slave Acknowledge. 										
bit 13-11		ented: Read a	•				ie / loit ie wiedge				
bit 10	-	er Bus Collisio									
	1 = A bus c	ollision has b	een detected	during a master	operation						
	0 = No colli		testion of a b								
bit 9		eneral Call S	etection of a bi	us collision.							
DIL 9			s was received	4							
			s was not rece								
	Hardware is	set when the	e address mate	ches the general	call address; ha	rdware is clear a	t Stop detection.				
bit 8		Bit Address S									
		ddress was r ddress was r									
				te of the matched	110-bit address; h	nardware is clear a	at Stop detection.				
bit 7		ite Collision E	-				·				
	1 = An atter	mpt to write t	o the I2CxTRI	N register failed	because the I ² C	module is busy					
	0 = No colli		ourroppo of w	ite te IOOVTON	while husy (sloar	ad by coffwore)					
bit 6		eive Overflow			while busy (clear	ed by software).					
bit 0			•	xRCV register is	still holding the	previous byte					
	0 = No over	rflow									
6.4. F	_		-		2CxRCV (cleare	d by software).					
bit 5			then operating to byte receive	l as l ² C slave)							
				ed was data	address						
	Hardware is	s clear at the	e device addr			er a transmissio	n finishes or by				
	reception of	a slave byte									

18.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to "UART" (DS39708) in the "dsPIC33/PIC24 Family Reference Manual". The information in this data sheet supersedes the information in the FRM.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the PIC24F device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins, and includes an IrDA[®] encoder and decoder.

The primary features of the UART module are:

- Full-Duplex, 8 or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- · One or Two Stop bits
- Hardware Flow Control Option with the UxCTS and UxRTS Pins

- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 15 bps to 1 Mbps at 16 MIPS
- 4-Deep, First-In-First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- Loopback mode for Diagnostic Support
- · Support for Sync and Break Characters
- Supports Automatic Baud Rate Detection
- IrDA[®] Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UART is shown in Figure 18-1. The UART module consists of these key important hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 18-1: UARTx SIMPLIFIED BLOCK DIAGRAM Baud Rate Generator IrDA® Hardware Flow Control UXRTS/BCLKx UARTx Receiver UARTx Receiver UARTx Transmitter VART Note: The UART inputs and outputs must all be assigned to available RPn/RPIn pins before use. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.

REGISTER 19-3:

R/W-x R/W-x R/W-x R/W-x U-0 R/W-x R/W-x R/W-x CH0⁽¹⁾ CH3(1) CH2⁽¹⁾ CH1⁽¹⁾ CHODIS CHPOL CHSYNC bit 15 bit 8 R/W-0 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x U-0 CI 3⁽¹⁾ CI 2⁽¹⁾ CL1⁽¹⁾ CI 0⁽¹⁾ CLODIS CLPOL CLSYNC bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CHODIS: Modulator High Carrier Output Disable bit 1 = Output signal driving the peripheral output pin (selected by CH<3:0>) is disabled 0 = Output signal driving the peripheral output pin is enabled bit 14 CHPOL: Modulator High Carrier Polarity Select bit 1 = Selected high carrier signal is inverted 0 = Selected high carrier signal is not inverted bit 13 CHSYNC: Modulator High Carrier Synchronization Enable bit 1 = Modulator waits for a falling edge on the high carrier before allowing a switch to the low carrier 0 = Modulator output is not synchronized to the high time carrier signal⁽¹⁾ bit 12 Unimplemented: Read as '0' bit 11-8 CH<3:0> Modulator Data High Carrier Selection bits⁽¹⁾ 1111 = Reserved . . . 1011 1010 = Output Compare/PWM Module 7 output 1001 = Output Compare/PWM Module 6 output 1000 = Output Compare/PWM Module 5 output 0111 = Output Compare/PWM Module 4 output 0110 = Output Compare/PWM Module 3 output 0101 = Output Compare/PWM Module 2 output 0100 = Output Compare/PWM Module 1 output 0011 = Reference clock (REFO) output 0010 = Input on MDCIN2 pin 0001 = Input on MDCIN1 pin 0000 = Vss bit 7 CLODIS: Modulator Low Carrier Output Disable bit 1 = Output signal driving the peripheral output pin (selected by CL<3:0>) is disabled 0 = Output signal driving the peripheral output pin is enabled bit 6 CLPOL: Modulator Low Carrier Polarity Select bit 1 = Selected low carrier signal is inverted 0 = Selected low carrier signal is not inverted bit 5 **CLSYNC:** Modulator Low Carrier Synchronization Enable bit 1 = Modulator waits for a falling edge on the low carrier before allowing a switch to the high carrier 0 = Modulator output is not synchronized to the low time carrier signal⁽¹⁾bit 4 Unimplemented: Read as '0' CL<3:0> Modulator Data Low Carrier Selection bits⁽¹⁾ bit 3-0 Bit settings are identical to those for CH<3:0>.

MDCAR: MODULATOR CARRIER CONTROL REGISTER

Note 1: Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

R-0, HSC	U-0	R/C-0, HS	R/C-0, HS	U-0	U-0	U-0	U-0	
BUSY	_	ERROR	TIMEOUT				_	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
RADDR23 ⁽¹⁾	RADDR22 ⁽¹⁾	RADDR21 ⁽¹⁾	RADDR20 ⁽¹⁾	RADDR19 ⁽¹⁾	RADDR18 ⁽¹⁾	RADDR17 ⁽¹⁾	RADDR16 ⁽¹⁾	
bit 7							bit 0	
Legend:		HS = Hardward	e Settable bit	HSC = Hardwa	are Settable/Cl	earable bit		
R = Readable	bit	W = Writable I	oit	U = Unimpleme	ented, read as '	0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own	
C = Clearable	bit							
bit 15	BUSY: Busy b	oit (Master mod	e only)					
	1 = Port is bu	•						
	0 = Port is no	,						
bit 14	Unimplement	ted: Read as '0)'					
bit 13	ERROR: Erro							
		on error (illegal		as requested)				
h:: 40		on completed s	successfully					
bit 12	TIMEOUT: Tir							
	1 = Transaction timed out0 = Transaction completed successfully							
bit 11-8								
bit 7-0	•			erved Address S	Space bits ⁽¹⁾			
	bit 7-0 RADDR<23:16>: Parallel Master Port Reserved Address Space bits ⁽¹⁾							
Note 1: If R	Note 1: If RADDR<23:16> = 00000000, then the last EDS address for Chip Select 2 will be FFFFFh.							

REGISTER 20-2: PMCON2: EPMP CONTROL REGISTER 2

22.2 RTCC Module Registers

The RTCC module registers are organized into three categories:

- RTCC Control Registers
- RTCC Value Registers
- Alarm Value Registers

22.2.1 REGISTER MAPPING

To limit the register interface, the RTCC Timer and Alarm Time registers are accessed through corresponding register pointers. The RTCC Value register window (RTCVALH and RTCVALL) uses the RTCPTR bits (RCFGCAL<9:8>) to select the desired Timer register pair (see Table 22-1).

By writing the RTCVALH byte, the RTCC Pointer value, the RTCPTR<1:0> bits decrement by one until they reach '00'. Once they reach '00', the MINUTES and SECONDS value will be accessible through RTCVALH and RTCVALL until the pointer value is manually changed.

TABLE 22-1: RTCVAL REGISTER MAPPING

RTCPTR<1:0>	RTCC Value Register Window					
KIGPIK(I.0>	RTCVAL<15:8>	RTCVAL<7:0>				
00	MINUTES	SECONDS				
01	WEEKDAY	HOURS				
10	MONTH	DAY				
11	—	YEAR				

The Alarm Value register window (ALRMVALH and ALRMVALL) uses the ALRMPTR bits (ALCFGRPT<9:8>) to select the desired Alarm register pair (see Table 22-2).

By writing the ALRMVALH byte, the Alarm Pointer value, ALRMPTR<1:0> bits, decrement by one until they reach '00'. Once they reach '00', the ALRMMIN and ALRMSEC value will be accessible through ALRMVALH and ALRMVALL until the pointer value is manually changed.

TABLE 22-2: ALRMVAL REGISTER MAPPING

ALRMPTR	Alarm Value Register Window					
<1:0>	ALRMVAL<15:8>	ALRMVAL<7:0>				
00	ALRMMIN	ALRMSEC				
01	ALRMWD	ALRMHR				
10	ALRMMNTH	ALRMDAY				
11	—	—				

Considering that the 16-bit core does not distinguish between 8-bit and 16-bit read operations, the user must be aware that when reading either the ALRMVALH or ALRMVALL bytes, the ALRMPTR<1:0> value will be decremented. The same applies to the RTCVALH or RTCVALL bytes with the RTCPTR<1:0> being decremented.

Note:	This only applies to read operations and
	not write operations.

22.2.2 WRITE LOCK

In order to perform a write to any of the RTCC Timer registers, the RTCWREN bit (RCFGCAL1<13>) must be set (see Example 22-1).

Note:	To avoid accidental writes to the timer, it is recommended that the RTCWREN bit (RCFGCAL1<13>) is kept clear at any other time. For the RTCWREN bit to be set, there is only one instruction cycle time
	window allowed between the 55h/AA sequence and the setting of RTCWREN; therefore, it is recommended that code follow the procedure in Example 22-1.

22.2.3 SELECTING RTCC CLOCK SOURCE

The clock source for the RTCC module can be selected using the RTCLK<1:0> bits in the RTCPWC register. When the bits are set to '00', the Secondary Oscillator (SOSC) is used as the reference clock and when the bits are '01', LPRC is used as the reference clock. When RTCLK<1:0> = 10 and 11, the external power line (50 Hz and 60 Hz) is used as the clock source.

EXAMPLE 22-1: SETTING THE RTCWREN BIT

```
asm volatile("push w7");
asm volatile("push w8");
asm volatile("disi #5");
asm volatile("mov #0x55, w7");
asm volatile("mov w7, _NVMKEY");
asm volatile("mov #0xAA, w8");
asm volatile("mov w8, _NVMKEY");
asm volatile("bset _RCFGCAL1, #13"); //set the RTCWREN bit
asm volatile("pop w8");
asm volatile("pop w7");
```

24.4 Control Registers

The 12-bit ADC is controlled through a total of 13 registers:

- AD1CON1 through AD1CON5 (Register 24-1 through Register 24-5)
- AD1CS (Register 24-6)
- AD1CHITH and AD1CHITL (Register 24-8 and Register 24-9)

- AD1CSSH and AD1CSSL (Register 24-10 and Register 24-11)
- AD1CTMENH and AD1CTMENL (Register 24-12 and Register 24-13)
- AD1DMBUF (not shown) The 16-bit conversion buffer for Extended Buffer mode

DMABL<2:0> Buffer Size per Channel (words)		Generated Offset Address (lower 11 bits)	Available Input Channels	Allowable DMADST Addresses
000	1	000 00cc ccc0	32	xxxx xxxx xx00 0000
001	2	000 0ccc ccn0	32	xxxx xxxx x000 0000
010	4	000 cccc cnn0	32	xxxx xxxx 0000 0000
011	8	00c cccc nnn0	32	xxxx xxx0 0000 0000
100	16	0cc cccn nnn0	32	xxxx xx00 0000 0000
101	32	ccc ccnn nnn0	32	xxxx x000 0000 0000
110	64	ccc cnnn nnn0	16	xxxx x000 0000 0000
111	128	ccc nnnn nnn0	8	xxxx x000 0000 0000

Legend: ccc = Channel number (three to five bits), n = Base buffer address (zero to seven bits),

x = User-definable range of DMADST for base address, 0 = Masked bits of DMADST for IA.

REGISTER 24-1: AD1CON1: ADC1 CONTROL REGISTER 1 (CONTINUED)

- bit 1 **SAMP:** ADC Sample Enable bit
 - 1 = ADC Sample-and-Hold amplifiers are sampling
 - 0 = ADC Sample-and-Hold amplifiers are holding
- bit 0 DONE: ADC Conversion Status bit
 - 1 = ADC conversion cycle has completed
 - 0 = ADC conversion has not started or is in progress
- Note 1: This bit is only available when extended DMA/buffer features are available (DMAEN = 1).

REGISTER 24-6: AD1CHS: ADC1 SAMPLE SELECT REGISTER (CONTINUED)

- bit 7-5 **CH0NA<2:0>:** Sample A Channel 0 Negative Input Select bits Same definitions as for CHONB<2:0>.
- bit 4-0 **CH0SA<4:0>:** Sample A Channel 0 Positive Input Select bits Same definitions as for CHOSB<4:0>.
- Note 1: These input channels do not have corresponding memory-mapped result buffers.
 - 2: These channels are implemented in 100-pin devices only.

REGISTER 24-7: ANCFG: ADC BAND GAP REFERENCE CONFIGURATION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	_
bit 15 b							

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
—	—	—	—	—	VBG6EN	VBG2EN	VBGEN		
bit 7 bit 0									

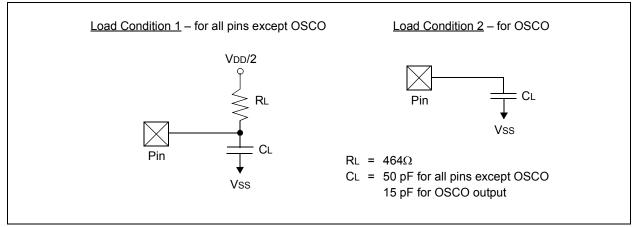
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 bit 2	Unimplemented: Read as '0' VBG6EN: ADC Input VBG/6 Enable bit 1 = Band gap voltage, divided by six reference (VBG/6), is enabled
	0 = Band gap, divided by six reference (VBG/6), is disabled
bit 1	VBG2EN: ADC Input VBG/2 Enable bit
	 1 = Band gap voltage, divided by two reference (VBG/2), is enabled 0 = Band gap, divided by two reference (VBG/2), is disabled
bit 0	VBGEN: ADC Input VBG Enable bit
	 1 = Band gap voltage reference (VBG) is enabled 0 = Band gap reference (VBG) is disabled

TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Assembly Mnemonic	Assembly Syntax PWRSAV #lit1		Description	# of Words	# of Cycles	Status Flags Affected
PWRSAV			Go into Sleep or Idle mode	1		WDTO, Sleep
RCALL	RCALL	Expr	Relative Call	1	2	None
	RCALL	Wn	Computed Call	1	2	None
REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
	REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
RESET	RESET		Software Device Reset	1	1	None
RETFIE	RETFIE		Return from Interrupt	1	3 (2)	None
RETLW	RETLW	#lit10,Wn	Return with Literal in Wn	1	3 (2)	None
RETURN	RETURN		Return from Subroutine	1	3 (2)	None
RLC	RLC	f	f = Rotate Left through Carry f	1	1	C, N, Z
	RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C, N, Z
	RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C, N, Z
RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N, Z
RRC	RRC	f	f = Rotate Right through Carry f	1	1	C, N, Z
	RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C, N, Z
	RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C, N, Z
RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N, Z
SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C, N, Z
SETM	SETM	f	f = FFFFh	1	1	None
	SETM	WREG	WREG = FFFFh	1	1	None
	SETM	Ws	Ws = FFFFh	1	1	None
SL	SL	f	f = Left Shift f	1	1	C, N, OV, Z
	SL	f,WREG	WREG = Left Shift f	1	1	C, N, OV, Z
	SL	Ws,Wd	Wd = Left Shift Ws	1	1	C, N, OV, Z
	SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N, Z
	SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N, Z
SUB	SUB	f	f = f – WREG	1	1	C, DC, N, OV, 2
	SUB	f,WREG	WREG = f – WREG	1	1	C, DC, N, OV, 2
	SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C, DC, N, OV, 2
	SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C, DC, N, OV, 2
	SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C, DC, N, OV, 2
SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C, DC, N, OV, 2
	SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C, DC, N, OV, 2
	SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C, DC, N, OV, 2
	SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C, DC, N, OV, 2
	SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C, DC, N, OV, Z
SUBR	SUBR	f	f = WREG – f	1	1	C, DC, N, OV, 2
	SUBR	f,WREG	WREG = WREG – f	1	1	C, DC, N, OV, 2
	SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C, DC, N, OV, 2
	SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C, DC, N, OV, Z
SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C, DC, N, OV, Z
	SUBBR		$Wd = Ws - Wb - (\overline{C})$	1	1	C, DC, N, OV, Z
		Wb,Ws,Wd	$Wd = WS - WD - (C)$ $Wd = lit5 - Wb - (\overline{C})$	1	1	
	SUBBR	Wb,#lit5,Wd Wn	Wd = Iit5 - Wb - (C) Wn = Nibble Swap Wn	1	1	C, DC, N, OV, Z None
SWAP	SWAP.b					

NOTES:


32.2 AC Characteristics and Timing Parameters

The information contained in this section defines the PIC24FJ128GA310 family AC characteristics and timing parameters.

TABLE 32-17: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 2V to 3.6V (unless otherwise stated)
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial
	Operating voltage VDD range as described in Section 32.1 "DC Characteristics".

FIGURE 32-2: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 32-18: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO50	Cosco	OSCO/CLKO Pin	_	—	15	pF	In XT and HS modes when external clock is used to drive OSCI
DO56	Сю	All I/O Pins and OSCO	_	—	50	pF	EC mode
DO58	Св	SCLx, SDAx		—	400	pF	In l ² C™ mode

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{(Industrial)} \end{array}$					
Param No.	Symbol TLO:SCL	Characteristic		Min	Max	Units	Conditions		
IS10		Clock Low Time	100 kHz mode	4.7	—	μS	Device must operate at a minimum of 1.5 MHz		
			400 kHz mode	1.3	—	μS	Device must operate at a minimum of 10 MHz		
			1 MHz mode ⁽¹⁾	0.5	—	μs	—		
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz		
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz		
			1 MHz mode ⁽¹⁾	0.5		μS	_		
IS20	TF:SCL	SDAx and SCLx Fall Time	100 kHz mode		300	ns	CB is specified to be from		
			400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF		
			1 MHz mode ⁽¹⁾	—	100	ns			
IS21	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode		1000	ns	CB is specified to be from		
			400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF		
			1 MHz mode ⁽¹⁾	—	300	ns			
IS25	Tsu:dat	Data Input Setup Time	100 kHz mode	250		ns			
			400 kHz mode	100		ns			
			1 MHz mode ⁽¹⁾	100		ns			
IS26	Thd:dat	Data Input Hold Time	100 kHz mode	0		ns			
			400 kHz mode	0	0.9	μS			
			1 MHz mode ⁽¹⁾	0	0.3	μS			
IS40	TAA:SCL	Output Valid From Clock	100 kHz mode	0	3500	ns			
			400 kHz mode	0	1000	ns			
			1 MHz mode ⁽¹⁾	0	350	ns			
IS45	Tbf:sda	Bus Free Time	100 kHz mode	4.7	_	μS	Time the bus must be free		
			400 kHz mode	1.3		μS	before a new transmission		
			1 MHz mode ⁽¹⁾	0.5	_	μS	can start		
IS50	Св	Bus Capacitive Lo	—	400	pF				

TABLE 32-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I^2C^{TM} pins (for 1 MHz mode only).

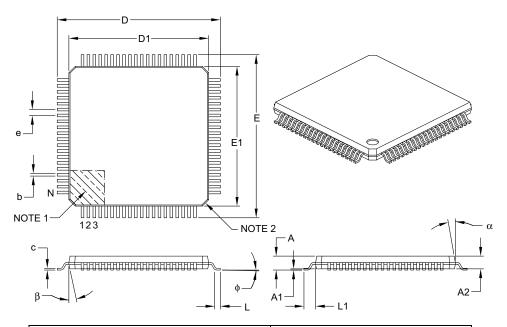

AC CHARACTERISTICS			Standard Operating Conditions: 2V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$					
Param No.	Symbol Characteristic		Min.	Тур	Max.	Units	Conditions	
		Cloc	k Parame	ters				
AD50	Tad	ADC Clock Period	312		_	ns		
AD51	trc	ADC Internal RC Oscillator Period	—	250	_	ns		
		Con	version R	ate	•			
AD55	tCONV	Conversion Time		14	_	TAD		
AD56	FCNV	Throughput Rate			200	ksps	AVDD > 2.7V	
AD57	tSAMP	Sample Time	—	1	_	Tad		
		Cloc	k Parame	ters				
AD61	tPSS	Sample Start Delay from Setting Sample bit (SAMP)	2	—	3	Tad		

TABLE 32-40: ADC CONVERSION TIMING REQUIREMENTS⁽¹⁾

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
	Dimension Limits	MIN	NOM	MAX	
Number of Leads	N				
Lead Pitch	е	0.50 BSC			
Overall Height	А	-	-	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	ф	0°	3.5°	7°	
Overall Width	E	14.00 BSC			
Overall Length	D	14.00 BSC			
Molded Package Width	E1	12.00 BSC			
Molded Package Length	D1	12.00 BSC			
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.17	0.22	0.27	
Mold Draft Angle Top	α	11°	12°	13°	
Mold Draft Angle Bottom	β	11°	12°	13°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-092B

NOTES: