

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	69
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga308-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

Table of Contents

1.0	Device Overview	11						
2.0	Guidelines for Getting Started with 16-bit Microcontrollers							
3.0	CPU							
4.0	Memory Organization	41						
5.0	Direct Memory Access Controller (DMA)							
6.0	Flash Program Memory	83						
7.0	Resets	89						
8.0	Interrupt Controller							
9.0	Oscillator Configuration	145						
10.0	Power-Saving Features	155						
11.0	I/O Ports	167						
12.0	Timer1	197						
13.0	Timer2/3 and Timer4/5	199						
14.0	Input Capture with Dedicated Timers	205						
15.0	Output Compare with Dedicated Timers							
16.0	Serial Peripheral Interface (SPI)	221						
17.0	Inter-Integrated Circuit™ (I ² C™)	233						
18.0	Universal Asynchronous Receiver Transmitter (UART)							
19.0	Data Signal Modulator	249						
20.0	Enhanced Parallel Master Port (EPMP)	253						
21.0	Liquid Crystal Display (LCD) Controller							
22.0	Real-Time Clock and Calendar (RTCC)							
23.0	32-Bit Programmable Cyclic Redundancy Check (CRC) Generator							
24.0	12-Bit A/D Converter (ADC) with Threshold Scan	295						
25.0	Triple Comparator Module	315						
26.0	Comparator Voltage Reference	321						
27.0	Charge Time Measurement Unit (CTMU)	323						
28.0	High/Low-Voltage Detect (HLVD)	331						
29.0	Special Features	333						
30.0	Development Support	347						
31.0	Instruction Set Summary	351						
32.0	Electrical Characteristics	359						
33.0	Packaging Information	389						
Appe	endix A: Revision History	407						
Index	X	409						
The I	The Microchip Web Site							
Custo	Customer Change Notification Service							
Custo	omer Support	415						
Prod	luct Identification System	417						

D '	Pi	n Number/	Grid Loca	ter		Innut	
Function	64-Pin TQFP	80-Pin TQFP	100-Pin TQFP	121-Pin BGA	I/O	Buffer	Description
COM0	63	79	99	A2	0	—	LCD Driver Common Outputs.
COM1	62	78	98	B3	0	—	
COM2	61	77	94	B4	0	—	
COM3	60	76	93	A4	0	—	
COM4	59	73	88	A6	0	_	
COM5	23	29	34	L5	0	_	
COM6	22	28	33	L4	0	—	
COM7	21	27	32	K4	0	—	
CS1	45	57	71	C11	I/O	ST/TTL	Parallel Master Port Chip Select 1 Strobe (shared with PMA14).
CS2	44	56	70	D11	0	—	Parallel Master Port Chip Select 2 Strobe (shared with PMA15).
CTCMP	14	18	23	J2	Ι	ANA	CTMU Comparator 2 Input (Pulse mode).
CTED0	_		17	G3	Ι	DIG	CTMU External Edge Inputs.
CTED1	28	34	42	L7	Ι	DIG	
CTED2	27	33	41	J7	Ι	DIG	
CTED3	—	_	1	B2	Ι	DIG	
CTED4	1	1	3	D3	Ι	DIG	
CTED5	29	35	43	K7	Ι	DIG	
CTED6	30	36	44	L8	Ι	DIG	
CTED7	—	_	40	47	Ι	DIG	
CTED8	64	80	100	A1	Ι	DIG	
CTED9	63	79	99	A2	Ι	DIG	
CTED10	_	_	97	A3	Ι	DIG	
CTED11	—	_	95	C4	Ι	DIG	
CTED12	15	19	24	K1	I	DIG	
CTED13	14	18	23	J2	I	DIG	
CTPLS	29	35	43	K7	0	—	CTMU Pulse Output.
CVREF	23	29	34	L5	0	—	Comparator Voltage Reference Output.
CVREF+	16	20	25	K2	I	ANA	Comparator/ADC Reference Voltage (high) Input.
CVREF-	15	19	24	K1	I	ANA	Comparator/ADC Reference Voltage (low) Input.
INT0	35	45	55	H9	I	ST	External Interrupt Input 0.
LCDBIAS0	3	3	5	D2	I	ANA	Bias Inputs for LCD Driver Charge Pump.
LCDBIAS1	2	2	4	C1	I	ANA	
LCDBIAS2	1	1	3	D3	I	ANA	
LCDBIAS3	17	21	26	L1	Ι	ANA	
HLVDIN	64	80	100	A1	Ι	ANA	High/Low-Voltage Detect Input.
MCLR	7	9	13	F1	I	ST	Master Clear (device Reset) Input. This line is brought low to cause a Reset.
OSCI	39	49	63	F9	I	ANA	Main Oscillator Input Connection.
OSCO	40	50	64	F11	0	_	Main Oscillator Output Connection.

TABLE 1-4: PIC24FJ128GA310 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: T

TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer $I^2C^{TM} = I^2C/SMBus$ input buffer

	Pi	n Number/	Grid Loca	ter							
Function	64-Pin TQFP	80-Pin TQFP	100-Pin TQFP	121-Pin BGA	I/O	Input Buffer	Description				
PMD0	60	76	93	A4	I/O	ST/TTL	Parallel Master Port Data (Demultiplexed Master				
PMD1	61	77	94	B4	I/O	ST/TTL	mode) or Address/Data (Multiplexed Master modes).				
PMD2	62	78	98	B3	I/O	ST/TTL					
PMD3	63	79	99	A2	I/O	ST/TTL					
PMD4	64	80	100	A1	I/O	ST/TTL					
PMD5	1	1	3	D3	I/O	ST/TTL					
PMD6	2	2	4	C1	I/O	ST/TTL					
PMD7	3	3	5	D2	I/O	ST/TTL					
PMD8	_	75	90	A5	I/O	ST/TTL					
PMD9	_	74	89	E6	I/O	ST/TTL					
PMD10	_	73	88	A6	I/O	ST/TTL					
PMD11	_	72	87	B6	I/O	ST/TTL					
PMD12	_	64	79	A9	I/O	ST/TTL					
PMD13	_	65	80	D8	I/O	ST/TTL					
PMD14	_	68	83	D7	I/O	ST/TTL					
PMD15	_	69	84	C7	I/O	ST/TTL					
PMRD	53	67	82	B8	0	—	Parallel Master Port Read Strobe.				
PMWR	52	66	81	C8	0	—	Parallel Master Port Write Strobe.				
RA0	—	_	17	G3	I/O	ST	PORTA Digital I/O.				
RA1	—		38	J6	I/O	ST					
RA2	_	_	58	H11	I/O	ST					
RA3	_	_	59	G10	I/O	ST					
RA4	_		60	G11	I/O	ST					
RA5	—	_	61	G9	I/O	ST					
RA6	_		91	C5	I/O	ST					
RA7	_		92	B5	I/O	ST					
RA9	—	23	28	L2	I/O	ST]				
RA10	_	24	29	K3	I/O	ST]				
RA14	_	52	66	E11	I/O	ST]				
RA15	—	53	67	E8	I/O	ST					

TABLE 1-4: PIC24FJ128GA310 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL input buffer

ANA = Analog level input/output

ST = Schmitt Trigger input buffer $I^2C^{TM} = I^2C/SMBus$ input buffer

REGISTER 3-2: CORCON: CPU CORE CONTROL REGISTE
--

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	_	—	—	—	—			
bit 15							bit 8			
U-0	U-0	U-0	U-0	R/C-0	r-1	U-0	U-0			
—	—	_	_	IPL3 ⁽¹⁾	r	—	—			
bit 7				•			bit 0			
Legend:		C = Clearable	bit	r = Reserved bit						
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown						

bit 15-4 Unimplemented: Read as '0'

bit 3 IPL3: CPU Interrupt Priority Level Status bit⁽¹⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less

bit 2 Reserved: Read as '1'

bit 1-0 Unimplemented: Read as '0'

Note 1: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level; see Register 3-1 for bit description.

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space.

4.1.2 HARD MEMORY VECTORS

All PIC24F devices reserve the addresses between 000000h and 000200h for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 000000h with the actual address for the start of code at 000002h.

PIC24F devices also have two interrupt vector tables, located from 000004h to 0000FFh and 000100h to 0001FFh. These vector tables allow each of the many device interrupt sources to be handled by separate ISRs. A more detailed discussion of the interrupt vector tables is provided in **Section 8.1** "Interrupt Vector **Table**".

4.1.3 FLASH CONFIGURATION WORDS

In PIC24FJ128GA310 family devices, the top four words of on-chip program memory are reserved for configuration information. On device Reset, the configuration information is copied into the appropriate Configuration register. The addresses of the Flash Configuration Word for devices in the PIC24FJ128GA310 family are shown in Table 4-1. Their location in the memory map is shown with the other memory vectors in Figure 4-1.

The Configuration Words in program memory are a compact format. The actual Configuration bits are mapped in several different registers in the configuration memory space. Their order in the Flash Configuration Words does not reflect a corresponding arrangement in the configuration space. Additional details on the device Configuration Words are provided in **Section 29.0** "**Special Features**".

TABLE 4-1: FLASH CONFIGURATION WORDS FOR PIC24FJ128GA310 FAMILY DEVICES

Device	Program Memory (Words)	Configuration Word Addresses				
PIC24FJ64GA3XX	22,016	00ABF8h:00ABFEh				
PIC24FJ128GA3XX	44,032	0157F8h:0157FEh				

msw most significant word least significant word PC Address Address (lsw Address) 23 16 8 0 0x000000 0000000 0x000001 0x000002 0000000 0x000003 0000000 0x000004 0x000005 00000000 0x000006 0x000007 Program Memory Instruction Width 'Phantom' Byte (read as '0')

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP (CONTINUED)

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC16	00C4	—	CRCIP2	CRCIP1	CRCIP0	—	U2ERIP2	U2ERIP1	U2ERIP0	—	U1ERIP2	U1ERIP1	U1ERIP0	—	_	_	—	4440
IPC18	00C8	_	_	_	_	_	_	_	_	_	_	_	_	_	HLVDIP2	HLVDIP1	HLVDIP0	0004
IPC19	00CA	_	_	_	_	_	_	_	_	_	CTMUIP2	CTMUIP1	CTMUIP0	_	_	_	_	0040
IPC20	00CC	_	U3TXIP2	U3TXIP1	U3TXIP0	_	U3RXIP2	U3RXIP1	U3RXIP0	_	U3ERIP2	U3ERIP1	U3ERIP0	_	_	_	_	4440
IPC21	00CE	_	U4ERIP2	U4ERIP1	U4ERIP0	_	_	_	_	_	_	_	_	_	_	_	_	4000
IPC22	00D0	_	_	_	_	_	_	_	_	_	U4TXIP2	U4TXIP1	U4TXIP0	_	U4RXIP2	U4RXIP1	U4RXIP0	0044
IPC25	00D6	_	_	_	_	_	_	_	_	_	_	_	_	_	LCDIP2	LCDIP1	LCDIP0	0004
IPC29	00DE	_	_	_	_	_	_	_	_	_	JTAGIP2	JTAGIP1	JTAGIP0	_	_	_	_	0040
INTTREG	00E0	CPUIRQ	_	VHOLD	_	ILR3	ILR2	ILR1	ILR0	_	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-6: TIMER REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100		Timer1 Register												0000			
PR1	0102	Timer1 Period Register											FFFF					
T1CON	0104	TON	_	TSIDL	_	_		TIECS1	TIECS0	_	TGATE	TCKPS1	TCKPS0	_	TSYNC	TCS	—	0000
TMR2	0106		Timer2 Register 000										0000					
TMR3HLD	0108		Timer3 Holding Register (for 32-bit timer operations only)											0000				
TMR3	010A		Timer3 Register											0000				
PR2	010C		Timer2 Period Register											FFFF				
PR3	010E								Timer3 Peri	od Register	-							FFFF
T2CON	0110	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	_	0000
T3CON	0112	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	_	0000
TMR4	0114								Timer4 I	Register								0000
TMR5HLD	0116						Tin	ner5 Holdin	g Register (for 32-bit op	perations or	ıly)						0000
TMR5	0118								Timer5 I	Register								0000
PR4	011A								Timer4 Peri	od Register	-							FFFF
PR5	011C								Timer5 Peri	od Register	-							FFFF
T4CON	011E	TON	—	TSIDL	—	—	—	_	—	_	TGATE	TCKPS1	TCKPS0	T45	—	TCS	—	0000
T5CON	0120	TON	_	TSIDL	_	_	_	—	_	_	TGATE	TCKPS1	TCKPS0	_	_	TCS		0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.2.5 EXTENDED DATA SPACE (EDS)

The Extended Data Space (EDS) allows PIC24F devices to address a much larger range of data than would otherwise be possible with a 16-bit address range. EDS includes any additional internal data memory not directly accessible by the lower 32-Kbyte data address space, and any external memory through EPMP.

In addition, EDS also allows read access to the program memory space. This feature is called Program Space Visibility (PSV) and is discussed in detail in Section 4.3.3 "Reading Data from Program Memory Using EDS".

Figure 4-4 displays the entire EDS space. The EDS is organized as pages, called EDS pages, with one page equal to size of the EDS window (32 Kbytes). A particular EDS page is selected through the Data Space Read register (DSRPAG) or Data Space Write register (DSWPAG). For PSV, only the DSRPAG register is used. The combination of the DSRPAG register value and the 16-bit wide data address forms a 24-bit Effective Address (EA). The data addressing range of PIC24FJ128GA310 family devices depends on the version of the Enhanced Parallel Master Port implemented on a particular device; this is in turn a function of device pin count. Table 4-35 lists the total memory accessible by each of the devices in this family. For more details on accessing external memory using EPMP, refer to **"Enhanced Parallel Master Port (EPMP)"** (DS39730) in the *"dsPIC33/PIC24 Family Reference Manual"*.

TABLE 4-35:	TOTAL ACCESSIBLE DATA
	MEMORY

Family	Internal RAM	External RAM Access Using EPMP				
PIC24FJXXXGA310	8K	Up to 16 MB				
PIC24FJXXXGA308	8K	Up to 64K				
PIC24FJXXXGA306	8K	Up to 64K				

Note: Accessing Page 0 in the EDS window will generate an address error trap as Page 0 is the base data memory (data locations, 0800h to 7FFFh, in the lower Data Space).

FIGURE 4-4: EXTENDED DATA SPACE

REGISTE	R 7-2: RCO	N2: RESET A	ND SYSTEM	CONTROL F	REGISTER 2				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
			_				—		
bit 15			•	•			bit 8		
				D/00.4	D /00 4	D/00.4	D /00 0		
0-0	0-0	0-0	r-0		R/CO-1	R/CO-1			
— bit 7	_	—	ſ	VDDBOR	VDDPOR(*)=/	VBPOR	VBAI (1)		
DIL 7							DILU		
Legend:		CO = Clearab	le Only bit	r = Reserved	bit				
R = Reada	able bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'			
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown			
bit 15-5	Unimplemer	nted: Read as '	כ'						
bit 4	Reserved: N	laintain as '0'							
bit 3	VDDBOR: V	DD Brown-out R	eset Flag bit ⁽¹⁾						
	1 = A V D B	rown-out Reset	has occurred	(set by hardwar	re)				
h # 0		rown-out Reset	nas not occuri	rea 2)					
DIL Z		DD Power-On R	eset Flag Dites	-, oot by bordwor	0)				
	1 = A V D P 0 = A V D D P	ower-up Reset	has not occurred (ed	e)				
bit 1	VBPOR: VBI	POR Flag bit ^{(1,3})						
	1 = A VBAT I Semaph	POR has occur	red (no battery	connected to	VBAT pin, or VE	AT power belo	w Deep Sleep		
	0 = A VBAT F	POR has not oc	curred	inal of					
bit 0	VBAT: VBAT	Flag bit ⁽¹⁾							
	$1 = A POR \epsilon$	exit has occurre	d while power	was applied to	VBAT pin (set b	y hardware)			
	$0 = A POR \epsilon$	exit from VBAT h	as not occurre	a					
Note 1:	This bit is set in h	nardware only; i	t can only be c	leared in softwa	are.				
2:	Indicates a VDD I	POR. Setting the	e POR bit (RC	ON<0>) indicat	tes a VCORE PC	DR.			

3: This bit is set when the device is originally powered up, even if power is present on VBAT.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF
bit 15							bit 8
U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	IC7IF	—	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF
bit 7							bit 0
Legend:	. 1.11		•••				
R = Readable			DIT	U = Unimpler	nented bit, rea	d as 'U'	
-n = value at	PUR	I = Bit is set		0 = Bit is cie	ared	x = Bit is unkn	own
bit 15		OT2 Transmittor	Interrupt Elag	Status bit			
DIL 15		request has on	curred	Status Dit			
	0 = Interrupt	request has no	t occurred				
bit 14	U2RXIF: UA	RT2 Receiver In	terrupt Flag S	tatus bit			
	1 = Interrupt	request has oc	curred				
	0 = Interrupt	request has no	t occurred				
bit 13	INT2IF: Exter	rnal Interrupt 2	Flag Status bit				
	1 = Interrupt 0 = Interrupt	request has oc	t occurred				
bit 12	T5IF: Timer5	Interrupt Flag S	Status bit				
	1 = Interrupt	request has oc	curred				
	0 = Interrupt	request has no	t occurred				
bit 11	T4IF: Timer4	Interrupt Flag S	Status bit				
	1 = Interrupt	request has oc	curred				
bit 10	OC4IF: Outp	ut Compare Ch	annel 4 Interru	ipt Flag Status I	bit		
	1 = Interrupt	request has oc	curred	princig otation			
	0 = Interrupt	request has no	t occurred				
bit 9	OC3IF: Outp	ut Compare Cha	annel 3 Interru	pt Flag Status	bit		
	1 = Interrupt 0 = Interrupt	request has oc request has no	curred t occurred				
bit 8	DMA2IF: DM	IA Channel 2 Ini	terrupt Flag St	atus bit			
	1 = Interrupt	request has oc	curred				
	0 = Interrupt	request has no	t occurred				
bit 7	Unimplemer	nted: Read as ')'				
bit 6	IC7IF: Input (Capture Channe	el 7 Interrupt F	lag Status bit			
	$\perp = $ Interrupt 0 = Interrupt	request has oc	t occurred				
bit 5	Unimplemer	nted: Read as ')'				
bit 4	INT1IF: Exte	rnal Interrupt 1	Flag Status bit				
	1 = Interrupt	request has oc	curred				
	0 = Interrupt	request has no	t occurred				
DIT 3	CNIF: Input (Unange Notifica	tion Interrupt F	-lag Status bit			
	1 = 1 interrupt 0 = 1 interrupt	request has oc	t occurred				

REGISTER 8-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

11.4.3.3 Mapping Limitations

The control schema of the Peripheral Pin Select is extremely flexible. Other than systematic blocks that prevent signal contention, caused by two physical pins being configured as the same functional input or two functional outputs configured as the same pin, there are no hardware enforced lock outs. The flexibility extends to the point of allowing a single input to drive multiple peripherals or a single functional output to drive multiple output pins.

11.4.3.4 Mapping Exceptions for PIC24FJ128GA310 Family Devices

Although the PPS registers theoretically allow for up to 64 remappable I/O pins, not all of these are implemented in all devices. For PIC24FJ128GA310 family devices, the maximum number of remappable pins available is 44, which includes 12 input only pins. In addition, some pins in the RPn and RPIn sequences are unimplemented in lower pin count devices. The differences in available remappable pins are summarized in Table 11-5.

When developing applications that use remappable pins, users should also keep these things in mind:

- For the RPINRx registers, bit combinations corresponding to an unimplemented pin for a particular device are treated as invalid; the corresponding module will not have an input mapped to it. For all PIC24FJ128GA310 family devices, this includes all values greater than 43 ('101011').
- For RPORx registers, the bit fields corresponding to an unimplemented pin will also be unimplemented. Writing to these fields will have no effect.

11.4.4 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. PIC24F devices include three features to prevent alterations to the peripheral map:

- · Control register lock sequence
- · Continuous state monitoring
- Configuration bit remapping lock

11.4.4.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes will appear to execute normally, but the contents of the registers will remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 46h to OSCCON<7:0>.
- 2. Write 57h to OSCCON<7:0>.
- 3. Clear (or set) IOLOCK as a single operation.

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the Peripheral Pin Selects to be configured with a single unlock sequence, followed by an update to all control registers, then locked with a second lock sequence.

11.4.4.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a Configuration Mismatch Reset will be triggered.

11.4.4.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (CW2<4>) Configuration bit blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure will not execute and the Peripheral Pin Select Control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows users unlimited access (with the proper use of the unlock sequence) to the Peripheral Pin Select registers.

Device		RP Pins (I/O)	RPI Pins		
Device	Total	Total Unimplemented		Unimplemented	
PIC24FJXXXGA306	29	RP5, RP15, RP31	1	RPI32-36, RPI38-43	
PIC24FJXXXGA308	31	—	9	RPI32, RPI39, RPI41	
PIC24FJXXXGA310	32	—	12	—	

TABLE 11-5: REMAPPABLE PIN EXCEPTIONS FOR PIC24FJ128GA310 FAMILY DEVICES

REGISTER 11-23: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	T1CKR5	T1CKR4	T1CKR3	T1CKR2	T1CKR1	T1CKR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	SS2R5	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	T1CKR<5:0>: Assign Timer1 External Clock (T1CK) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	SS2R<5:0>: Assign SPI2 Slave Select Input (SS2IN) to Corresponding RPn or RPIn Pin bits

REGISTER 11-24: RPINR27: PERIPHERAL PIN SELECT INPUT REGISTER 27

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U4CTSR5	U4CTSR4	U4CTSR3	U4CTSR2	U4CTSR1	U4CTSR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U4RXR5	U4RXR4	U4RXR3	U4RXR2	U4RXR1	U4RXR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 U4CTSR<5:0>: Assign UART4 Clear-to-Send Input (U4CTS) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 U4RXR<5:0>: Assign UART4 Receive Input (U4RX) to Corresponding RPn or RPIn Pin bits

18.1 UART Baud Rate Generator (BRG)

The UART module includes a dedicated, 16-bit Baud Rate Generator. The UxBRG register controls the period of a free-running, 16-bit timer. Equation 18-1 shows the formula for computation of the baud rate with BRGH = 0.

EQUATION 18-1: UARTX BAUD RATE WITH BRGH = $0^{(1,2)}$

Baud Rate =
$$\frac{FCY}{16 \cdot (UxBRG + 1)}$$

UxBRG = $\frac{FCY}{16 \cdot Baud Rate} - 1$

Note 1: FCY denotes the instruction cycle clock frequency (FOSC/2).

2: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

Example 18-1 shows the calculation of the baud rate error for the following conditions:

- Fcy = 4 MHz
- Desired Baud Rate = 9600

The maximum baud rate (BRGH = 0) possible is FCY/16 (for UxBRG = 0) and the minimum baud rate possible is FCY/(16 * 65536).

Equation 18-2 shows the formula for computation of the baud rate with BRGH = 1.

EQUATION 18-2: UARTX BAUD RATE WITH BRGH = $1^{(1,2)}$

Baud Rate =
$$\frac{FCY}{4 \cdot (UxBRG + 1)}$$

UxBRG = $\frac{FCY}{4 \cdot Baud Rate} - 1$

- **Note 1:** FCY denotes the instruction cycle clock frequency.
 - **2:** Based on FCY = FOSC/2; Doze mode and PLL are disabled.

The maximum baud rate (BRGH = 1) possible is FCY/4 (for UxBRG = 0) and the minimum baud rate possible is FCY/(4 * 65536).

Writing a new value to the UxBRG register causes the BRG timer to be reset (cleared). This ensures the BRG does not wait for a timer overflow before generating the new baud rate.

EXAMPLE 18-1: BAUD RATE ERROR CALCULATION (BRGH = 0)⁽¹⁾

Desired Baud Rate = FCY/(16 (BRGx + 1))Solving for BRGx Value: BRGx = ((FCY/Desired Baud Rate)/16) - 1 BRGx = ((400000/9600)/16) - 1BRGx = 25 Calculated Baud Rate = 4000000/(16 (25 + 1)) = 9615 Error = (Calculated Baud Rate – Desired Baud Rate) Desired Baud Rate = (9615 - 9600)/9600= 0.16%Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN ⁽	1)	USIDL	IREN ⁽²⁾	RTSMD		UEN1	UEN0
bit 15							bit 8
R/W-0, H0	C R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL
bit 7							bit 0
r							
Legend:		HC = Hardware	e Clearable bi	t			
R = Reada	ble bit	W = Writable b	it	U = Unimplem	nented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	UARTEN: UA 1 = UARTx is 0 = UARTx is	ARTx Enable bit ^{(*} s enabled; all UA s disabled; all UAF	I) .RTx pins are RTx pins are o	controlled by U, ontrolled by port	ARTx as define latches; UARTx	ed by UEN<1:0> power consump	tion is minimal
bit 14	Unimplemen	ted: Read as '0'					
bit 13	USIDL: UAR	Tx Stop in Idle M	ode bit				
	1 = Discontin 0 = Continue	nues module ope es module operat	ration when d ion in Idle mo	levice enters Idl de	e mode		
bit 12	IREN: IrDA [®]	Encoder and De	coder Enable	bit ⁽²⁾			
	1 = IrDA enc 0 = IrDA enc	oder and decode	er are enableo er are disableo	l d			
bit 11	RTSMD: Mod 1 = <u>UxRTS</u> p 0 = UxRTS p	le Selection for Ū vin is in Simplex i vin is in Flow Cor	JxRTS Pin bit mode ntrol mode				
bit 10	Unimplemen	ted: Read as '0'					
bit 9-8	UEN<1:0>: U	IARTx Enable bit	s				
	11 = UxTX, U 10 = UxTX, U 01 = UxTX, U 00 = UxTX ar latches	JxRX and BCLK3 JxRX, UxCTS an JxRX and UxRTS nd UxRX pins are	c pins are ena d UxRTS pins 5 pins are ena e enabled and	bled and used; s are enabled an abled and used; used; UxCTS a	UxCTS pin is c nd used UxCTS pin is c and UxRTS/BCI	controlled by por controlled by por LKx pins are cor	t latches rt latches htrolled by port
bit 7	WAKE: Wake	e-up on Start Bit	Detect During	Sleep Mode Er	nable bit		
	1 = UARTx w in hardwa 0 = No wake	vill continue to sa are on the follow -up is enabled	mple the UxR ing rising edg	X pin; interrupt i e	is generated or	the falling edge	e, bit is cleared
bit 6	LPBACK: UA	ARTx Loopback I	Node Select b	bit			
	1 = Enables 0 = Loopbacl	Loopback mode k mode is disable	ed				
bit 5	ABAUD: Auto	o-Baud Enable b	it				
	1 = Enables cleared in 0 = Baud rate	baud rate meas n hardware upon e measurement i	urement on the completion is disabled or	ne next characte completed	er – requires re	eception of a Sy	nc field (55h);
Note 1:	If UARTEN = 1, Section 11.4 "P	the peripheral in eripheral Pin Se	puts and outp elect (PPS)" f	uts must be cor for more informa	nfigured to an a ation.	vailable RPn/RF	PIn pin. See
2:	This feature is or	nly available for t	the 16x BRG	mode (BRGH =	0).		

REGISTER 18-1: UXMODE: UARTX MODE REGISTER

REGISTER 19-3:

R/W-x R/W-x R/W-x R/W-x U-0 R/W-x R/W-x R/W-x CH0⁽¹⁾ CH3(1) CH2⁽¹⁾ CH1⁽¹⁾ CHODIS CHPOL CHSYNC bit 15 bit 8 R/W-0 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x U-0 CI 3⁽¹⁾ CI 2⁽¹⁾ CL1⁽¹⁾ CI 0⁽¹⁾ CLODIS CLPOL CLSYNC bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CHODIS: Modulator High Carrier Output Disable bit 1 = Output signal driving the peripheral output pin (selected by CH<3:0>) is disabled 0 = Output signal driving the peripheral output pin is enabled bit 14 CHPOL: Modulator High Carrier Polarity Select bit 1 = Selected high carrier signal is inverted 0 = Selected high carrier signal is not inverted bit 13 CHSYNC: Modulator High Carrier Synchronization Enable bit 1 = Modulator waits for a falling edge on the high carrier before allowing a switch to the low carrier 0 = Modulator output is not synchronized to the high time carrier signal⁽¹⁾ bit 12 Unimplemented: Read as '0' bit 11-8 CH<3:0> Modulator Data High Carrier Selection bits⁽¹⁾ 1111 = Reserved . . . 1011 1010 = Output Compare/PWM Module 7 output 1001 = Output Compare/PWM Module 6 output 1000 = Output Compare/PWM Module 5 output 0111 = Output Compare/PWM Module 4 output 0110 = Output Compare/PWM Module 3 output 0101 = Output Compare/PWM Module 2 output 0100 = Output Compare/PWM Module 1 output 0011 = Reference clock (REFO) output 0010 = Input on MDCIN2 pin 0001 = Input on MDCIN1 pin 0000 = Vss bit 7 CLODIS: Modulator Low Carrier Output Disable bit 1 = Output signal driving the peripheral output pin (selected by CL<3:0>) is disabled 0 = Output signal driving the peripheral output pin is enabled bit 6 CLPOL: Modulator Low Carrier Polarity Select bit 1 = Selected low carrier signal is inverted 0 = Selected low carrier signal is not inverted bit 5 **CLSYNC:** Modulator Low Carrier Synchronization Enable bit 1 = Modulator waits for a falling edge on the low carrier before allowing a switch to the high carrier 0 = Modulator output is not synchronized to the low time carrier signal⁽¹⁾bit 4 Unimplemented: Read as '0' CL<3:0> Modulator Data Low Carrier Selection bits⁽¹⁾ bit 3-0 Bit settings are identical to those for CH<3:0>.

MDCAR: MODULATOR CARRIER CONTROL REGISTER

Note 1: Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

TABLE 31-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{ }	Optional field or operation
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.w	Word mode selection (default)
bit4	4-bit Bit Selection field (used in word addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0000h1FFFh}
lit1	1-bit unsigned literal $\in \{0,1\}$
lit4	4-bit unsigned literal $\in \{015\}$
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal $\in \{016383\}$
lit16	16-bit unsigned literal $\in \{065535\}$
lit23	23-bit unsigned literal \in {08388607}; LSB must be '0'
None	Field does not require an entry, may be blank
PC	Program Counter
Slit10	10-bit signed literal ∈ {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal ∈ {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor Working register pair (direct addressing)
Wn	One of 16 Working registers ∈ {W0W15}
Wnd	One of 16 Destination Working registers ∈ {W0W15}
Wns	One of 16 Source Working registers ∈ {W0W15}
WREG	W0 (Working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }

FIGURE 32-7: INPUT CAPTURE x TIMINGS

TABLE 32-27: INPUT CAPTURE x TIMINGS REQUIREMENTS

Param. No.	Symbol	Characteristic		Min	Мах	Units	Conditions
IC10	TccL	ICx Input Low Time –	No Prescaler	Tcy + 20		ns	Must also meet
		Synchronous Timer	With Prescaler	20	—	— ns Parameter	
IC11	TccH	ICx Input Low Time –	No Prescaler	Tcy + 20	—	ns	Must also meet
		Synchronous Timer	With Prescaler	20	—	ns	Parameter IC15
IC15	TccP	ICx Input Period – Synd	chronous Timer	<u>2 * Tcy + 40</u>	_	ns	N = Prescale
				Ν			Value (1, 4, 16)

FIGURE 32-8: OUTPUT COMPARE x TIMINGS

TABLE 32-28: OUTPUT COMPARE 1 TIMINGS

Param. No.	Symbol	Characteristic	Min	Мах	Unit	Condition
OC11	TCCR	OC1 Output Rise Time		10	ns	
			—	—	ns	
OC10	TCCF	OC1 Output Fall Time	—	10	ns	
				_	ns	

FIGURE 32-9: PWM MODULE TIMING REQUIREMENTS

© 2010-2014 Microchip Technology Inc.

FIGURE 32-14: SPIX MODULE MASTER MODE TIMING CHARACTERISTICS (CKE = 0)

TABLE 32-34:SPIX MASTER MODE TIMING REQUIREMENTS (CKE = 0)

AC CHARACTERISTICS			Standard Operating Conditions: 2.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Max	Units	Conditions	
SP10	TscL	SCKx Output Low Time ⁽²⁾	TCY/2	_	_	ns		
SP11	TscH	SCKx Output High Time ⁽²⁾	TCY/2	_	_	ns		
SP20	TscF	SCKx Output Fall Time ⁽³⁾		10	25	ns		
SP21	TscR	SCKx Output Rise Time ⁽³⁾	_	10	25	ns		
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾		10	25	ns		
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾		10	25	ns		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge			30	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	_	_	ns		

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The minimum clock period for SCKx is 100 ns; therefore, the clock generated in Master mode must not violate this specification.

3: Assumes 50 pF load on all SPIx pins.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	W2			7.35
Optional Center Pad Length	T2			7.35
Contact Pad Spacing	C1		8.90	
Contact Pad Spacing	C2		8.90	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			0.85
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2149A