

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

2 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga310-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

<u>г т</u>	-4: PIC24FJ126GA310 FAMIL f						
Pin	Pi	n Number/	Grid Loca	ter		Innut	
Function	64-Pin TQFP	80-Pin TQFP	100-Pin TQFP	121-Pin BGA	I/O	Input Buffer	Description
RB0	16	20	25	K2	I/O	ST	PORTB Digital I/O.
RB1	15	19	24	K1	I/O	ST	
RB2	14	18	23	J2	I/O	ST	
RB3	13	17	22	J1	I/O	ST	
RB4	12	16	21	H2	I/O	ST	
RB5	11	15	20	H1	I/O	ST	
RB6	17	21	26	L1	I/O	ST	
RB7	18	22	27	J3	I/O	ST	
RB8	21	27	32	K4	I/O	ST	
RB9	22	28	33	L4	I/O	ST	
RB10	23	29	34	L5	I/O	ST	
RB11	24	30	35	J5	I/O	ST	
RB12	27	33	41	J7	I/O	ST	
RB13	28	34	42	L7	I/O	ST	
RB14	29	35	43	K7	I/O	ST	
RB15	30	36	44	L8	I/O	ST	
RC1	_	4	6	D1	I/O	ST	PORTC Digital I/O.
RC2	_	_	7	E4	I/O	ST	
RC3	_	5	8	E2	I/O	ST	
RC4	_	_	9	E1	I/O	ST	
RC12	39	49	63	F9	I/O	ST	
RC13	47	59	73	C10	I	ST	
RC14	48	60	74	B11	I	ST	
RC15	40	50	64	F11	I/O	ST	
RD0	46	58	72	D9	I/O	ST	PORTD Digital I/O.
RD1	49	61	76	A11	I/O	ST	
RD2	50	62	77	A10	I/O	ST	
RD3	51	63	78	B9	I/O	ST]
RD4	52	66	81	C8	I/O	ST]
RD5	53	67	82	B8	I/O	ST	
RD6	54	68	83	D7	I/O	ST]
RD7	55	69	84	C7	I/O	ST]
RD8	42	54	68	E9	I/O	ST]
RD9	43	55	69	E10	I/O	ST	
RD10	44	56	70	D11	I/O	ST]
RD11	45	57	71	C11	I/O	ST]
RD12	_	64	79	A9	I/O	ST	
RD13		65	80	D8	I/O	ST]
RD14		37	47	L9	I/O	ST]
RD15		38	48	K9	I/O	ST]

PIC24FJ128GA310 FAMILY PINOUT DESCRIPTIONS (CONTINUED) **TABLE 1-4:**

TTL = TTL input buffer Legend: ANA = Analog level input/output ST = Schmitt Trigger input buffer $I^2C^{TM} = I^2C/SMBus$ input buffer

TABLE 4-11: SPI REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	_	SPISIDL	_	_	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI1CON1	0242		_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI1CON2	0244	FRMEN	SPIFSD	SPIFPOL	_	—	—	_	_	_	_	_		-	_	SPIFE	SPIBEN	0000
SPI1BUF	0248							SPI1	Transmit an	d Receive	Buffer							0000
SPI2STAT	0260	SPIEN	_	SPISIDL	_	_	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI2CON1	0262		_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI2CON2	0264	FRMEN	SPIFSD	SPIFPOL	—	—	—	—	_	_	_	_	_	_	—	SPIFE	SPIBEN	0000
SPI2BUF	0268		SPI2 Transmit and Receive Buffer 000							0000								

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-12: PORTA REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7 ⁽²⁾	Bit 6 ⁽²⁾	Bit 5 ⁽²⁾	Bit 4 ⁽²⁾	Bit 3 ⁽²⁾	Bit2 ⁽²⁾	Bit 1 ⁽²⁾	Bit 0 ⁽²⁾	All Resets
TRISA	02C0	TRISA	<15:14>	_	_	—	TRISA	<10:9>	_				TRISA	<7:0>				C6FF
PORTA	02C2	RA<1	5:14>		_	_	RA<1	10:9>	P			xxxx						
LATA	02C4	LATA<	15:14>		_	_	LATA<	<10:9>	0:9> — LATA<7:0>			xxxx						
ODCA	02C6	ODA<	15:14>	_	_	_	ODA<	:10:9>	—				ODA	<7:0>				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices.

Note 1: PORTA and all associated bits are unimplemented in 64-pin devices and read as '0'.

2: These bits are also unimplemented in 80-pin devices, read as '0'.

TABLE 4-13: PORTB REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8		TRISB<15:0> FI									FFFF						
PORTB	02CA								RB<	15:0>								xxxx
LATB	02CC		LATB<15:0> x								xxxx							
ODCB	02CE		ODB<15:0> 0								0000							

Legend: Reset values are shown in hexadecimal.

DS30009996G-page 53

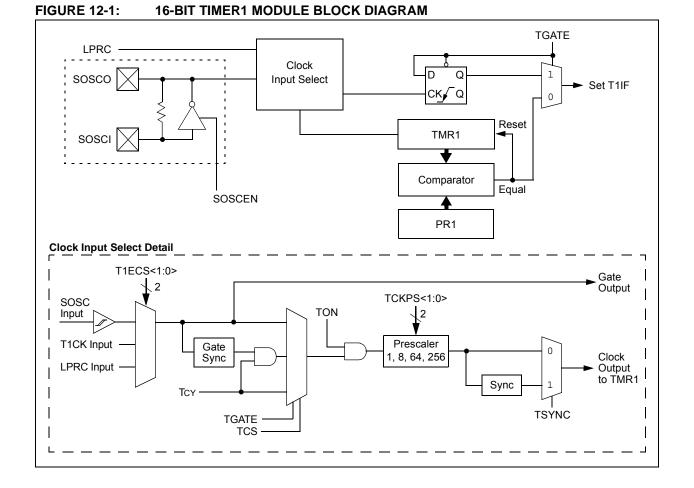
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0			
		CTMUIF	_				HLVDIF			
bit 15							bit 8			
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0			
	—	—		CRCIF	U2ERIF	U1ERIF				
bit 7							bit (
Legend:										
R = Readab	ole bit	W = Writable	oit	U = Unimplem	nented bit, rea	d as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own			
bit 15-14	Unimpleme	nted: Read as 'o)'							
bit 13	CTMUIF: CT	CTMUIF: CTMU Interrupt Flag Status bit								
		t request has oc								
	•	t request has no								
bit 12-9	•	nted: Read as '								
bit 8	-	h/Low-Voltage E	-	t Flag Status bi	l .					
		t request has oc t request has no								
bit 7-4		nted: Read as '(
bit 3	-	Generator Inte		us bit						
		t request has oc								
	0 = Interrupt	t request has no	t occurred							
bit 2	U2ERIF: UA	RT2 Error Interr	upt Flag Statu	s bit						
		t request has oc								
	0 = Interrupt request has not occurred									
bit 1		U1ERIF: UART1 Error Interrupt Flag Status bit 1 = Interrupt request has occurred								
		t request has oc t request has no								
bit 0		nted: Read as '(
	ommpleme	neu. Neau as ()							

12.0 TIMER1

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to "Timers" (DS39704) in the "dsPIC33/PIC24 Family Reference Manual". The information in this data sheet supersedes the information in the FRM.

The Timer1 module is a 16-bit timer that can operate as a free-running, interval timer/counter. Timer1 can operate in three modes:

- 16-Bit Timer
- 16-Bit Synchronous Counter
- 16-Bit Asynchronous Counter


Timer1 also supports these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during CPU Idle and Sleep modes
- Interrupt on 16-Bit Period Register Match or Falling Edge of External Gate Signal

Figure 12-1 presents a block diagram of the 16-bit Timer1 module.

To configure Timer1 for operation:

- 1. Set the TON bit (= 1).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS, TECS and TGATE bits.
- 4. Set or clear the TSYNC bit to configure synchronous or asynchronous operation.
- 5. Load the timer period value into the PR1 register.
- 6. If interrupts are required, set the Timer1 Interrupt Enable bit, T1IE. Use the Timer1 Interrupt Priority bits, T1IP<2:0>, to set the interrupt priority.

14.1.2 CASCADED (32-BIT) MODE

By default, each module operates independently with its own 16-bit timer. To increase resolution, adjacent even and odd modules can be configured to function as a single 32-bit module. (For example, Modules 1 and 2 are paired, as are Modules 3 and 4, and so on.) The odd numbered module (ICx) provides the Least Significant 16 bits of the 32-bit register pairs and the even module (ICy) provides the Most Significant 16 bits. Wraparounds of the ICx registers cause an increment of their corresponding ICy registers.

Cascaded operation is configured in hardware by setting the IC32 bits (ICxCON2<8>) for both modules.

14.2 Capture Operations

The input capture module can be configured to capture timer values and generate interrupts on rising edges on ICx or all transitions on ICx. Captures can be configured to occur on all rising edges or just some (every 4^{th} or 16^{th}). Interrupts can be independently configured to generate on each event or a subset of events.

To set up the module for capture operations:

- 1. Configure the ICx input for one of the available Peripheral Pin Select pins.
- 2. If Synchronous mode is to be used, disable the sync source before proceeding.
- 3. Make sure that any previous data has been removed from the FIFO by reading ICxBUF until the ICBNE bit (ICxCON1<3>) is cleared.
- 4. Set the SYNCSELx bits (ICxCON2<4:0>) to the desired sync/trigger source.
- 5. Set the ICTSELx bits (ICxCON1<12:10>) for the desired clock source.
- 6. Set the ICIx bits (ICxCON1<6:5>) to the desired interrupt frequency
- 7. Select Synchronous or Trigger mode operation:
 - a) Check that the SYNCSELx bits are not set to '000000'.
 - b) For Synchronous mode, clear the ICTRIG bit (ICxCON2<7>).
 - c) For Trigger mode, set ICTRIG, and clear the TRIGSTAT bit (ICxCON2<6>).
- 8. Set the ICMx bits (ICxCON1<2:0>) to the desired operational mode.
- 9. Enable the selected sync/trigger source.

For 32-bit cascaded operations, the setup procedure is slightly different:

- 1. Set the IC32 bits for both modules (ICyCON2<8>) and (ICxCON2<8>), enabling the even numbered module first. This ensures the modules will start functioning in unison.
- 2. Set the ICTSELx and SYNCSELx bits for both modules to select the same sync/trigger and time base source. Set the even module first, then the odd module. Both modules must use the same ICTSELx and SYNCSELx bits settings.
- Clear the ICTRIG bit of the even module (ICyCON2<7>). This forces the module to run in Synchronous mode with the odd module, regardless of its trigger setting.
- 4. Use the odd module's ICIx bits (ICxCON1<6:5>) to set the desired interrupt frequency.
- Use the ICTRIG bit of the odd module (ICxCON2<7>) to configure Trigger or Synchronous mode operation.
- **Note:** For Synchronous mode operation, enable the sync source as the last step. Both input capture modules are held in Reset until the sync source is enabled.
- Use the ICMx bits of the odd module (ICxCON1<2:0>) to set the desired Capture mode.

The module is ready to capture events when the time base and the sync/trigger source are enabled. When the ICBNE bit (ICxCON1<3>) becomes set, at least one capture value is available in the FIFO. Read input capture values from the FIFO until the ICBNE clears to '0'.

For 32-bit operation, read both the ICxBUF and ICyBUF for the full 32-bit timer value (ICxBUF for the Isw, ICyBUF for the msw). At least one capture value is available in the FIFO buffer when the odd module's ICBNE bit (ICxCON1<3>) becomes set. Continue to read the buffer registers until ICBNE is cleared (performed automatically by hardware).

REGISTER 19-3:

R/W-x R/W-x R/W-x R/W-x U-0 R/W-x R/W-x R/W-x CH0⁽¹⁾ CH3(1) CH2⁽¹⁾ CH1⁽¹⁾ CHODIS CHPOL CHSYNC bit 15 bit 8 R/W-0 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x U-0 CI 3⁽¹⁾ CI 2⁽¹⁾ CL1⁽¹⁾ CI 0⁽¹⁾ CLODIS CLPOL CLSYNC bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CHODIS: Modulator High Carrier Output Disable bit 1 = Output signal driving the peripheral output pin (selected by CH<3:0>) is disabled 0 = Output signal driving the peripheral output pin is enabled bit 14 CHPOL: Modulator High Carrier Polarity Select bit 1 = Selected high carrier signal is inverted 0 = Selected high carrier signal is not inverted bit 13 CHSYNC: Modulator High Carrier Synchronization Enable bit 1 = Modulator waits for a falling edge on the high carrier before allowing a switch to the low carrier 0 = Modulator output is not synchronized to the high time carrier signal⁽¹⁾ bit 12 Unimplemented: Read as '0' bit 11-8 CH<3:0> Modulator Data High Carrier Selection bits⁽¹⁾ 1111 = Reserved . . . 1011 1010 = Output Compare/PWM Module 7 output 1001 = Output Compare/PWM Module 6 output 1000 = Output Compare/PWM Module 5 output 0111 = Output Compare/PWM Module 4 output 0110 = Output Compare/PWM Module 3 output 0101 = Output Compare/PWM Module 2 output 0100 = Output Compare/PWM Module 1 output 0011 = Reference clock (REFO) output 0010 = Input on MDCIN2 pin 0001 = Input on MDCIN1 pin 0000 = Vss bit 7 CLODIS: Modulator Low Carrier Output Disable bit 1 = Output signal driving the peripheral output pin (selected by CL<3:0>) is disabled 0 = Output signal driving the peripheral output pin is enabled bit 6 CLPOL: Modulator Low Carrier Polarity Select bit 1 = Selected low carrier signal is inverted 0 = Selected low carrier signal is not inverted bit 5 **CLSYNC:** Modulator Low Carrier Synchronization Enable bit 1 = Modulator waits for a falling edge on the low carrier before allowing a switch to the high carrier 0 = Modulator output is not synchronized to the low time carrier signal⁽¹⁾bit 4 Unimplemented: Read as '0' CL<3:0> Modulator Data Low Carrier Selection bits⁽¹⁾ bit 3-0 Bit settings are identical to those for CH<3:0>.

MDCAR: MODULATOR CARRIER CONTROL REGISTER

Note 1: Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

REGISTER 21-3: LCDPS: LCD PHASE REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_		_	_		_	—
oit 15	·						bit
R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
WFT	BIASMD	LCDA	WA	LP3	LP2	LP1	LP0
bit 7		LOBIN		210			bit
Legend:							
R = Readab	le bit	W = Writable b	oit	U = Unimplem	ented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-8	Unimplemen	ted: Read as '0)'				
bit 7	-	rm Type Select					
	1 = Type-B w	vaveform (phase	e changes or	n each frame bou			
	• •		-	ithin each commo	on type)		
bit 6		s Mode Select I					
		< <u>2:0> = 000 or</u> s mode (do not					
		<2:0> = 001 or	<u>010:</u>				
	1 = 1/2 Bias mode 0 = 1/3 Bias mode						
bit 5	LCDA: LCD A	Active Status bit					
		er module is act er module is ina	-				
bit 4	WA: LCD Wri	te Allow Status	bit				
		to the LCDDAT/ to the LCDDAT/					
bit 3-0		D Prescaler Sel	-				
	1111 = 1:16						
	1110 = 1:15						
	1101 = 1:14 1100 = 1:13						
	1011 = 1:12						
	1010 = 1:11						
	1001 = 1:10						
	1000 = 1:9						
	0111 = 1:8 0110 = 1:7						
	0101 = 1:6						
	0100 = 1 :5						
	0011 = 1:4						
	0010 = 1:3						
	0001 = 1:2						

REGISTER 22-6: WKDYHR: WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—	—	—	—	WDAY2	WDAY1	WDAY0
bit 15							bit 8
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	_	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0

—	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits
	Contains a value from 0 to 6.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits
	Contains a value from 0 to 2.
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 22-7: MINSEC: MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x						
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 15							bit 8

U-0	R/W-x						
	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits
	Contains a value from 0 to 5.
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits
	Contains a value from 0 to 9.
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits
	Contains a value from 0 to 5.
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits
	Contains a value from 0 to 9.

REGISTER 24-2: AD1CON2: ADC1 CONTROL REGISTER 2 (CONTINUED)

- bit 1 **BUFM:** Buffer Fill Mode Select bit⁽¹⁾
 - 1 = ADC buffer is two, 13-word buffers, starting at ADC1BUF0 and ADC1BUF12, and sequential conversions fill the buffers alternately (Split mode)
 - 0 = ADC buffer is a single, 26-word buffer and fills sequentially from ADC1BUF0 (FIFO mode)
- bit 0 ALTS: Alternate Input Sample Mode Select bit
 - 1 = Uses channel input selects for Sample A on first sample and Sample B on next sample
 - 0 = Always uses channel input selects for Sample A
- **Note 1:** These bits are only applicable when the buffer is used in FIFO mode (BUFREGEN = 0). In addition, BUFS is only used when BUFM = 1.

REGISTER 24-3: AD1CON3: ADC1 CONTROL REGISTER 3

R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	EXTSAM	PUMPEN	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ADCS7 | ADCS6 | ADCS5 | ADCS4 | ADCS3 | ADCS2 | ADCS1 | ADCS0 |
| bit 7 | | | | | | | bit 0 |

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15	ADRC: ADC Conversion Clock Source bit 1 = RC Clock
	0 = Clock derived from system clock
bit 14	EXTSAM: Extended Sampling Time bit
	1 = ADC is still sampling after SAMP = 00 = ADC is finished sampling
bit 13	PUMPEN: Charge Pump Enable bit
	1 = Charge pump for switches is enabled0 = Charge pump for switches is disabled
bit 12-8	SAMC<4:0>: Auto-Sample Time Select bits
	11111 = 31 T AD
	•••
	00001 = 1 TAD 00000 = 0 TAD
bit 7-0	ADCS<7:0>: ADC Conversion Clock Select bits
	11111111 - Decented
	••• = Reserved
	$001111111 = 64 \cdot TCY = TAD$
	•••
	$0000001 = 2 \cdot \text{TCY} = \text{TAD}$
	00000000 = TCY = TAD

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
ASEN	LPEN	CTMREQ	BGREQ		—	ASINT1	ASINT0
bit 15							bit
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	_	—	WM1	WM0	CM1	CM0
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimplem	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	ASEN: Auto-	-Scan Enable bit	I				
		an is enabled an is disabled					
bit 14	LPEN: Low-I	Power Enable bi	t				
		ver is enabled af					
bit 13	CTMREQ: C	TMU Request b	it				
		s enabled when s not enabled by		abled and active	е		
bit 12	BGREQ: Ba	nd Gap Request	bit				
		p is enabled wh p is not enabled		enabled and ad	ctive		
bit 11-10	Unimplemer	nted: Read as 'o)'				
bit 9-8	ASINT<1:0>	: Auto-Scan (Th	reshold Detect	:) Interrupt Mod	e bits		
	10 = Interru	pt after Thresho pt after valid cor pt after Thresho errupt	npare has occ	urred		npare has occu	urred
bit 7-4		nted: Read as 'o)'				
bit 3-2	WM<1:0>: W	/rite Mode bits					
	11 = Reserv						4 1
		ompare only (con occurs, as define				s are generate	d when a vai
	01 = Conver	t and save (con match occurs, a	version results	are saved to I		etermined by th	ne register bi
		operation (conv	-		tion determine	ed by the buffer	register bits
bit 1-0	CM<1:0>: C	ompare Mode bi	ts				
		Window mode (urs if the conver	rsion result is o	utside of the win	dow defined l
	10 = Inside V	esponding buffer Vindow mode (va onding buffer pai	alid match occu	irs if the convers	sion result is in	side the window	defined by th
		Than mode (va		rs if the result is	s greater than	the value in the	correspondi
		nan mode (valid	match occurs i	f the result is le	ss than the val	ue in the corres	sponding buff

REGISTER 29-2: CW2: FLASH CONFIGURATION WORD 2

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1			
_	—	—	_	—	—	_				
bit 23	÷						bit 16			
R/PO-1	r-1	r-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1			
IESO	r	r	ALTVRF1	ALTVRF0	FNOSC2	FNOSC1	FNOSC0			
bit 15		bit 8								
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	r-1	R/PO-1	R/PO-1			
FCKSM1	FCKSM0	OSCIOFCN	IOL1WAY	BOREN1	r	POSCMD1	POSCMD0			
bit 7							bit 0			
Legend:		r = Reserved I		PO = Prograr						
R = Readabl		W = Writable I	bit		nented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 23-16	-	ted: Read as '1								
bit 15		al External Swite		le l - el						
		ode (Two-Speed ode (Two-Speed								
bit 14-13		ways maintain a		Cabica						
bit 12-11		- >: Alternate VRI		Selection hits						
		rator Voltage re				31. ADC VREF	+ is RB0 and			
	ADC VF	REF- is RB1								
		rator Voltage re REF- is RA9	eference input	VREF+ is RB(), VREF- is RB	1, ADC VREF+	is RA10 and			
	-	rator Voltage re	eference input	VREF+ is RA	10. VREF- is R	A9. ADC VREF	+ is RB0 and			
	ADC VF	REF- is RB1								
		rator Voltage re REF- is RA9	ference input	VREF+ is RA1	0, VREF- is RA	19, ADC VREF	is RA10 and			
bit 10-8	FNOSC<2:0>	: Initial Oscillate	or Select bits							
		RC Oscillator wit	h Postscaler (FRCDIV)						
	110 = Reser	ved Power RC Oscill	ator (LPPC)							
		idary Oscillator	. ,							
	011 = Prima	ry Oscillator with	h PLL module	(XTPLL, HSPL	L, ECPLL)					
		ry Oscillator (XT		and DLL are advit						
		RC Oscillator wit RC Oscillator (FI		and PLL module	e (FRCPLL)					
bit 7-6		Clock Switchi	-	afe Clock Monit	tor Configuratio	n bits				
		witching and Fa	-		-					
	01 = Clock sv	witching is enab	led, Fail-Safe	Clock Monitor	is disabled					
		witching is enab		Clock Monitor	is enabled					
bit 5		OSCO Pin Con	0							
		<u>1:0> = 11 or 00</u> LKO/RC15 func		$\int (E_{OSC}/2)$						
		LKO/RC15 lunc		. ,						
		1:0> = 10 or 01	-	(/						
		nas no effect on		/RC15.						

30.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

30.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

30.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

30.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- · Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

30.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

30.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

30.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

30.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

30.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
	BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
BTST	BTST	f,#bit4	Bit Test f	1	1	Z
	BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
	BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
	BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
	BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
	BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
	BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
CALL	CALL	lit23	Call Subroutine	2	2	None
	CALL	Wn	Call Indirect Subroutine	1	2	None
CLR	CLR	f	f = 0x0000	1	1	None
C	CLR	WREG	WREG = 0x0000	1	1	None
	CLR	Ws	Ws = 0x0000	1	1	None
CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO, Sleep
СОМ	СОМ	f	f = f	1	1	N, Z
	СОМ	f,WREG	WREG = f	1	1	N, Z
	СОМ	Ws,Wd	Wd = Ws	1	1	N, Z
CP	CP	f	Compare f with WREG	1	1	C, DC, N, OV, 2
01	CP	Wb,#lit5	Compare Wb with lit5	1	1	C, DC, N, OV, 2
	CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C, DC, N, OV, Z
CP0	CP0	f	Compare f with 0x0000	1	1	C, DC, N, OV, Z
CFU	CP0	Ws	Compare Ws with 0x0000	1	1	C, DC, N, OV, 2
CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C, DC, N, OV, Z
010	CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C, DC, N, OV, 2
	CPB	Wb,Ws	Compare Wb with Ws, with Borrow	1	1	C, DC, N, OV, 2
			$(Wb - Ws - \overline{C})$			
CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None
CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None
CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None
CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, Skip if ≠	1	1 (2 or 3)	None
DAW	DAW.B	Wn	Wn = Decimal Adjust Wn	1	1	С
DEC	DEC	f	f = f - 1	1	1	C, DC, N, OV, 2
	DEC	f,WREG	WREG = f –1	1	1	C, DC, N, OV, 2
	DEC	Ws,Wd	Wd = Ws - 1	1	1	C, DC, N, OV, 2
DEC2	DEC2	f	f = f - 2	1	1	C, DC, N, OV, 2
	DEC2	f,WREG	WREG = $f - 2$	1	1	C, DC, N, OV, 2
	DEC2	Ws,Wd	Wd = Ws - 2	1	1	C, DC, N, OV, 2
DISI	DISI	#lit14	Disable Interrupts for k Instruction Cycles	1	1	None
DIV	DIV.SW	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UW	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N, Z, C, OV
EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С

TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

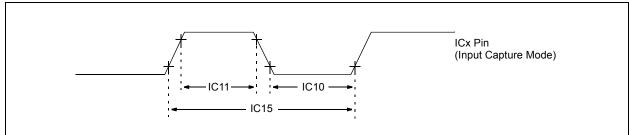
TABLE 32-5: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

DC CHARAC	TERISTICS		Standard Operating Conditions: 2V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Parameter No.	Typical ⁽¹⁾	Мах	Units	Operating Temperature	Vdd	Conditions	
Idle Current (lidle)						
DC40	81	_	μΑ	-40°C to +85°C	2.0V	1 MIPS,	
	86	_	μA	-40°C to +85°C	3.3V	Fosc = 2 MHz	
DC43	0.27	_	mA	-40°C to +85°C	2.0V	4 MIPS,	
	0.28	_	mA	-40°C to +85°C	3.3V	Fosc = 8 MHz	
DC47	1	1.35	mA	-40°C to +85°C	2.0V	16 MIPS,	
	1.07	1.4	mA	-40°C to +85°C	3.3V	Fosc = 32 MHz	
DC50	0.47	_	mA	-40°C to +85°C	2.0V	4 MIPS (FRC),	
	0.48	_	mA	-40°C to +85°C	3.3V	Fosc = 8 MHz	
DC51	21	76	μA	-40°C to +85°C	2.0V	LPRC (15.5 KIPS),	
	21	78	μA	-40°C to +85°C	3.3V	Fosc = 31 kHz	

Note 1: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

DC CHARACTERISTICS			Standard Operating Conditions: 2V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Parameter No.	Typical ⁽¹⁾	Max	Units	Operating Temperature	Vdd	Conditions	
Power-Dov	vn Current (IPD)					
DC60			μA	-40°C			
	3.7		μA	+25°C	2.0V		
	6.2		μA	+60°C			
	13.6	27.5	μA	+85°C			
	_		μA	-40°			
	3.8		μA	+25°C	0.01/	Sleep ⁽²⁾	
	6.3	_	μA	+60°C	3.3V	Sieep	
	13.7	28	μA	+85°C			
DC61	ОС61 — μА -40	-40°					
	0.33		μA	+25°C	2.0V 3.3V		
	2		μA	+60°C		– Low-Voltage Sleep ⁽³⁾	
	7.7	14.5	μA	+85°C			
	_		μA	-40°			
	0.34		μA	+25°C			
	2	_	μA	+60°C			
	7.9	15	μA	+85°C			
DC70	_	_	μA	-40°			
	0.01	_	μA	+25°C	2.0V 3.3V		
	—	_	μA	+60°C		– Deep Sleep	
		1.1	μA	+85°C			
	_	_	μA	-40°			
-	0.04	_	μA	+25°C			
	_	_	μA	+60°C			
	—	1.4	μA	+85°C			
	0.4	2.0	μA	-40°C to +85°C	0V	RTCC with VBAT mode (LPRC/SOSC) ⁽⁴⁾	

TABLE 32-6: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)


Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated. IPD is measured with all peripherals and clocks (PMD) shutdown; all the ports are made output and driven low.

2: The retention low-voltage regulator is disabled; RETEN (RCON<12>) = 0, LPCFG (CW1<10>) = 1.

3: The retention low-voltage regulator is enabled; RETEN (RCON<12>) = 1, LPCFG (CW1<10>) = 0.

4: The VBAT pin is connected to the battery and RTCC is running with VDD = 0.

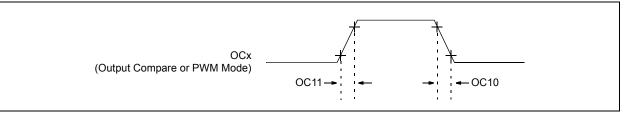

FIGURE 32-7: INPUT CAPTURE x TIMINGS

TABLE 32-27: INPUT CAPTURE x TIMINGS REQUIREMENTS

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
IC10	TccL	ICx Input Low Time –	No Prescaler	Tcy + 20		ns	Must also meet
	Synchronous Timer	With Prescaler	20	—	ns	Parameter IC15	
IC11	ТссН	ICx Input Low Time –	No Prescaler	Tcy + 20	_	ns	Must also meet
	Synchronous Timer	With Prescaler	20	-	ns	Parameter IC15	
IC15	TccP	ICx Input Period – Synchronous Timer		<u>2 * Tcy + 40</u> N	_	ns	N = Prescale Value (1, 4, 16)

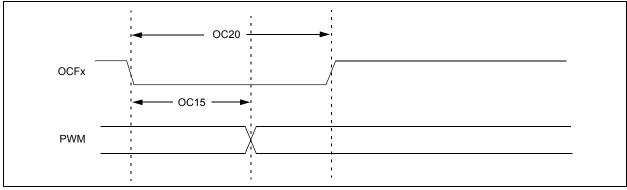

FIGURE 32-8: OUTPUT COMPARE x TIMINGS

TABLE 32-28: OUTPUT COMPARE 1 TIMINGS

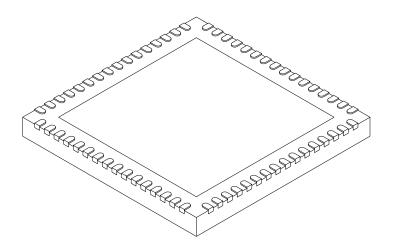

Param. No.	Symbol	Characteristic	Min	Мах	Unit	Condition
OC11	TCCR	OC1 Output Rise Time	_	10	ns	
			_	—	ns	
OC10	TCCF	OC1 Output Fall Time	—	10	ns	
				_	ns	

FIGURE 32-9: PWM MODULE TIMING REQUIREMENTS

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.15 x 7.15 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

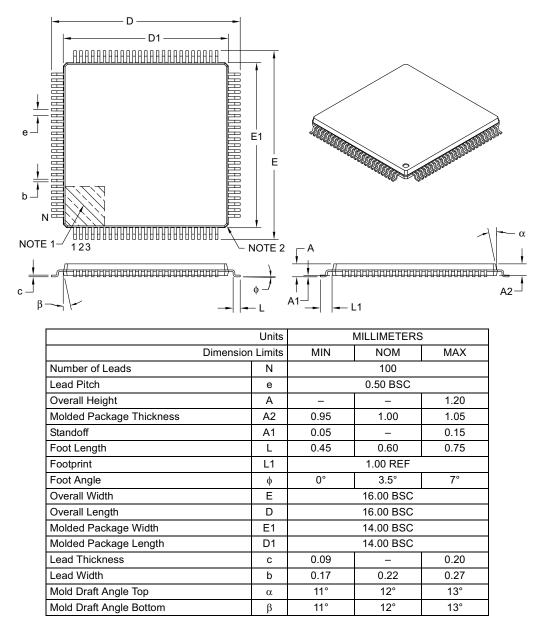
	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Number of Pins	Ν	64		
Pitch	е		0.50 BSC	
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	E	9.00 BSC		
Exposed Pad Width	E2	7.05	7.15	7.50
Overall Length	D	9.00 BSC		
Exposed Pad Length	D2	7.05	7.15	7.50
Contact Width	b	0.18	0.25	0.30
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	К	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-149C Sheet 2 of 2

100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-110B

RCFGCAL (RTCC Calibration	
and Configuration)	3
RCON (Reset Control)	
RCON2 (Reset and System Control 2) 164	1
RCON2 (Reset Control 2)92	2
REFOCON (Reference Oscillator Control)153	
RPINR0 (PPS Input 0) 178	
RPINR1 (PPS Input 1) 178	
RPINR10 (PPS Input 10) 182	
RPINR11 (PPS Input 11) 182	
RPINR17 (PPS Input 17) 183	
RPINR18 (PPS Input 18) 183	
RPINR19 (PPS Input 19)	
RPINR2 (PPS Input 2)	
RPINR20 (PPS Input 20)	
RPINR21 (PPS Input 21)	
RPINR22 (PPS Input 22)	
RPINR23 (PPS Input 23)	
RPINR27 (PPS Input 27)	
RPINR3 (PPS Input 3)	
RPINR30 (PPS Input 30)	
RPINR4 (PPS Input 4)	
RPINR7 (PPS Input 7)	
RPINR9 (PPS Input 9)	
RPOR0 (PPS Output 0)	
RPOR1 (PPS Output 1)	
RPOR10 (PPS Output 10)	
RPOR11 (PPS Output 11)	
RPOR12 (PPS Output 12)	
RPOR13 (PPS Output 13)	
RPOR14 (PPS Output 14)	
RPOR15 (PPS Output 15)	
RPOR2 (PPS Output 2)	
RPOR3 (PPS Output 3)	
RPOR4 (PPS Output 4)	
RPOR5 (PPS Output 5)	
RPOR6 (PPS Output 6) 191	
RPOR7 (PPS Output 7) 191	
RPOR8 (PPS Output 8) 192	
RPOR9 (PPS Output 9) 192	
RTCCSWT (Power Control and Sample	
Window Timer)	3
RTCPWC (RTCC Power Control))
SPIxCON1 (SPIx Control 1)226	3
SPIxCON2 (SPIx Control 2)	
SPIxSTAT (SPIx Status and Control)	
SR (ALU STATUS))
T1CON (Timer1 Control) 198	3
TxCON (Timer2 and Timer4 Control)	2
TyCON (Timer3 and Timer5 Control)	3
UxMODE (UARTx Mode)244	
UxSTA (UARTx Status and Control)246	
WKDYHR (RTCC Weekday and Hours Value)	
YEAR (RTCC Year Value)282	2
Resets	
BOR (Brown-out Reset)	
Brown-out Reset (BOR)93	
Clock Source Selection	
CM (Configuration Mismatch Reset)	
Delay Times	
Device Times	
IOPUWR (Illegal Opcode Reset)	
MCLR (Pin Reset)	J

POR (Power-on Reset)	89
RCON Flags, Operation	
SFR States	
SWR (RESET Instruction)	89
TRAPR (Trap Conflict Reset)	89
UWR (Uninitialized W Register Reset)	89
WDT (Watchdog Timer Reset)	89
Revision History	107
RTCC	
Alarm Configuration 2	287
Alarm Mask Settings (figure) 2	288
Calibration	287
Clock Source Selection 2	277
Control Registers 2	278
Power Control	288
Register Mapping 2	277
Source Clock	275
VBAT Operation 2	288
Write Lock	277

S

Selective Peripheral Power Control Serial Peripheral Interface (SPI)	
Serial Peripheral Interface. See SPI.	
•	
SFR Space	44
Software Simulator (MPLAB SIM)	349
Software Stack	
Special Features	12
SPI	221

т

Timer1	197
Timer2/3 and Timer4/5	199
Timing Diagrams	
CLKO and I/O Timing	372
External Clock	370
I2Cx Bus Data (Master Mode)	377
I2Cx Bus Data (Slave Mode)	378
I2Cx Bus Start/Stop Bits (Master Mode)	376
I2Cx Bus Start/Stop Bits (Slave Mode)	378
ICx (Input Capture Mode)	
Input Capture x	
Output Compare x	
PWM Requirements	
SPIx Master Mode (CKE = 0)	
SPIx Slave Mode (CKE = 0)	382
SPIx Slave Mode (CKE = 1)	383
Timer1/2/3/4/5 External Clock Input	
UARTx Baud Rate Generator Output	
UARTx Start Bit Edge Detection	384
Timing Requirements	
I2Cx Bus Data (Master Mode)	377
I2Cx Bus Data (Slave Mode)	379
I2Cx Bus Start/Stop Bits (Master Mode)	376
I2Cx Bus Start/Stop Bits (Slave Mode)	
Input Capture x	
Output Compare 1	
PWM	
SPIx Master Mode (CKE = 0)	380
SPIx Slave Mode (CKE = 0)	
SPIx Slave Mode (CKE = 1)	
Timer1/2/3/4/5 External Clock Input	
Triple Comparator	
Triple Comparator Module	