

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                         |
|----------------------------|--------------------------------------------------------------------------------|
| Core Processor             | PIC                                                                            |
| Core Size                  | 16-Bit                                                                         |
| Speed                      | 32MHz                                                                          |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                                |
| Peripherals                | Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT                                |
| Number of I/O              | 53                                                                             |
| Program Memory Size        | 64KB (22K x 24)                                                                |
| Program Memory Type        | FLASH                                                                          |
| EEPROM Size                | -                                                                              |
| RAM Size                   | 8K x 8                                                                         |
| Voltage - Supply (Vcc/Vdd) | 2V ~ 3.6V                                                                      |
| Data Converters            | A/D 16x10b/12b                                                                 |
| Oscillator Type            | Internal                                                                       |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                              |
| Mounting Type              | Surface Mount                                                                  |
| Package / Case             | 64-TQFP                                                                        |
| Supplier Device Package    | 64-TQFP (10x10)                                                                |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga306t-i-pt |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## 3.3 Arithmetic Logic Unit (ALU)

The PIC24F ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array, or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

The PIC24F CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

#### 3.3.1 MULTIPLIER

The ALU contains a high-speed, 17-bit x 17-bit multiplier. It supports unsigned, signed or mixed sign operation in several multiplication modes:

- 1. 16-bit x 16-bit signed
- 2. 16-bit x 16-bit unsigned
- 3. 16-bit signed x 5-bit (literal) unsigned
- 4. 16-bit unsigned x 16-bit unsigned
- 5. 16-bit unsigned x 5-bit (literal) unsigned
- 6. 16-bit unsigned x 16-bit signed
- 7. 8-bit unsigned x 8-bit unsigned

### 3.3.2 DIVIDER

The divide block supports signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. Sixteen-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn), and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

#### 3.3.3 MULTI-BIT SHIFT SUPPORT

The PIC24F ALU supports both single bit and single-cycle, multi-bit arithmetic and logic shifts. Multi-bit shifts are implemented using a shifter block, capable of performing up to a 15-bit arithmetic right shift, or up to a 15-bit left shift, in a single cycle. All multi-bit shift instructions only support Register Direct Addressing for both the operand source and result destination.

A full summary of instructions that use the shift operation is provided in Table 3-2.

#### TABLE 3-2: INSTRUCTIONS THAT USE THE SINGLE BIT AND MULTI-BIT SHIFT OPERATION

| Instruction | Description                                                 |
|-------------|-------------------------------------------------------------|
| ASR         | Arithmetic shift right source register by one or more bits. |
| SL          | Shift left source register by one or more bits.             |
| LSR         | Logical shift right source register by one or more bits.    |

## TABLE 4-32: DEEP SLEEP REGISTER MAP

| File Name | Addr | Bit 15 | Bit 14                           | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8  | Bit 7 | Bit 6 | Bit 5 | Bit 4   | Bit 3  | Bit 2  | Bit 1 | Bit 0   | All<br>Resets |
|-----------|------|--------|----------------------------------|--------|--------|--------|--------|-------|--------|-------|-------|-------|---------|--------|--------|-------|---------|---------------|
| DSCON     | 0758 | DSEN   |                                  | —      | _      | —      | —      | —     |        | _     | _     | _     | —       | —      | r      | DSBOR | RELEASE | 0000(1)       |
| DSWAKE    | 075A | _      | _                                | _      | _      | _      | _      | _     | DSINT0 | DSFLT | _     | _     | DSWDT   | DSRTCC | DSMCLR | _     | _       | 0000(1)       |
| DSGPR0    | 075C |        | Deep Sleep Semaphore Data 0 000  |        |        |        |        |       |        |       |       |       | 0000(1) |        |        |       |         |               |
| DSGPR1    | 075E |        | Deep Sleep Semaphore Data 1 0000 |        |        |        |        |       |        |       |       |       | 0000(1) |        |        |       |         |               |

**Legend:** — = unimplemented, read as '0'; r = reserved. Reset values are shown in hexadecimal.

Note 1: These registers are only reset on a VDD POR event.

#### TABLE 4-33: NVM REGISTER MAP

| File Name | Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4    | Bit 3       | Bit 2  | Bit 1  | Bit 0  | All<br>Resets       |
|-----------|------|--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|----------|-------------|--------|--------|--------|---------------------|
| NVMCON    | 0760 | WR     | WREN   | WRERR  | _      | —      | —      | —     | —     | —     | ERASE | —     | _        | NVMOP3      | NVMOP2 | NVMOP1 | NVMOP0 | <sub>0000</sub> (1) |
| NVMKEY    | 0766 | —      | _      | _      | _      | —      | _      | _     | —     |       |       | 1     | NVMKEY R | egister<7:0 | >      |        |        | 0000                |

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The Reset value shown is for POR only. The value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

#### TABLE 4-34: PMD REGISTER MAP

| File Name | Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9  | Bit 8 | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | All<br>Resets |
|-----------|------|--------|--------|--------|--------|--------|--------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|---------------|
| PMD1      | 0770 | T5MD   | T4MD   | T3MD   | T2MD   | T1MD   | —      | —      | —     | I2C1MD | U2MD   | U1MD   | SPI2MD | SPI1MD | —      | -      | ADC1MD | 0000          |
| PMD2      | 0772 | _      | IC7MD  | IC6MD  | IC5MD  | IC4MD  | IC3MD  | IC2MD  | IC1MD | —      | OC7MD  | OC6MD  | OC5MD  | OC4MD  | OC3MD  | OC2MD  | OC1MD  | 0000          |
| PMD3      | 0774 | —      | _      | _      | —      | DSMMD  | CMPMD  | RTCCMD | PMPMD | CRCMD  | _      | _      | _      | U3MD   | _      | I2C2MD | _      | 0000          |
| PMD4      | 0776 | —      | _      | _      | —      | —      | _      | _      | —     | —      | UPWMMD | U4MD   | _      | REFOMD | CTMUMD | LVDMD  | _      | 0000          |
| PMD6      | 077A | —      | _      | _      | —      | —      | _      | _      | —     | —      | LCDMD  | _      | _      | _      | —      | —      | SPI3MD | 0000          |
| PMD7      | 077C | _      | _      | _      | —      | _      | —      | _      | _     | —      | _      | DMA1MD | DMA0MD | _      | _      | _      | _      | 0000          |

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

## 4.3 Interfacing Program and Data Memory Spaces

The PIC24F architecture uses a 24-bit-wide program space and 16-bit-wide Data Space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the PIC24F architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the Data Space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This makes the method ideal for accessing data tables that need to be updated from time to time. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look ups from a large table of static data. It can only access the least significant word of the program word.

## 4.3.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Memory Page Address register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the MSBs of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

For remapping operations, the 10-bit Extended Data Space Read register (DSRPAG) is used to define a 16K word page in the program space. When the Most Significant bit (MSb) of the EA is '1', and the MSb (bit 9) of DSRPAG is '1', the lower 8 bits of DSRPAG are concatenated with the lower 15 bits of the EA to form a 23-bit program space address. The DSRPAG<8> bit decides whether the lower word (when bit is '0') or the higher word (when bit is '1') of program memory is mapped. Unlike table operations, this strictly limits remapping operations to the user memory area.

Table 4-37 and Figure 4-8 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> refers to a program space word, whereas D<15:0> refers to a Data Space word.

|                          | Access        | Program Space Address        |           |                                                  |     |   |  |  |  |  |
|--------------------------|---------------|------------------------------|-----------|--------------------------------------------------|-----|---|--|--|--|--|
| Access Type              | Space         | <23>                         | <22:16>   | <14:1>                                           | <0> |   |  |  |  |  |
| Instruction Access       | User          | 0                            |           | PC<22:1>                                         |     | 0 |  |  |  |  |
| (Code Execution)         |               | 0xx xxxx xxxx xxxx xxxx xxx0 |           |                                                  |     |   |  |  |  |  |
| TBLRD/TBLWT              | User          | TB                           | LPAG<7:0> | Data EA<15:0>                                    |     |   |  |  |  |  |
| (Byte/Word Read/Write)   |               | 02                           | xxx xxxx  | XXXX XXXX XXXX XXXX                              |     |   |  |  |  |  |
|                          | Configuration | TB                           | LPAG<7:0> | Data EA<15:0>                                    |     |   |  |  |  |  |
|                          |               | 1:                           | xxx xxxx  | xxxx xxxx xxxx xxxx                              |     |   |  |  |  |  |
| Program Space Visibility | User          | 0                            | DSRPAG<7: | 7:0> <sup>(2)</sup> Data EA<14:0> <sup>(1)</sup> |     |   |  |  |  |  |
| (Block Remap/Read)       |               | 0                            | XXXX XXX  | *** ****                                         |     |   |  |  |  |  |

#### TABLE 4-37: PROGRAM SPACE ADDRESS CONSTRUCTION

**Note 1:** Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is DSRPAG<0>.

2: DSRPAG<9> is always '1' in this case. DSRPAG<8> decides whether the lower word or higher word of program memory is read. When DSRPAG<8> is '0', the lower word is read and when it is '1', the higher word is read.

#### EXAMPLE 6-2: ERASING A PROGRAM MEMORY BLOCK ('C' LANGUAGE CODE)

| <pre>// C example using MPLAB C30     unsigned long progAddr = 0xXXXXXX;     unsigned int offset;</pre> | // Address of row to write                             |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| //Set up pointer to the first memory location to                                                        | o be written                                           |
| TBLPAG = progAddr>>16;                                                                                  | // Initialize PM Page Boundary SFR                     |
| offset = progAddr & 0xFFFF;                                                                             | <pre>// Initialize lower word of address</pre>         |
| builtin_tblwtl(offset, 0x0000);                                                                         | // Set base address of erase block                     |
|                                                                                                         | // with dummy latch write                              |
| NVMCON = $0 \times 4042$ ;                                                                              | // Initialize NVMCON                                   |
| asm("DISI #5");                                                                                         | <pre>// Block all interrupts with priority &lt;7</pre> |
|                                                                                                         | // for next 5 instructions                             |
| <pre>builtin_write_NVM();</pre>                                                                         | // check function to perform unlock                    |
|                                                                                                         | // sequence and set WR                                 |

#### EXAMPLE 6-3: LOADING THE WRITE BUFFERS

| ; | Set up NVMCON for row programming operations                        | 5                                       |
|---|---------------------------------------------------------------------|-----------------------------------------|
|   | MOV #0x4001, W0                                                     | ;                                       |
|   | MOV W0, NVMCON                                                      | ; Initialize NVMCON                     |
| ; | Set up a pointer to the first program memory                        | / location to be written                |
| ; | program memory selected, and writes enabled                         |                                         |
|   | MOV #0x0000, W0                                                     | ;                                       |
|   | MOV W0, TBLPAG                                                      | ; Initialize PM Page Boundary SFR       |
|   | MOV #0x6000, W0                                                     | ; An example program memory address     |
| ; | $\ensuremath{\texttt{Perform}}$ the TBLWT instructions to write the | latches                                 |
| ; | 0th_program_word                                                    |                                         |
|   | MOV #LOW_WORD_0, W2                                                 | ;                                       |
|   | MOV #HIGH_BYTE_0, W3                                                | ;                                       |
|   | TBLWTL W2, [W0]                                                     | ; Write PM low word into program latch  |
|   | TBLWTH W3, [W0++]                                                   | ; Write PM high byte into program latch |
| ; | lst_program_word                                                    |                                         |
|   | MOV #LOW_WORD_1, W2                                                 | ;                                       |
|   | MOV #HIGH_BYTE_1, W3                                                | i                                       |
|   | TBLWTL W2, [W0]                                                     | ; Write PM low word into program latch  |
|   | TBLWTH W3, [W0++]                                                   | ; Write PM high byte into program latch |
| ; | 2nd_program_word                                                    |                                         |
|   | MOV #LOW_WORD_2, W2                                                 | ;                                       |
|   | MOV #HIGH_BYTE_2, W3                                                | ;                                       |
|   | TBLWTL W2, [W0]                                                     | ; Write PM low word into program latch  |
|   | TBLWTH W3, [W0++]                                                   | ; Write PM high byte into program latch |
|   | •                                                                   |                                         |
|   | •                                                                   |                                         |
|   | •                                                                   |                                         |
| ; | 63rd_program_word                                                   |                                         |
|   | MOV #LOW_WORD_63, W2                                                | ;                                       |
|   | MOV #HIGH_BYTE_63, W3                                               |                                         |
|   | TBLWTL W2, [W0]                                                     | ; Write PM low word into program latch  |
|   | TBLWTH W3, [W0]                                                     | ; Write PM high byte into program latch |

#### EXAMPLE 6-4: INITIATING A PROGRAMMING SEQUENCE

| DISI  | #5          | ; Block all interrupts with priority <7 |
|-------|-------------|-----------------------------------------|
|       |             | ; for next 5 instructions               |
| MOV.B | #0x55, W0   |                                         |
| MOV   | W0, NVMKEY  | ; Write the 0x55 key                    |
| MOV.B | #0xAA, W1   | i                                       |
| MOV   | W1, NVMKEY  | ; Write the OxAA key                    |
| BSET  | NVMCON, #WR | ; Start the programming sequence        |
| NOP   |             | ; Required delays                       |
| NOP   |             |                                         |
| BTSC  | NVMCON, #15 | ; and wait for it to be                 |
| BRA   | \$-2        | ; completed                             |

© 2010-2014 Microchip Technology Inc.

# 8.0 INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to "Interrupts" (DS39707) in the "dsPIC33/PIC24 Family Reference Manual". The information in this data sheet supersedes the information in the FRM.

The PIC24F interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the PIC24F CPU. It has the following features:

- Up to 8 processor exceptions and software traps
- Seven user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- Unique vector for each interrupt or exception source
- · Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- Fixed interrupt entry and return latencies

#### 8.1 Interrupt Vector Table

The Interrupt Vector Table (IVT) is shown in Figure 8-1. The IVT resides in program memory, starting at location, 000004h. The IVT contains 126 vectors, consisting of 8 non-maskable trap vectors, plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority; this is linked to their position in the vector table. All other things being equal, lower addresses have a higher natural priority. For example, the interrupt associated with Vector 0 will take priority over interrupts at any other vector address.

PIC24FJ128GA310 family devices implement non-maskable traps and unique interrupts. These are summarized in Table 8-1 and Table 8-2.

#### 8.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 8-1. The ALTIVT (INTCON2<15>) control bit provides access to the AIVT. If the ALTIVT bit is set, all interrupt and exception processes will use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports emulation and debugging efforts by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

### 8.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The PIC24F devices clear their registers in response to a Reset, which forces the PC to zero. The micro-controller then begins program execution at location, 000000h. The user programs a GOTO instruction at the Reset address, which redirects program execution to the appropriate start-up routine.

**Note:** Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

### REGISTER 8-2: CORCON: CPU CONTROL REGISTER

| U-0    | U-0 | U-0 | U-0 | U-0                 | U-0 | U-0 | U-0   |
|--------|-----|-----|-----|---------------------|-----|-----|-------|
| —      |     | —   | —   | —                   | —   |     | _     |
| bit 15 |     |     |     |                     |     |     | bit 8 |
|        |     |     |     |                     |     |     |       |
| U-0    | U-0 | U-0 | U-0 | R/C-0               | r-1 | U-0 | U-0   |
| —      | —   | —   | —   | IPL3 <sup>(1)</sup> | r   | —   | —     |
| bit 7  |     |     |     |                     |     |     | bit 0 |
| bit 7  | _   | _   | _   | IPL3 <sup>(1)</sup> | r   | _   |       |

| Legend:           | r = Reserved bit                                    | C = Clearable bit    |                    |  |  |  |  |
|-------------------|-----------------------------------------------------|----------------------|--------------------|--|--|--|--|
| R = Readable bit  | W = Writable bit U = Unimplemented bit, read as '0' |                      | d as '0'           |  |  |  |  |
| -n = Value at POR | '1' = Bit is set                                    | '0' = Bit is cleared | x = Bit is unknown |  |  |  |  |

bit 15-4 Unimplemented: Read as '0'

bit 3 IPL3: CPU Interrupt Priority Level Status bit<sup>(1)</sup> 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less

bit 2 Reserved: Read as '1'

bit 1-0 Unimplemented: Read as '0'

**Note 1:** The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level; see Register 3-2 for bit description.

#### REGISTER 8-13: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)

- bit 2 OC1IE: Output Compare Channel 1 Interrupt Enable bit
  - 1 = Interrupt request is enabled
  - 0 = Interrupt request is not enabled
- bit 1 IC1IE: Input Capture Channel 1 Interrupt Enable bit
  - 1 = Interrupt request is enabled
  - 0 = Interrupt request is not enabled
- bit 0 INTOIE: External Interrupt 0 Enable bit
  - 1 = Interrupt request is enabled
  - 0 = Interrupt request is not enabled

## REGISTER 8-18: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5

| U-0           | U-0                                         | U-0              | U-0             | U-0               | U-0              | R/W-0           | R/W-0  |  |  |  |
|---------------|---------------------------------------------|------------------|-----------------|-------------------|------------------|-----------------|--------|--|--|--|
| _             | _                                           |                  | —               | —                 | —                | U4TXIE          | U4RXIE |  |  |  |
| bit 15        |                                             |                  |                 | •                 |                  |                 | bit 8  |  |  |  |
|               |                                             |                  |                 |                   |                  |                 |        |  |  |  |
| R/W-0         | U-0                                         | U-0              | U-0             | R/W-0             | R/W-0            | R/W-0           | U-0    |  |  |  |
| U4ERIE        | <u> </u>                                    | <u> </u>         | —               | U3TXIE            | <b>U3RXIE</b>    | <b>U3ERIE</b>   |        |  |  |  |
| bit 7         |                                             |                  |                 |                   |                  |                 | bit 0  |  |  |  |
|               |                                             |                  |                 |                   |                  |                 |        |  |  |  |
| Legend:       |                                             |                  |                 |                   |                  |                 |        |  |  |  |
| R = Readable  | e bit                                       | W = Writable     | bit             | U = Unimplem      | nented bit, read | d as '0'        |        |  |  |  |
| -n = Value at | POR                                         | '1' = Bit is set |                 | '0' = Bit is clea | ared             | x = Bit is unkr | nown   |  |  |  |
|               |                                             |                  | .1              |                   |                  |                 |        |  |  |  |
| DIT 15-10     | Unimplemen                                  |                  |                 | 1.1.1             |                  |                 |        |  |  |  |
| DIT 9         |                                             | request is each  | Interrupt Enac  | DIE DIT           |                  |                 |        |  |  |  |
|               | 1 = Interrupt<br>0 = Interrupt              | request is enac  | enabled         |                   |                  |                 |        |  |  |  |
| bit 8         | U4RXIE: UAF                                 | RT4 Receiver In  | iterrupt Enable | bit               |                  |                 |        |  |  |  |
|               | 1 = Interrupt                               | request is enab  | ,<br>oled       |                   |                  |                 |        |  |  |  |
|               | 0 = Interrupt                               | request is not e | enabled         |                   |                  |                 |        |  |  |  |
| bit 7         | U4ERIE: UAF                                 | RT4 Error Interr | upt Enable bit  |                   |                  |                 |        |  |  |  |
|               | 1 = Interrupt                               | request is enab  | led             |                   |                  |                 |        |  |  |  |
|               | 0 = Interrupt                               | request is not e | enabled         |                   |                  |                 |        |  |  |  |
| bit 6-4       | Unimplemen                                  | ted: Read as '(  |                 | 1.1.1             |                  |                 |        |  |  |  |
| Dit 3         |                                             | 13 Transmitter   | Interrupt Enac  | DIE DIT           |                  |                 |        |  |  |  |
|               | $\perp = \text{Interrupt}$<br>0 = Interrupt | request is enac  | enabled         |                   |                  |                 |        |  |  |  |
| bit 2         | U3RXIE: UAF                                 | RT3 Receiver In  | iterrupt Enable | bit               |                  |                 |        |  |  |  |
|               | 1 = Interrupt request is enabled            |                  |                 |                   |                  |                 |        |  |  |  |
|               | 0 = Interrupt                               | request is not e | enabled         |                   |                  |                 |        |  |  |  |
| bit 1         | U3ERIE: UAF                                 | RT3 Error Interr | upt Enable bit  |                   |                  |                 |        |  |  |  |
|               | 1 = Interrupt                               | request is enab  | oled            |                   |                  |                 |        |  |  |  |
|               | 0 = Interrupt                               | request is not e | enabled         |                   |                  |                 |        |  |  |  |
| bit 0         | Unimplemen                                  | ted: Read as '0  | )′              |                   |                  |                 |        |  |  |  |

#### REGISTER 14-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1

| U-0    | U-0 | R/W-0  | R/W-0   | R/W-0   | R/W-0   | U-0 | U-0   |
|--------|-----|--------|---------|---------|---------|-----|-------|
| —      |     | ICSIDL | ICTSEL2 | ICTSEL1 | ICTSEL0 | —   | —     |
| bit 15 |     |        |         |         |         |     | bit 8 |

| U-0   | R/W-0 | R/W-0 | R-0, HSC | R-0, HSC | R/W-0               | R/W-0               | R/W-0               |
|-------|-------|-------|----------|----------|---------------------|---------------------|---------------------|
| —     | ICI1  | ICI0  | ICOV     | ICBNE    | ICM2 <sup>(1)</sup> | ICM1 <sup>(1)</sup> | ICM0 <sup>(1)</sup> |
| bit 7 |       |       |          |          |                     |                     | bit 0               |

| Legend:           | HSC = Hardware Settable/Clearable bit                  |                      |                    |  |  |
|-------------------|--------------------------------------------------------|----------------------|--------------------|--|--|
| R = Readable bit  | bit W = Writable bit U = Unimplemented bit, read as '0 |                      | 1 as '0'           |  |  |
| -n = Value at POR | '1' = Bit is set                                       | '0' = Bit is cleared | x = Bit is unknown |  |  |

| bit 15-14 | Unimplemented: Read as '0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 13    | ICSIDL: Input Capture x Module Stop in Idle Control bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|           | <ul> <li>1 = Input capture module halts in CPU Idle mode</li> <li>0 = Input capture module continues to operate in CPU Idle mode</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| bit 12-10 | ICTSEL<2:0>: Input Capture x Timer Select bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           | 111 = System clock (Fosc/2)<br>110 = Reserved<br>101 = Reserved<br>100 = Timer1<br>011 = Timer5<br>010 = Timer4<br>001 = Timer2<br>000 = Timer3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| bit 9-7   | Unimplemented: Read as '0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| bit 6-5   | ICI<1:0>: Select Number of Captures per Interrupt bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           | <ul> <li>11 = Interrupt on every fourth capture event</li> <li>10 = Interrupt on every third capture event</li> <li>01 = Interrupt on every second capture event</li> <li>00 = Interrupt on every capture event</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| bit 4     | ICOV: Input Capture x Overflow Status Flag bit (read-only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|           | <ul> <li>1 = Input capture overflow has occurred</li> <li>0 = No input capture overflow has occurred</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| bit 3     | ICBNE: Input Capture x Buffer Empty Status bit (read-only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|           | <ul> <li>1 = Input capture buffer is not empty, at least one more capture value can be read</li> <li>0 = Input capture buffer is empty</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| bit 2-0   | ICM<2:0>: Input Capture x Mode Select bits <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           | <ul> <li>111 = Interrupt mode: Input capture functions as an interrupt pin only when the device is in Sleep or Idle mode (rising edge detect only, all other control bits are not applicable)</li> <li>110 = Unused (module is disabled)</li> <li>101 = Prescaler Capture mode: Capture on every 16<sup>th</sup> rising edge</li> <li>100 = Prescaler Capture mode: Capture on every 4<sup>th</sup> rising edge</li> <li>011 = Simple Capture mode: Capture on every falling edge</li> <li>010 = Simple Capture mode: Capture on every falling edge</li> <li>010 = Edge Detect Capture mode: Capture on every edge (rising and falling); ICI&lt;1:0&gt; bits do not control interrupt generation for this mode</li> <li>000 = Input capture module is turned off</li> </ul> |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Note 1: The ICx input must also be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

### 15.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the OCxRS and OCxR registers. The OCxRS and OCxR registers can be written to at any time, but the duty cycle value is not latched until a match between PRy and TMRy occurs (i.e., the period is complete). This provides a double buffer for the PWM duty cycle and is essential for glitchless PWM operation.

Some important boundary parameters of the PWM duty cycle include:

- If OCxR, OCxRS, and PRy are all loaded with 0000h, the OCx pin will remain low (0% duty cycle).
- If OCxRS is greater than PRy, the pin will remain high (100% duty cycle).

See Example 15-1 for PWM mode timing details. Table 15-1 and Table 15-2 show example PWM frequencies and resolutions for a device operating at 4 MIPS and 10 MIPS, respectively.

### EQUATION 15-2: CALCULATION FOR MAXIMUM PWM RESOLUTION<sup>(1)</sup>

 $Maximum PWM Resolution (bits) = \frac{\log_{10} \left( \frac{FCY}{FPWM \bullet (Timer Prescale Value)} \right)}{\log_{10}(2)} bits$ 

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

## EXAMPLE 15-1: PWM PERIOD AND DUTY CYCLE CALCULATIONS<sup>(1)</sup>

1. Find the Timer Period register value for a desired PWM frequency of 52.08 kHz, where Fosc = 8 MHz with PLL (32 MHz device clock rate) and a Timer2 prescaler setting of 1:1.

 $TCY = 2 \bullet TOSC = 62.5 \text{ ns}$ 

PWM Period = 1/PWM Frequency = 1/52.08 kHz = 19.2 ms

PWM Period =  $(PR2 + 1) \bullet TCY \bullet (Timer2 Prescale Value)$ 

 $19.2 \text{ ms} = (PR2 + 1) \bullet 62.5 \text{ ns} \bullet 1$ 

PR2 = 306

2. Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz device clock rate:

PWM Resolution =  $log_{10}(FCY/FPWM)/log_{10}2)$  bits

=  $(\log_{10}(16 \text{ MHz}/52.08 \text{ kHz})/\log_{10}2)$  bits

= 8.3 bits

Note 1: Based on TCY = 2 \* TOSC; Doze mode and PLL are disabled.

## TABLE 15-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (Fcy = 4 MHz)<sup>(1)</sup>

| PWM Frequency         | 7.6 Hz | 61 Hz | 122 Hz | 977 Hz | 3.9 kHz | 31.3 kHz | 125 kHz |
|-----------------------|--------|-------|--------|--------|---------|----------|---------|
| Timer Prescaler Ratio | 8      | 1     | 1      | 1      | 1       | 1        | 1       |
| Period Register Value | FFFFh  | FFFFh | 7FFFh  | 0FFFh  | 03FFh   | 007Fh    | 001Fh   |
| Resolution (bits)     | 16     | 16    | 15     | 12     | 10      | 7        | 5       |

**Note 1:** Based on FCY = FOSC/2; Doze mode and PLL are disabled.

#### TABLE 15-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 16 MIPS (Fcy = 16 MHz)<sup>(1)</sup>

| PWM Frequency         | 30.5 Hz | 244 Hz | 488 Hz | 3.9 kHz | 15.6 kHz | 125 kHz | 500 kHz |
|-----------------------|---------|--------|--------|---------|----------|---------|---------|
| Timer Prescaler Ratio | 8       | 1      | 1      | 1       | 1        | 1       | 1       |
| Period Register Value | FFFFh   | FFFFh  | 7FFFh  | 0FFFh   | 03FFh    | 007Fh   | 001Fh   |
| Resolution (bits)     | 16      | 16     | 15     | 12      | 10       | 7       | 5       |

**Note 1:** Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

NOTES:

## 17.2 Setting Baud Rate When Operating as a Bus Master

To compute the Baud Rate Generator reload value, use Equation 17-1.

#### EQUATION 17-1: COMPUTING BAUD RATE RELOAD VALUE<sup>(1,2)</sup>



**Note 1:** Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

2: These clock rate values are for guidance only. The actual clock rate can be affected by various system level parameters. The actual clock rate should be measured in its intended application.

# 17.3 Slave Address Masking

The I2CxMSK register (Register 17-3) designates address bit positions as "don't care" for both 7-Bit and 10-Bit Addressing modes. Setting a particular bit location (= 1) in the I2CxMSK register causes the slave module to respond whether the corresponding address bit value is a '0' or a '1'. For example, when I2CxMSK is set to '00100000', the slave module will detect both addresses, '0000000' and '0100000'.

To enable address masking, the Intelligent Peripheral Management Interface (IPMI) must be disabled by clearing the IPMIEN bit (I2CxCON<11>).

Note: As a result of changes in the I<sup>2</sup>C<sup>™</sup> protocol, the addresses in Table 17-2 are reserved and will not be Acknowledged in Slave mode. This includes any address mask settings that include any of these addresses.

| Demuired Sustem Foot | For    | I2CxBI    | RG Value      |             |  |
|----------------------|--------|-----------|---------------|-------------|--|
| Required System FSCL | FCY    | (Decimal) | (Hexadecimal) | Actual FSCL |  |
| 100 kHz              | 16 MHz | 157       | 9D            | 100 kHz     |  |
| 100 kHz              | 8 MHz  | 78        | 4E            | 100 kHz     |  |
| 100 kHz              | 4 MHz  | 39        | 27            | 99 kHz      |  |
| 400 kHz              | 16 MHz | 37        | 25            | 404 kHz     |  |
| 400 kHz              | 8 MHz  | 18        | 12            | 404 kHz     |  |
| 400 kHz              | 4 MHz  | 9         | 9             | 385 kHz     |  |
| 400 kHz              | 2 MHz  | 4         | 4             | 385 kHz     |  |
| 1 MHz                | 16 MHz | 13        | D             | 1.026 MHz   |  |
| 1 MHz                | 8 MHz  | 6         | 6             | 1.026 MHz   |  |
| 1 MHz                | 4 MHz  | 3         | 3             | 0.909 MHz   |  |

## **TABLE 17-1:** I2C<sup>™</sup> CLOCK RATES<sup>(1,2)</sup>

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

2: These clock rate values are for guidance only. The actual clock rate can be affected by various system level parameters. The actual clock rate should be measured in its intended application.

...

| TABLE 17-2: | I <sup>2</sup> C <sup>™</sup> RES | ERVED ADDRESSES <sup>(1)</sup> |
|-------------|-----------------------------------|--------------------------------|
|             |                                   |                                |

| Slave Address | R/W Bit | Description                            |  |  |  |  |  |
|---------------|---------|----------------------------------------|--|--|--|--|--|
| 000 000       | 0       | General Call Address <sup>(2)</sup>    |  |  |  |  |  |
| 0000 000      | 1       | tart Byte                              |  |  |  |  |  |
| 0000 001      | x       | CBus Address                           |  |  |  |  |  |
| 0000 01x      | х       | Reserved                               |  |  |  |  |  |
| 0000 1xx      | x       | HS Mode Master Code                    |  |  |  |  |  |
| 1111 0xx      | x       | 10-Bit Slave Upper Byte <sup>(3)</sup> |  |  |  |  |  |
| 1111 1xx      | x       | Reserved                               |  |  |  |  |  |

Note 1: The address bits listed here will never cause an address match, independent of address mask settings.

2: The address will be Acknowledged only if GCEN = 1.

3: A match on this address can only occur on the upper byte in 10-Bit Addressing mode.

#### REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

| bit 4 | P: Stop bit                                                                                                                                                                                                                                     |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | <ul> <li>1 = Indicates that a Stop bit has been detected last</li> <li>0 = Stop bit was not detected last</li> <li>Hardware is set or clear when Start, Repeated Start or Stop is detected.</li> </ul>                                          |
| bit 3 | S: Start bit                                                                                                                                                                                                                                    |
|       | <ul> <li>1 = Indicates that a Start (or Repeated Start) bit has been detected last</li> <li>0 = Start bit was not detected last</li> <li>Hardware is set or clear when Start, Repeated Start or Stop is detected.</li> </ul>                    |
| bit 2 | <b>R/W</b> : Read/Write Information bit (when operating as I <sup>2</sup> C slave)                                                                                                                                                              |
|       | 1 = Read: Indicates the data transfer is output from the slave<br>0 = Write: Indicates the data transfer is input to the slave<br>Hardware is set or clear after the reception of an $I^2C$ device address byte.                                |
| bit 1 | RBF: Receive Buffer Full Status bit                                                                                                                                                                                                             |
|       | <ul> <li>1 = Receive is complete, I2CxRCV is full</li> <li>0 = Receive is not complete, I2CxRCV is empty</li> <li>Hardware is set when I2CxRCV is written with the received byte; hardware is clear when the software reads I2CxRCV.</li> </ul> |
| bit 0 | TBF: Transmit Buffer Full Status bit                                                                                                                                                                                                            |
|       | <ul> <li>1 = Transmit is in progress, I2CxTRN is full</li> <li>0 = Transmit is complete, I2CxTRN is empty</li> </ul>                                                                                                                            |

#### REGISTER 17-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

| U-0       | U-0   | U-0   | U-0   | U-0   | U-0   | R/W-0 | R/W-0  |
|-----------|-------|-------|-------|-------|-------|-------|--------|
| —         | —     | —     |       | —     | —     | AMSK  | <<9:8> |
| bit 15    |       |       |       |       |       |       | bit 8  |
|           |       |       |       |       |       |       |        |
| R/W-0     | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0  |
| AMSK<7:0> |       |       |       |       |       |       |        |
| bit 7     |       |       |       |       |       |       | bit 0  |

Hardware is set when software writes to I2CxTRN; hardware is clear at the completion of data transmission.

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | d as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-10 Unimplemented: Read as '0'

bit 9-0 AMSK<9:0>: Mask for Address Bit x Select bits

1 = Enables masking for bit x of the incoming message address; bit match is not required in this position

0 = Disables masking for bit x; bit match is required in this position

| R/W-0                                                               | R/W-0                                                                  | R/W-0                                                    | R/W-0              | R/W-0                 | R/W-0                 | R/W-0              | R/W-0   |  |  |  |
|---------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------|--------------------|-----------------------|-----------------------|--------------------|---------|--|--|--|
| PWCEI                                                               | N PWCPOL                                                               | PWCPRE                                                   | PWSPRE             | RTCLK1 <sup>(2)</sup> | RTCLK0 <sup>(2)</sup> | RTCOUT1            | RTCOUT0 |  |  |  |
| bit 15                                                              | ·                                                                      |                                                          |                    |                       | •                     | •                  | bit 8   |  |  |  |
|                                                                     |                                                                        |                                                          |                    |                       |                       |                    |         |  |  |  |
| U-0                                                                 | U-0                                                                    | U-0                                                      | U-0                | U-0                   | U-0                   | U-0                | U-0     |  |  |  |
|                                                                     | —                                                                      | _                                                        |                    | _                     | —                     | _                  | _       |  |  |  |
| bit 7                                                               | ·                                                                      |                                                          |                    |                       | •                     | •                  | bit 0   |  |  |  |
|                                                                     |                                                                        |                                                          |                    |                       |                       |                    |         |  |  |  |
| Legend:                                                             |                                                                        |                                                          |                    |                       |                       |                    |         |  |  |  |
| R = Read                                                            | able bit                                                               | W = Writable                                             | bit                | U = Unimplem          | l as '0'              |                    |         |  |  |  |
| -n = Value                                                          | e at POR                                                               | '1' = Bit is set                                         |                    | '0' = Bit is cleared  |                       | x = Bit is unknown |         |  |  |  |
|                                                                     |                                                                        |                                                          |                    |                       |                       |                    |         |  |  |  |
| bit 15                                                              | PWCEN: Pov                                                             | ver Control Ena                                          | ible bit           |                       |                       |                    |         |  |  |  |
|                                                                     | 1 = Power co                                                           | ontrol is enable                                         | b                  |                       |                       |                    |         |  |  |  |
|                                                                     | 0 = Power co                                                           | ontrol is disable                                        | d                  |                       |                       |                    |         |  |  |  |
| bit 14 <b>PWCPOL:</b> Power Control Enable bit                      |                                                                        |                                                          |                    |                       |                       |                    |         |  |  |  |
|                                                                     | 1 = Power co                                                           | ontrol is enable                                         | b<br>b             |                       |                       |                    |         |  |  |  |
| hit 13                                                              | U - FOWER CONTROL IS DISADIEU                                          |                                                          |                    |                       |                       |                    |         |  |  |  |
| DIL 15                                                              | 1 = PWC stability window clock is divide by 2 of the source RTCC clock |                                                          |                    |                       |                       |                    |         |  |  |  |
|                                                                     | 0 = PWC sta                                                            | bility window cl                                         | ock is divide b    | y-1 of the source     | e RTCC clock          |                    |         |  |  |  |
| bit 12                                                              | PWSPRE: Po                                                             | PWSPRE: Power Control Sample Prescaler bits              |                    |                       |                       |                    |         |  |  |  |
| 1 = PWC sample window clock is divide-by-2 of the source RTCC clock |                                                                        |                                                          |                    |                       |                       |                    |         |  |  |  |
| 0 = PWC sample window clock is divide-by-1 of the source RTCC clock |                                                                        |                                                          |                    |                       |                       |                    |         |  |  |  |
| bit 11-10                                                           | RTCLK<1:0>                                                             | RTCLK<1:0>: RTCC Clock Source Select bits <sup>(2)</sup> |                    |                       |                       |                    |         |  |  |  |
|                                                                     | 11 = Externa                                                           | 11 = External power line (60 Hz)                         |                    |                       |                       |                    |         |  |  |  |
|                                                                     | 10 = External                                                          | I power line sou                                         | Irce (50 HZ)<br>or |                       |                       |                    |         |  |  |  |
|                                                                     | 00 = External                                                          | I Secondary Os                                           | cillator (SOSC     | ;)                    |                       |                    |         |  |  |  |
| bit 9-8                                                             | RTCOUT<1:0>: RTCC Output Source Select bits                            |                                                          |                    |                       |                       |                    |         |  |  |  |
|                                                                     | 11 = Power c                                                           | ontrol                                                   |                    |                       |                       |                    |         |  |  |  |
|                                                                     | 10 = RTCC c                                                            | lock                                                     |                    |                       |                       |                    |         |  |  |  |
|                                                                     | 01 = RICC s                                                            | econds clock                                             |                    |                       |                       |                    |         |  |  |  |
| bit 7-0                                                             | Unimplemen                                                             | Unimplemented: Read as '0'                               |                    |                       |                       |                    |         |  |  |  |
|                                                                     | omplemen                                                               |                                                          | 5                  |                       |                       |                    |         |  |  |  |
| Note 1:                                                             | The RTCPWC register is only affected by a POR.                         |                                                          |                    |                       |                       |                    |         |  |  |  |

# REGISTER 22-2: RTCPWC: RTCC POWER CONTROL REGISTER<sup>(1)</sup>

2: When a new value is written to these register bits, the lower half of the MINSEC register should also be written to properly reset the clock prescalers in the RTCC.

|                                                                                                      | .2-J. ALUF                                                                    |                                                                                            |                 |                   |                              |                 |                |  |  |  |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------|-------------------|------------------------------|-----------------|----------------|--|--|--|
| R/W-0                                                                                                | R/W-0                                                                         | R/W-0                                                                                      | R/W-0           | R/W-0             | R/W-0                        | R/W-0           | R/W-0          |  |  |  |
| ALRMEN                                                                                               | CHIME                                                                         | AMASK3                                                                                     | AMASK2          | AMASK1            | AMASK0                       | ALRMPTR1        | ALRMPTR0       |  |  |  |
| bit 15                                                                                               |                                                                               |                                                                                            |                 |                   |                              |                 | bit 8          |  |  |  |
|                                                                                                      |                                                                               |                                                                                            |                 |                   |                              |                 |                |  |  |  |
| R/W-0                                                                                                | R/W-0                                                                         | R/W-0                                                                                      | R/W-0           | R/W-0             | R/W-0                        | R/W-0           | R/W-0          |  |  |  |
| ARPT7                                                                                                | ARPT6                                                                         | ARPT5                                                                                      | ARPT4           | ARPT3             | ARPT2                        | ARPT1           | ARPT0          |  |  |  |
| Dit 7                                                                                                |                                                                               |                                                                                            |                 |                   |                              |                 | Dit U          |  |  |  |
| Legend                                                                                               |                                                                               |                                                                                            |                 |                   |                              |                 | ]              |  |  |  |
| R = Readable                                                                                         | bit                                                                           | W = Writable I                                                                             | bit             | U = Unimplen      | nented bit rea               | d as '0'        |                |  |  |  |
| -n = Value at l                                                                                      | POR                                                                           | '1' = Bit is set                                                                           |                 | '0' = Bit is cle  | ared                         | x = Bit is unkr | nown           |  |  |  |
|                                                                                                      |                                                                               |                                                                                            |                 |                   |                              |                 |                |  |  |  |
| bit 15                                                                                               | ALRMEN: Ala                                                                   | arm Enable bit                                                                             |                 |                   |                              |                 |                |  |  |  |
|                                                                                                      | 1 = Alarm is                                                                  | enabled (clear                                                                             | ed automatica   | lly after an ala  | arm event whe                | never ARPT<7    | :0> = 00h and  |  |  |  |
|                                                                                                      | CHIME =                                                                       | 0)                                                                                         |                 |                   |                              |                 |                |  |  |  |
|                                                                                                      | 0 = Alarm is o                                                                | disabled                                                                                   |                 |                   |                              |                 |                |  |  |  |
| bit 14                                                                                               | CHIME: Chim                                                                   | e Enable bit                                                                               |                 |                   | <i>c</i>                     |                 |                |  |  |  |
|                                                                                                      | 1 = Chime is enabled; ARPT<7:0> bits are allowed to roll over from 00h to FFh |                                                                                            |                 |                   |                              |                 |                |  |  |  |
| hit 13-10                                                                                            |                                                                               | · Alarm Mask (                                                                             | Configuration b | nite              | ach uun                      |                 |                |  |  |  |
| 51115-10                                                                                             |                                                                               | half second                                                                                | Johngulation    | 5113              |                              |                 |                |  |  |  |
|                                                                                                      | 0001 = Every                                                                  | second                                                                                     |                 |                   |                              |                 |                |  |  |  |
|                                                                                                      | 0010 = Every                                                                  | 10 seconds                                                                                 |                 |                   |                              |                 |                |  |  |  |
|                                                                                                      | 0011 = Every minute                                                           |                                                                                            |                 |                   |                              |                 |                |  |  |  |
|                                                                                                      | 0100 = Every 10 minutes                                                       |                                                                                            |                 |                   |                              |                 |                |  |  |  |
|                                                                                                      | 0101 = Every                                                                  | nour<br>a dav                                                                              |                 |                   |                              |                 |                |  |  |  |
|                                                                                                      | 0111 = Once                                                                   | a week                                                                                     |                 |                   |                              |                 |                |  |  |  |
|                                                                                                      | 1000 = Once                                                                   | a month                                                                                    |                 |                   | 41-                          |                 |                |  |  |  |
|                                                                                                      | 1001 = Once                                                                   | a year (except                                                                             | when configu    | red for Februar   | y 29 <sup>tn</sup> , once ev | ery 4 years)    |                |  |  |  |
|                                                                                                      | 101x = Reser                                                                  | ved – do not u                                                                             | se              |                   |                              |                 |                |  |  |  |
| hit 9-8                                                                                              |                                                                               | •0>• Alarm Valı                                                                            | ie Register Wi  | ndow Pointer h    | oits                         |                 |                |  |  |  |
| Points to the corresponding Alarm \/alue registers when reading the ALRM\/ALH and ALRM\/ALL register |                                                                               |                                                                                            |                 |                   |                              |                 | VALL registers |  |  |  |
|                                                                                                      | The ALRMPTI                                                                   | he ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches '00'. |                 |                   |                              |                 |                |  |  |  |
|                                                                                                      | ALRMVAL<15:8>:                                                                |                                                                                            |                 |                   |                              |                 |                |  |  |  |
|                                                                                                      |                                                                               |                                                                                            |                 |                   |                              |                 |                |  |  |  |
|                                                                                                      | 01 = ALKMWD<br>10 = ALRMMNTH                                                  |                                                                                            |                 |                   |                              |                 |                |  |  |  |
|                                                                                                      | 11 = PWCSTAB                                                                  |                                                                                            |                 |                   |                              |                 |                |  |  |  |
|                                                                                                      | ALRMVAL<7:0>:                                                                 |                                                                                            |                 |                   |                              |                 |                |  |  |  |
|                                                                                                      | 00 = ALRMSEC                                                                  |                                                                                            |                 |                   |                              |                 |                |  |  |  |
|                                                                                                      | 01 = ALRMHR                                                                   |                                                                                            |                 |                   |                              |                 |                |  |  |  |
|                                                                                                      | 10 = ALRMDAY                                                                  |                                                                                            |                 |                   |                              |                 |                |  |  |  |
| hit 7.0                                                                                              |                                                                               | NIF<br>Narm Ropost (                                                                       | Sountor Value   | hite              |                              |                 |                |  |  |  |
| Dit 7-0                                                                                              | 111111111 =                                                                   |                                                                                            | pouriter value  | imes              |                              |                 |                |  |  |  |
|                                                                                                      | · ·                                                                           | Alarm will repe                                                                            | at 200 more t   | 11165             |                              |                 |                |  |  |  |
|                                                                                                      |                                                                               |                                                                                            |                 |                   |                              |                 |                |  |  |  |
|                                                                                                      | 00000000 <del>-</del>                                                         | Alarm will not                                                                             | reneat          |                   |                              |                 |                |  |  |  |
|                                                                                                      | The counter d                                                                 | lecrements on a                                                                            | any alarm eve   | nt; it is prevent | ted from rolling             | over from 00h   | to FFh unless  |  |  |  |
|                                                                                                      | CHIME = 1.                                                                    |                                                                                            |                 |                   | 3                            |                 |                |  |  |  |
|                                                                                                      |                                                                               |                                                                                            |                 |                   |                              |                 |                |  |  |  |

## REGISTER 22-3: ALCFGRPT: ALARM CONFIGURATION REGISTER

#### REGISTER 24-1: AD1CON1: ADC1 CONTROL REGISTER 1 (CONTINUED)

- bit 1 **SAMP:** ADC Sample Enable bit
  - 1 = ADC Sample-and-Hold amplifiers are sampling
  - 0 = ADC Sample-and-Hold amplifiers are holding
- bit 0 DONE: ADC Conversion Status bit
  - 1 = ADC conversion cycle has completed
  - 0 = ADC conversion has not started or is in progress
- Note 1: This bit is only available when extended DMA/buffer features are available (DMAEN = 1).

| R/W-0                             | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | R/W-0                                                  | R/W-0                               | R/W-0                               | R/W-0            | R/W-0    | R/W-0    |  |  |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------|-------------------------------------|------------------|----------|----------|--|--|
| EDG1MOD                           | EDG1POL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EDG1SEL3                                               | EDG1SEL2                            | EDG1SEL1                            | EDG1SEL0         | EDG2STAT | EDG1STAT |  |  |
| bit 15                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                                     |                                     |                  |          | bit 8    |  |  |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                                     |                                     |                  |          |          |  |  |
| R/W-0                             | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | R/W-0                                                  | R/W-0                               | R/W-0                               | R/W-0            | U-0      | U-0      |  |  |
| EDG2MOD                           | EDG2POL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EDG2SEL3                                               | EDG2SEL2                            | EDG2SEL1                            | EDG2SEL0         |          | —        |  |  |
| bit 7                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                                     |                                     |                  |          | bit 0    |  |  |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                                     |                                     |                  |          |          |  |  |
| Legend:                           | - I- : 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | L : 4                               |                                     |                  | 1 (0)    |          |  |  |
| R = Readable                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | vv = vvritable                                         | DIL                                 | U = Unimplemented bit, read as $U'$ |                  |          |          |  |  |
| -n = value at                     | PUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T = BIT IS SET = D = BIT IS Cleared X = BIT IS UNKNOWN |                                     |                                     |                  |          |          |  |  |
| bit 15                            | <b>EDG1MOD:</b> E<br>1 = Input is ec<br>0 = Input is le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Edge 1 Edge-Se<br>dge-sensitive<br>vel-sensitive       | ensitive Select                     | bit                                 |                  |          |          |  |  |
| bit 14                            | EDG1POL: E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | dge 1 Polarity                                         | Select bit                          |                                     |                  |          |          |  |  |
|                                   | 1 = Edge 1 is<br>0 = Edge 1 is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | programmed for programmed for                          | or a positive ed<br>or a negative e | lge response<br>dge response        |                  |          |          |  |  |
| bit 13-10                         | EDG1SEL<3:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | : <b>0&gt;:</b> Edge 1 So                              | urce Select bits                    | 8                                   |                  |          |          |  |  |
|                                   | 1111 = Edge 1 source is Comparator 3 output<br>1110 = Edge 1 source is Comparator 2 output<br>1101 = Edge 1 source is Comparator 1 output<br>1100 = Edge 1 source is IC3<br>1011 = Edge 1 source is IC2<br>1010 = Edge 1 source is CTED8<br>1000 = Edge 1 source is CTED7 <sup>(1)</sup><br>0111 = Edge 1 source is CTED6<br>0110 = Edge 1 source is CTED5<br>0101 = Edge 1 source is CTED5<br>0101 = Edge 1 source is CTED4<br>0100 = Edge 1 source is CTED3 <sup>(1)</sup><br>0011 = Edge 1 source is CTED1<br>0010 = Edge 1 source is CTED2<br>0001 = Edge 1 source is CTED2<br>0001 = Edge 1 source is OC1<br>0000 = Edge 1 source is Timer1 |                                                        |                                     |                                     |                  |          |          |  |  |
| bit 9 EDG2STAT: Edge 2 Status bit |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                                     |                                     |                  |          |          |  |  |
|                                   | Indicates the s<br>1 = Edge 2 ha<br>0 = Edge 2 ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | status of Edge<br>as occurred<br>as not occurred       | 2 and can be v                      | vritten to contro                   | ol current sourc | e.       |          |  |  |
| bit 8                             | EDG1STAT: E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Edge 1 Status b                                        | oit                                 |                                     |                  |          |          |  |  |
|                                   | Indicates the s<br>1 = Edge 1 ha<br>0 = Edge 1 ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | status of Edge<br>as occurred<br>as not occurred       | 1 and can be v                      | vritten to contro                   | ol current sourc | e.       |          |  |  |
| bit 7                             | EDG2MOD: E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Edge 2 Edge-Se                                         | ensitive Select                     | bit                                 |                  |          |          |  |  |
|                                   | 1 = Input is ea<br>0 = Input is le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dge-sensitive<br>vel-sensitive                         |                                     |                                     |                  |          |          |  |  |
| bit 6                             | EDG2POL: E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | dge 2 Polarity                                         | Select bit                          |                                     |                  |          |          |  |  |
|                                   | 1 = Edge 2 is<br>0 = Edge 2 is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | programmed for<br>programmed for                       | or a positive ed<br>or a negative e | lge<br>dge                          |                  |          |          |  |  |

#### REGISTER 27-2: CTMUCON2: CTMU CONTROL REGISTER 2

Note 1: Edge sources, CTED3, CTED7, CTED10 and CTED11, are available in 100-pin devices only.

## TABLE 31-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

| Field           | Description                                                                          |  |  |  |
|-----------------|--------------------------------------------------------------------------------------|--|--|--|
| #text           | Means literal defined by "text"                                                      |  |  |  |
| (text)          | Means "content of text"                                                              |  |  |  |
| [text]          | Means "the location addressed by text"                                               |  |  |  |
| { }             | Optional field or operation                                                          |  |  |  |
| <n:m></n:m>     | Register bit field                                                                   |  |  |  |
| .b              | Byte mode selection                                                                  |  |  |  |
| .d              | Double-Word mode selection                                                           |  |  |  |
| .S              | Shadow register select                                                               |  |  |  |
| .w              | Word mode selection (default)                                                        |  |  |  |
| bit4            | 4-bit Bit Selection field (used in word addressed instructions) $\in \{015\}$        |  |  |  |
| C, DC, N, OV, Z | MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero                 |  |  |  |
| Expr            | Absolute address, label or expression (resolved by the linker)                       |  |  |  |
| f               | File register address ∈ {0000h1FFFh}                                                 |  |  |  |
| lit1            | 1-bit unsigned literal $\in \{0,1\}$                                                 |  |  |  |
| lit4            | 4-bit unsigned literal ∈ {015}                                                       |  |  |  |
| lit5            | 5-bit unsigned literal ∈ {031}                                                       |  |  |  |
| lit8            | 8-bit unsigned literal ∈ {0255}                                                      |  |  |  |
| lit10           | 10-bit unsigned literal $\in$ {0255} for Byte mode, {0:1023} for Word mode           |  |  |  |
| lit14           | 14-bit unsigned literal ∈ {016383}                                                   |  |  |  |
| lit16           | 16-bit unsigned literal ∈ {065535}                                                   |  |  |  |
| lit23           | 23-bit unsigned literal ∈ {08388607}; LSB must be '0'                                |  |  |  |
| None            | Field does not require an entry, may be blank                                        |  |  |  |
| PC              | Program Counter                                                                      |  |  |  |
| Slit10          | 10-bit signed literal ∈ {-512511}                                                    |  |  |  |
| Slit16          | 16-bit signed literal ∈ {-3276832767}                                                |  |  |  |
| Slit6           | 6-bit signed literal $\in$ {-1616}                                                   |  |  |  |
| Wb              | Base W register ∈ {W0W15}                                                            |  |  |  |
| Wd              | Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }                    |  |  |  |
| Wdo             | Destination W register ∈<br>{ Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] } |  |  |  |
| Wm,Wn           | Dividend, Divisor Working register pair (direct addressing)                          |  |  |  |
| Wn              | One of 16 Working registers ∈ {W0W15}                                                |  |  |  |
| Wnd             | One of 16 Destination Working registers ∈ {W0W15}                                    |  |  |  |
| Wns             | One of 16 Source Working registers ∈ {W0W15}                                         |  |  |  |
| WREG            | W0 (Working register used in file register instructions)                             |  |  |  |
| Ws              | Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }                         |  |  |  |
| Wso             | Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }         |  |  |  |

#### 64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.15 x 7.15 Exposed Pad [QFN]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                        | Units | N        | <b>ILLIMETER</b> | S    |  |
|------------------------|-------|----------|------------------|------|--|
| Dimension              | MIN   | NOM      | MAX              |      |  |
| Number of Pins         | N     | 64       |                  |      |  |
| Pitch                  | е     | 0.50 BSC |                  |      |  |
| Overall Height         | A     | 0.80     | 0.90             | 1.00 |  |
| Standoff               | A1    | 0.00     | 0.02             | 0.05 |  |
| Contact Thickness      | A3    | 0.20 REF |                  |      |  |
| Overall Width          | E     | 9.00 BSC |                  |      |  |
| Exposed Pad Width      | E2    | 7.05     | 7.15             | 7.50 |  |
| Overall Length         | D     | 9.00 BSC |                  |      |  |
| Exposed Pad Length     | D2    | 7.05     | 7.15             | 7.50 |  |
| Contact Width          | b     | 0.18     | 0.25             | 0.30 |  |
| Contact Length         | L     | 0.30     | 0.40             | 0.50 |  |
| Contact-to-Exposed Pad | K     | 0.20     | -                | -    |  |

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-149C Sheet 2 of 2

### U

| UART                                                   | 41 |
|--------------------------------------------------------|----|
| Baud Rate Generator (BRG)2                             | 42 |
| Infrared Support2                                      | 43 |
| Operation of UxCTS and UxRTS Pins                      | 43 |
| Receiving                                              |    |
| 8-Bit or 9-Bit Data Mode24                             | 43 |
| Transmitting                                           |    |
| 8-Bit Data Mode2                                       | 43 |
| 9-Bit Data Mode24                                      | 43 |
| Break and Sync Sequence24                              | 43 |
| Universal Asynchronous Receiver Transmitter. See UART. |    |

## W

| 344 |
|-----|
| 344 |
| 344 |
| 414 |
| 10  |
|     |