
NXP USA Inc. - KMPC8560PX667LC Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing
chips designed to perform specific tasks within an
embedded system. Unlike general-purpose
microprocessors found in personal computers, embedded
microprocessors are tailored for dedicated functions within
larger systems, offering optimized performance, efficiency,
and reliability. These microprocessors are integral to the
operation of countless electronic devices, providing the
computational power necessary for controlling processes,
handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad
spectrum of applications, making them indispensable in
modern technology. In consumer electronics, they power
devices such as smartphones, tablets, and smart home
appliances, enabling advanced features and connectivity.
In the automotive industry, embedded microprocessors are
critical for engine control units (ECUs), infotainment
systems, and advanced driver-assistance systems (ADAS).
Industrial automation relies on these microprocessors for
controlling machinery, managing production lines, and
ensuring safety protocols. Medical devices, including
diagnostic equipment and patient monitoring systems,
depend on embedded microprocessors for accurate data
processing and reliable performance. Additionally,
embedded microprocessors are used in
telecommunications, aerospace, and defense applications,
where precision and dependability are paramount.

Common Subcategories of Embedded -
Microprocessors

Embedded microprocessors can be categorized into
several common subcategories based on their
architecture, performance, and intended application.
These include:

General-Purpose Microprocessors: Designed for
a wide range of applications, offering a balance of
performance and flexibility.

Application-Specific Integrated Circuits
(ASICs): Custom-designed for specific tasks,
providing optimal performance for particular
applications.

Digital Signal Processors (DSPs): Specialized for
real-time signal processing tasks, ideal for audio,
video, and communication systems.

System on Chip (SoC): Integrates the
microprocessor with other system components, such
as memory and peripherals, on a single chip for
compact and efficient designs.

Types of Embedded - Microprocessors

Details

Product Status Obsolete

Core Processor PowerPC e500

Number of Cores/Bus Width 1 Core, 32-Bit

Speed 667MHz

Co-Processors/DSP Communications; CPM

RAM Controllers DDR, SDRAM

Graphics Acceleration No

Display & Interface Controllers -

Ethernet 10/100/1000Mbps (2)

SATA -

USB -

Voltage - I/O 2.5V, 3.3V

Operating Temperature 0°C ~ 105°C (TA)

Security Features -

Package / Case 783-BFBGA, FCBGA

Supplier Device Package 783-FCPBGA (29x29)

Purchase URL https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8560px667lc

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/kmpc8560px667lc-4474225
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors


MPC8560 Integrated Processor Hardware Specifications, Rev. 4.2

Freescale Semiconductor 7
 

Overview

— MII management interface for control and status

— Programmable CRC generation and checking

— Ability to force allocation of header information and buffer descriptors into L2 cache.

• OCeaN switch fabric

— Four-port crossbar packet switch

— Reorders packets from a source based on priorities

— Reorders packets to bypass blocked packets

— Implements starvation avoidance algorithms

— Supports packets with payloads of up to 256 bytes

• Integrated DMA controller

— Four-channel controller

— All channels accessible by both the local and remote masters

— Extended DMA functions (advanced chaining and striding capability)

— Support for scatter and gather transfers

— Misaligned transfer capability

— Interrupt on completed segment, link, list, and error

— Supports transfers to or from any local memory or I/O port

— Selectable hardware-enforced coherency (snoop/no-snoop)

— Ability to start and flow control each DMA channel from external 3-pin interface

— Ability to launch DMA from single write transaction

• PCI/PCI-X controller

— PCI 2.2 and PCI-X 1.0 compatible 

— 64- or 32-bit PCI port supports at 16 to 66 MHz

— 64-bit PCI-X support up to 133 MHz

— Host and agent mode support

— 64-bit dual address cycle (DAC) support

— PCI-X supports multiple split transactions

— Supports PCI-to-memory and memory-to-PCI streaming

— Memory prefetching of PCI read accesses

— Supports posting of processor-to-PCI and PCI-to-memory writes

— PCI 3.3-V compatible

— Selectable hardware-enforced coherency

• Power management

— Fully static 1.2-V CMOS design with 3.3- and 2.5-V I/O

— Supports power saving modes: doze, nap, and sleep

— Employs dynamic power management, which automatically minimizes power consumption of 
blocks when they are idle.
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Power Characteristics

Table 6 provides estimated I/O power numbers for each block: DDR, PCI, Local Bus, RapidIO, TSEC, and 
CPM.

Table 6. Estimated Typical I/O Power Consumption

Interface Parameter GVDD (2.5 V) OVDD (3.3 V) LVDD (3.3 V) LVDD (2.5 V) Units Notes

DDR I/O CCB = 200 MHz 0.46 — — — W 1

CCB = 266 MHz 0.59 — — —

CCB = 300 MHz 0.66 — — —

CCB = 333 MHz 0.73 — — —

PCI/PCI-X I/O 32-bit, 33 MHz — 0.04 — — W 2

32-bit 66 MHz — 0.07 — —

64-bit, 66 MHz — 0.14 — —

64-bit, 133 MHz — 0.25 — —

Local Bus I/O 32-bit, 33 MHz — 0.07 — — W 3

32-bit, 66 MHz — 0.13 — —

32-bit, 133 MHz — 0.24 — —

32-bit, 167 MHz — 0.30 — —

RapidIO I/O 500 MHz data rate — 0.96 — — W 4

TSEC I/O MII — — 10 — mW 5, 6

GMII, TBI (2.5 V) — — — 40

GMII, TBI (3.3 V) — — 70 —

RGMII, RTBI — — — 40

CPM-FCC MII — 15 — — mW 7

RMII — 13 — —

HDLC 16 Mbps — 9 — —

UTOPIA-8 SPHY — 60 — —

UTOPIA-8 MPHY — 100 — —

UTOPIA-16 SPHY — 94 — —

UTOPIA-16 MPHY — 135 — —

CPM-SCC HDLC 16 Mbps — 4 — — mW 7
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DDR SDRAM

6.2.2 DDR SDRAM Output AC Timing Specifications
For chip selects MCS1 and MCS2, there will always be at least 200 DDR memory clocks coming out of 
self-refresh after an HRESET before a precharge occurs. This will not necessarily be the case for chip 
selects MCS0 and MCS3.

6.2.2.1 DLL Enabled Mode

Table 16 and Table 17 provide the output AC timing specifications and measurement conditions for the 
DDR SDRAM interface with the DDR DLL enabled.

Table 16. DDR SDRAM Output AC Timing Specifications–DLL Mode

At recommended operating conditions with GVDD of 2.5 V ± 5%.

Parameter Symbol 1 Min Max Unit Notes

MCK[n] cycle time, (MCK[n]/MCK[n] crossing) tMCK 6 10 ns 2

On chip Clock Skew tMCKSKEW — 150 ps 3, 8

MCK[n] duty cycle tMCKH/tMCK 45 55 % 8

ADDR/CMD output valid tDDKHOV — 3 ns 4, 9

ADDR/CMD output invalid tDDKHOX 1 — ns 4, 9

Write CMD to first MDQS capture edge tDDSHMH tMCK + 1.5 tMCK + 4.0 ns 5

MDQ/MECC/MDM output setup with respect to 
MDQS

333 MHz
266 MHz
200 MHz

tDDKHDS,
tDDKLDS

900
1100
1200

— ps 6, 9

MDQ/MECC/MDM output hold with respect to 
MDQS

333 MHz
266 MHz
200 MHz

tDDKHDX,
tDDKLDX

900
1100
1200

— ps 6, 9

MDQS preamble start tDDSHMP 0.75 × tMCK + 1.5 0.75 × tMCK + 4.0 ns 7, 8
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DDR SDRAM

Figure 6 shows the DDR SDRAM output timing diagram.

Figure 6. DDR SDRAM Output Timing Diagram

6.2.2.2 Load Effects on Address/Command Bus
Table 18 provides approximate delay information that can be expected for the address and command 
signals of the DDR controller for various loadings. These numbers are the result of simulations for one 
topology. The delay numbers will strongly depend on the topology used. These delay numbers show the 
total delay for the address and command to arrive at the DRAM devices. The actual delay could be 
different than the delays seen in simulation, depending on the system topology. If a heavily loaded system 
is used, the DLL loop may need to be adjusted to meet setup requirements at the DRAM.

Table 18. Expected Delays for Address/Command

Load Delay Unit

4 devices (12 pF) 3.0 ns

9 devices (27 pF) 3.6 ns

36 devices (108 pF) + 40 pF compensation capacitor 5.0 ns

36 devices (108 pF) + 80 pF compensation capacitor 5.2 ns

ADDR/CMD

DLL Phase Alignment

tDDKHOV

tDDSHMH

tDDKLDS

tDDKHDS

MDQ[x]

MDQS[n]

MSYNC_IN

MSYNC_OUT

MCK[n]

MCK[n]
tMCK

tDDSHME

tDDKLDX

tDDKHDX

tDDSHMP

D1D0

tDDKHOX

Write A0 NOOP

tMCK tMCKH
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Ethernet: Three-Speed, MII Management

7.2.4 RGMII and RTBI AC Timing Specifications

Table 27 presents the RGMII and RTBI AC timing specifications.

Table 27. RGMII and RTBI AC Timing Specifications

At recommended operating conditions with LVDD of 2.5 V ± 5%.

Parameter/Condition Symbol 1 Min Typ Max Unit

Data to clock output skew (at transmitter) tSKRGT
 5 –500 0 500 ps

Data to clock input skew (at receiver) 2 tSKRGT 1.0 — 2.8 ns

Clock period3 tRGT
 6 7.2 8.0 8.8 ns

Duty cycle for 1000Base-T 4 tRGTH/tRGT
 6 45 50 55 %

Duty cycle for 10BASE-T and 100BASE-TX 3 tRGTH/tRGT
 6 40 50 60 %

Rise and fall time tRGTR, tRGTF 
6,7 — — 0.75 ns

Notes:
1.Note that, in general, the clock reference symbol representation for this section is based on the symbols RGT to 

represent RGMII and RTBI timing. For example, the subscript of tRGT represents the TBI (T) receive (RX) clock. Note 
also that the notation for rise (R) and fall (F) times follows the clock symbol that is being represented. For symbols 
representing skews, the subscript is skew (SK) followed by the clock that is being skewed (RGT).

2.The RGMII specification requires that PC board designer add 1.5 ns or greater in trace delay to the RX_CLK in order to 
meet this specification. However, as stated above, this device will function with only 1.0 ns of delay.

3.For 10 and 100 Mbps, tRGT scales to 400 ns ± 40 ns and 40 ns ± 4 ns, respectively.

4.Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domains 
as long as the minimum duty cycle is not violated and stretching occurs for no more than three tRGT of the lowest 
speed transitioned between.

5.Guaranteed by characterization.

6.Guaranteed by design.

7.Signal timings are measured at 0.5 V and 2.0 V voltage levels.
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Local Bus

Figure 15 shows the MII management AC timing diagram.

Figure 15. MII Management Interface Timing Diagram

8  Local Bus
This section describes the DC and AC electrical specifications for the local bus interface of the MPC8560.

8.1 Local Bus DC Electrical Characteristics
Table 30 provides the DC electrical characteristics for the local bus interface.

8.2 Local Bus AC Electrical Specifications
Table 31 describes the general timing parameters of the local bus interface of the MPC8560 with the DLL 
enabled.

Table 30. Local Bus DC Electrical Characteristics

Parameter Symbol Min Max Unit

High-level input voltage VIH 2 OVDD + 0.3 V

Low-level input voltage VIL –0.3 0.8 V

Input current (VIN 
1 = 0 V or VIN = VDD) IIN — ±5 μA

High-level output voltage (OVDD = min, IOH = –2 mA) VOH OVDD - 0.2 — V

Low-level output voltage (OVDD = min, IOL = 2 mA) VOL — 0.2 V

Note:
1.Note that the symbol VIN, in this case, represents the OVIN symbol referenced in Table 1 and Table 2.

Table 31. Local Bus General Timing Parameters—DLL Enabled

Parameter POR Configuration Symbol 1 Min Max Unit Notes

Local bus cycle time — tLBK 6.0 — ns 2

LCLK[n] skew to LCLK[m] or LSYNC_OUT — tLBKSKEW — 150 ps 3, 9

MDC

tMDDXKH

tMDC

tMDCH

tMDCR

tMDCF

tMDDVKH

tMDKHDX

MDIO

MDIO

(Input)

(Output)

tMDKHDV
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CPM

Figure 27 shows the SCC/SPI external clock.

Figure 27. SCC/SPI AC Timing External Clock Diagram

Figure 28 shows the SCC/SPI internal clock.

Figure 28. SCC/SPI AC Timing Internal Clock Diagram

Figure 29 shows TDM input and output signals.

Figure 29. TDM Signal AC Timing Diagram

Serial Clock In

tNEIXKH
tNEIVKH

tNEKHOX

Input Signals:
SCC/SPI

(See Note)

Output Signals:
SCC

(See Note)

Note: The clock edge is selectable on SCC and SPI.

tSEKHOX
Output Signals:

SPI
(See Note)

BRG_OUT

tNIIXKH

tNIKHOX

Input Signals:
SCC/SPI

(See Note)

Output Signals:
SCC/SPI

(See Note)

Note: The clock edge is selectable on SCC and SPI.

tNIIVKH

Serial Clock In

tTDKHOX

TDM Input Signals

There are 4 possible TDM timing conditions:

tTDIVKH

tTDIXKH

TDM Output Signals

Note:
1.
2.
3.
4.

Input sampled on the rising edge and output driven on the rising edge (shown).
Input sampled on the rising edge and output driven on the falling edge.
Input sampled on the falling edge and output driven on the falling edge.
Input sampled on the falling edge and output driven on the rising edge.
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I2C

Figure 35 provides the test access port timing diagram.

Figure 35. Test Access Port Timing Diagram

11  I2C 
This section describes the DC and AC electrical characteristics for the I2C interface of the MPC8560.

11.1 I2C DC Electrical Characteristics
Table 40 provides the DC electrical characteristics for the I2C interface of the MPC8560.

Table 40. I2C DC Electrical Characteristics

At recommended operating conditions with OVDD of 3.3 V ± 5%.

Parameter Symbol Min Max Unit Notes

Input high voltage level VIH 0.7 × OVDD OVDD+ 0.3 V —

Input low voltage level VIL –0.3 0.3 × OVDD V —

Low level output voltage VOL 0 0.2 × OVDD V 1

Pulse width of spikes which must be suppressed 
by the input filter

tI2KHKL 0 50 ns 2

Input current each I/O pin (input voltage is 
between 0.1 × OVDD and 0.9 × OVDD(max)

II –10 10 μA 3

Capacitance for each I/O pin CI — 10 pF —

Notes:
1.Output voltage (open drain or open collector) condition = 3 mA sink current.

2.Refer to the MPC8560 PowerQUICC III Integrated Communications Processor Preliminary Reference Manual for 
information on the digital filter used.

3.I/O pins will obstruct the SDA and SCL lines if OVDD is switched off.

VM = Midpoint Voltage (OVDD/2)

VM VM

tJTIVKH
tJTIXKH

JTAG
External Clock

Output Data Valid

tJTKLOX

tJTKLOZ

tJTKLOV

Input
Data Valid

Output Data Valid

TDI, TMS

TDO

TDO
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PCI/PCI-X

Figure 37 shows the AC timing diagram for the I2C bus.

Figure 37. I2C Bus AC Timing Diagram

12  PCI/PCI-X
This section describes the DC and AC electrical specifications for the PCI/PCI-X bus of the MPC8560. 

12.1 PCI/PCI-X DC Electrical Characteristics
Table 42 provides the DC electrical characteristics for the PCI/PCI-X interface of the MPC8560.

Table 42. PCI/PCI-X DC Electrical Characteristics 1

Parameter Symbol Min Max Unit

High-level input voltage VIH 2 OVDD + 0.3 V

Low-level input voltage VIL –0.3 0.8 V

Input current

(VIN 2 = 0 V or VIN = VDD)

IIN — ±5 μA

High-level output voltage

(OVDD = min, IOH = –100 μA)

VOH OVDD – 0.2 — V

Low-level output voltage

(OVDD = min, IOL = 100 μA)

VOL — 0.2 V

Notes:
1.Ranges listed do not meet the full range of the DC specifications of the PCI 2.2 Local Bus Specifications.

2.Note that the symbol VIN, in this case, represents the OVIN symbol referenced in Table 1 and Table 2.

SrS

SDA

SCL

tI2CF

tI2SXKL

tI2CL

tI2CH
tI2DXKL

tI2DVKH

tI2SXKL

tI2SVKH

tI2KHKL

tI2PVKH

tI2CR

tI2CF

P S
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PCI/PCI-X

Figure 16 provides the AC test load for PCI and PCI-X.

Figure 38. PCI/PCI-X AC Test Load

Figure 39 shows the PCI/PCI-X input AC timing conditions.

Figure 39. PCI-PCI-X Input AC Timing Measurement Conditions

Figure 40 shows the PCI/PCI-X output AC timing conditions.

Figure 40. PCI-PCI-X Output AC Timing Measurement Condition

Table 44 provides the PCI-X AC timing specifications at 66 MHz.

Table 44. PCI-X AC Timing Specifications at 66 MHz

Parameter Symbol Min Max Unit Notes

SYSCLK to signal valid delay tPCKHOV — 3.8 ns 1, 2, 3, 
7, 8

Output hold from SYSCLK tPCKHOX 0.7 — ns 1, 10

SYSCLK to output high impedance tPCKHOZ — 7 ns 1, 4, 8, 11

Input setup time to SYSCLK tPCIVKH 1.7 — ns 3, 5

Input hold time from SYSCLK tPCIXKH 0.5 — ns 10

REQ64 to HRESET setup time tPCRVRH 10 — clocks 11

HRESET to REQ64 hold time tPCRHRX 0 50 ns 11

HRESET high to first FRAME assertion tPCRHFV 10 — clocks 9, 11

Output OVDD/2
RL = 50 Ω

Z0 = 50 Ω

tPCIVKH

CLK

Input

tPCIXKH

CLK

Output Delay

tPCKHOV

High-Impedance

tPCKHOZ

Output
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RapidIO

• The peak differential signal of the transmitter output or receiver input, is A – B volts.

• The peak-to-peak differential signal of the transmitter output or receiver input, is 2 × (A – B) volts.

Figure 42. Differential Peak-to-Peak Voltage of Transmitter or Receiver

To illustrate these definitions using numerical values, consider the case where a LVDS transmitter has a 
common mode voltage of 1.2 V and each signal has a swing that goes between 1.4 and 1.0 V. Using these 
values, the peak-to-peak voltage swing of the signals TD, TD, RD, and RD is 400 mV. The differential 
signal ranges between 400 and –400 mV. The peak differential signal is 400 mV, and the peak-to-peak 
differential signal is 800 mV.

A timing edge is the zero-crossing of a differential signal. Each skew timing parameter on a parallel bus 
is synchronously measured on two signals relative to each other in the same cycle, such as data to data, 
data to clock, or clock to clock. A skew timing parameter may be relative to the edge of a signal or to the 
middle of two sequential edges.

Static skew represents the timing difference between signals that does not vary over time regardless of 
system activity or data pattern. Path length differences are a primary source of static skew.

Dynamic skew represents the amount of timing difference between signals that is dependent on the activity 
of other signals and varies over time. Crosstalk between signals is a source of dynamic skew.

Eye diagrams and compliance masks are a useful way to visualize and specify driver and receiver 
performance. This technique is used in several serial bus specifications. An example compliance mask is 
shown in Figure 43. The key difference in the application of this technique for a parallel bus is that the data 
is source synchronous to its bus clock while serial data is referenced to its embedded clock. Eye diagrams 
reveal the quality (cleanness, openness, goodness) of a driver output or receiver input. An advantage of 
using an eye diagram and a compliance mask is that it allows specifying the quality of a signal without 
requiring separate specifications for effects such as rise time, duty cycle distortion, data dependent 
dynamic skew, random dynamic skew, etc. This allows the individual semiconductor manufacturer 
maximum flexibility to trade off various performance criteria while keeping the system performance 
constant. 

In using the eye pattern and compliance mask approach, the quality of the signal is specified by the 
compliance mask. The mask specifies the maximum permissible magnitude of the signal and the minimum 
permissible eye opening. The eye diagram for the signal under test is generated according to the 
specification. Compliance is determined by whether the compliance mask can be positioned over the eye 
diagram such that the eye pattern falls entirely within the unshaded portion of the mask.

Serial specifications have clock encoded with the data, but the LP-LVDS physical layer defined by 
RapidIO is a source synchronous parallel port so additional specifications to include effects that are not 
found in serial links are required. Specifications for the effect of bit to bit timing differences caused by 
static skew have been added and the eye diagrams specified are measured relative to the associated clock 
in order to include clock to data effects. With the transmit output (or receiver input) eye diagram, the user 
can determine if the transmitter output (or receiver input) is compliant with an oscilloscope with the 
appropriate software. 

A V

B V

TD or RD

TD or RD
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RapidIO

The compliance of driver output signals TD[0:15] and TFRAME with their minimum data valid window 
(DV) specification shall be determined by generating an eye pattern for each of the data signals and 
comparing the eye pattern of each data signal with the RapidIO transmit mask shown in Figure 44. The 
value of X2 used to construct the mask shall be (1 – DVmin)/2. A signal is compliant with the data valid 
window specification if the transmit mask can be positioned on the signal’s eye pattern such that the eye 
pattern falls entirely within the unshaded portion of the mask. 

Figure 44. RapidIO Transmit Mask

Table 50. RapidIO Driver AC Timing Specifications—1 Gbps Data Rate

Characteristic Symbol
Range

Unit Notes
Min Max

Differential output high voltage VOHD 200 540 mV 1

Differential output low voltage VOLD –540 –200 mV 1

Duty cycle DC 48 52 % 2, 6

VOD rise time, 20%–80% of peak to peak 
differential signal swing

tFALL 100 — ps 3, 6

VOD fall time, 20%–80% of peak to peak 
differential signal swing

tRISE 100 — ps 6

Data valid DV 575 — ps 6

Skew of any two data outputs tDPAIR — 100 ps 4, 6

Skew of single data outputs to associated clock tSKEW,PAIR –100 100 ps 5, 6

Notes:
1.See Figure 44.

2.Requires ±100 ppm long term frequency stability.

3.Measured at VOD = 0 V.

4.Measured using the RapidIO transmit mask shown in Figure 44.

5.See Figure 49.

6.Guaranteed by design.

X2

VOHDmax

0

VOHDmin

VOLDmax

VOLDmin

1–X2

DV

V
O

D
 (

m
V

)

Time (UI)
0 1
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Package and Pin Listings

14.2 Mechanical Dimensions of the MPC8560 FC-PBGA
Figure 50 the mechanical dimensions and bottom surface nomenclature of the MPC8560, 783 FC-PBGA 
package.

Figure 50. Mechanical Dimensions and Bottom Surface Nomenclature of the MPC8560 FC-PBGA

NOTES

1. All dimensions are in millimeters.

2. Dimensions and tolerances per ASME Y14.5M-1994.
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Package and Pin Listings

LVDD A4, C5, E7, H10 Reference Voltage; 
Three-Speed 

Ethernet I/O (2.5 V, 
3.3 V)

LVDD —

MVREF N27 Reference Voltage 
Signal; DDR

MVREF —

No Connects AH26, AH27, AH28, AG28, AF28, AE28,
AH1, AG1, AH2, B1, B2, A2, A3, AH25

— — 16

OVDD D1, E4, H3, K4, K10, L7, M5, N3, P22, R19, R25, T2, 
T7, U5, U20, U26, V8, W4, W13, W19, W21, Y7, Y23, 
AA5, AA12, AA16, AA20, AB7, AB9, AB26, AC5, AC11, 
AC17, AD4, AE1, AE8, AE10, AE15, AF7, AF12, AG27, 

AH4

PCI/PCI-X, 
RapidIO, 10/100 

Ethernet, and other 
Standard
(3.3 V)

OVDD —

RESERVED C1, T11, U11, AF1 — — 15

SENSEVDD L12 Power for Core
(1.2 V)

VDD 13

SENSEVSS K12 — — 13

VDD M13, M15, M17, N14, N16, P13, P15, P17, R12, R14, 
R16, T13, T15, T17, U12, U14

Power for Core
(1.2 V)

VDD —

CPM

PA[0:31] H1, H2, J1, J2, J3, J4, J5, J6, J7, J8, K8, K7, K6, K3, 
K2, K1, L1, L2, L3, L4, L5, L8, L9, L10, L11, M10, M9, 

M8, M7, M6, M3, M2

I/0 OVDD —

PB[4:31] M1, N1, N4, N5, N6, N7, N8, N9, N10, N11, P11, P10, 
P9, P8, P7, P6, P5, P4, P3, P2, P1, R1, R2, R3, R4, R5, 

R6, R7

I/0 OVDD —

PC[0:31] R8, R9, R10, R11, T9, T6, T5, T4, T1, U1, U2, U3, U4, 
U7, U8, U9, U10, V9, V6, V5, V4, V3, V2, V1, W1, W2, 

W3, W6, W7, W8, W9, Y9

I/0 OVDD —

Table 54. MPC8560 Pinout Listing (continued)

Signal Package Pin Number Pin Type
Power
Supply

Notes
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Thermal

Figure 52. MPC8560 Thermal Model

16.2.2 Internal Package Conduction Resistance
For the packaging technology, shown in Table 60, the intrinsic internal conduction thermal resistance paths 
are as follows:

• The die junction-to-case thermal resistance

• The die junction-to-board thermal resistance

Die

Lid

Substrate and solder balls

Heat Source

Substrate

Side View of Model (Not to Scale)

Top View of Model (Not to Scale)

x

y

z

Conductivity Value Unit

Lid
(12 × 14 × 1 mm)

kx 360 W/(m × K)

ky 360

kz 360

Lid Adhesive—Collapsed resistance
(10 × 12 × 0.050 mm)

kx 1

ky 1

kz 1

Die
(10 × 12 × 0.76 mm)

Bump/Underfill—Collapsed resistance
(10 × 12 × 0.070 mm)

kx 0.6

ky 0.6

kz 1.9

Substrate and Solder Balls
(29 × 29 × 1.47 mm)

kx 10.2

ky 10.2

kz 1.6

Adhesive

Bump/underfill
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The spring mounting should be designed to apply the force only directly above the die. By localizing the 
force, rocking of the heat sink is minimized. One suggested mounting method attaches a plastic fence to 
the board to provide the structure on which the heat sink spring clips. The plastic fence also provides the 
opportunity to minimize the holes in the printed-circuit board and to locate them at the corners of the 
package. Figure 56 and Figure 57 provide exploded views of the plastic fence, heat sink, and spring clip.

Figure 56. Exploded Views (1) of a Heat Sink Attachment using a Plastic Force
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Figure 58 shows the PLL power supply filter circuit.

Figure 58. PLL Power Supply Filter Circuit

17.3 Decoupling Recommendations
Due to large address and data buses, and high operating frequencies, the MPC8560 can generate transient 
power surges and high frequency noise in its power supply, especially while driving large capacitive loads. 
This noise must be prevented from reaching other components in the MPC8560 system, and the MPC8560 
itself requires a clean, tightly regulated source of power. Therefore, it is recommended that the system 
designer place at least one decoupling capacitor at each VDD, OVDD, GVDD, and LVDD pins of the 
MPC8560. These decoupling capacitors should receive their power from separate VDD, OVDD, GVDD, 
LVDD, and GND power planes in the PCB, utilizing short traces to minimize inductance. Capacitors may 
be placed directly under the device using a standard escape pattern. Others may surround the part.

These capacitors should have a value of 0.01 or 0.1 µF. Only ceramic SMT (surface mount technology) 
capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.

In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB, 
feeding the VDD, OVDD, GVDD, and LVDD planes, to enable quick recharging of the smaller chip 
capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the 
quick response time necessary. They should also be connected to the power and ground planes through two 
vias to minimize inductance. Suggested bulk capacitors—100–330 µF (AVX TPS tantalum or Sanyo 
OSCON).

17.4 Connection Recommendations
To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal 
level. Unused active low inputs should be tied to OVDD, GVDD, or LVDD as required. Unused active high 
inputs should be connected to GND. All NC (no-connect) signals must remain unconnected.

Power and ground connections must be made to all external VDD, GVDD, LVDD, OVDD, and GND pins of 
the MPC8560.

17.5 Output Buffer DC Impedance
The MPC8560 drivers are characterized over process, voltage, and temperature. There are two driver 
types: a push-pull single-ended driver (open drain for I2C) for all buses except RapidIO, and a 
current-steering differential driver for the RapidIO port.

To measure Z0 for the single-ended drivers, an external resistor is connected from the chip pad to OVDD 
or GND. Then, the value of each resistor is varied until the pad voltage is OVDD/2 (see Figure 59). The 
output impedance is the average of two components, the resistances of the pull-up and pull-down devices. 

VDD AVDD (or L2AVDD)

 2.2 µF  2.2 µF

 GND
Low ESL Surface Mount Capacitors

10 Ω
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17.8 JTAG Configuration Signals
Boundary-scan testing is enabled through the JTAG interface signals. The TRST signal is optional in the 
IEEE 1149.1 specification, but is provided on all processors that implement the Power Architecture. The 
device requires TRST to be asserted during reset conditions to ensure the JTAG boundary logic does not 
interfere with normal chip operation. While it is possible to force the TAP controller to the reset state using 
only the TCK and TMS signals, generally systems will assert TRST during the power-on reset flow. 
Simply tying TRST to HRESET is not practical because the JTAG interface is also used for accessing the 
common on-chip processor (COP) function.

The COP function of these processors allow a remote computer system (typically, a PC with dedicated 
hardware and debugging software) to access and control the internal operations of the processor. The COP 
interface connects primarily through the JTAG port of the processor, with some additional status 
monitoring signals. The COP port requires the ability to independently assert HRESET or TRST in order 
to fully control the processor. If the target system has independent reset sources, such as voltage monitors, 
watchdog timers, power supply failures, or push-button switches, then the COP reset signals must be 
merged into these signals with logic.

The arrangement shown in Figure 60 allows the COP port to independently assert HRESET or TRST, 
while ensuring that the target can drive HRESET as well. 

The COP interface has a standard header, shown in Figure 60, for connection to the target system, and is 
based on the 0.025" square-post, 0.100" centered header assembly (often called a Berg header). The 
connector typically has pin 14 removed as a connector key.

The COP header adds many benefits such as breakpoints, watchpoints, register and memory 
examination/modification, and other standard debugger features. An inexpensive option can be to leave 
the COP header unpopulated until needed.

There is no standardized way to number the COP header; consequently, many different pin numbers have 
been observed from emulator vendors. Some are numbered top-to-bottom then left-to-right, while others 
use left-to-right then top-to-bottom, while still others number the pins counter clockwise from pin 1 (as 
with an IC). Regardless of the numbering, the signal placement recommended in Figure 60 is common to 
all known emulators.
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Figure 61. JTAG Interface Connection

HRESET

From Target
Board Sources

COP_HRESET
13

COP_SRESET

SRESET

NC

11

COP_VDD_SENSE2
6

5

15

10 Ω

10 kΩ

10 kΩ

COP_CHKSTP_IN
CKSTP_IN8

COP_TMS

COP_TDO

COP_TDI

COP_TCK

TMS

TDO

TDI

9

1

3

4
COP_TRST

7

16

2

10

12

(if any)

C
O

P
 H

ea
de

r

14 3

Notes:

3. The KEY location (pin 14) is not physically present on the COP header.

10 kΩ

TRST1
10 kΩ

10 kΩ

10 kΩ

CKSTP_OUT
COP_CHKSTP_OUT

3

13

9

5

1

6

10

15

11

7

16

12

8

4

KEY
No pin

COP Connector
Physical Pinout

1 2

NC

SRESET 

 

2. Populate this with a 10 Ω resistor for short-circuit/current-limiting protection.

NC

OVDD

10 kΩ

10 kΩ HRESET1

 in order to fully control the processor as shown here.

4. Although pin 12 is defined as a No-Connect, some debug tools may use pin 12 as an additional GND pin for

1. The COP port and target board should be able to independently assert HRESET and TRST to the processor

improved signal integrity.

TCK

 4

5

5. This switch is included as a precaution for BSDL testing. The switch should be open during BSDL testing to avoid
accidentally asserting the TRST line. If BSDL testing is not being performed, this switch should be closed or removed.

10 kΩ

6

6. Asserting SRESET causes a machine check interrupt to the e500 core.
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18  Document Revision History
Table 62 provides a revision history for this hardware specification.

Table 62. Document Revision History

Rev. No. Substantive Change(s)

4.2 Added “Note: Rise/Fall Time on CPM Input Pins” and following note text to Section 9.2, “CPM AC Timing 
Specifications.”

4.1 Inserted Figure 3 and paragraph above it.

Added PCI/PCI-X row to Input Voltage characteristic and added footnote 6 to Table 1.

4 Updated Section 2.1.2, “Power Sequencing.”

Updated back page information.

3.5 Updated Section 2.1.2, “Power Sequencing.”

3.4 Updated MVREF Max Value in Table 1.

Updated MVREF Max Value in Table 2.

Added new revision level information to Table 63

3.3 Updated MVREF Max Value in Table 1.

Removed Figure 3.

In Table 4, replaced TBD with power numbers and added footnote.

Updated specs and footnotes in Table 8.

Corrected max number for MVREF in Table 13.

Changed parameter “Clock cycle duration” to “Clock period” in Table 27.

Added note 4 to tLBKHOV1 and removed LALE reference from tLBKHOV3 in Table 31 and Table 32.

Updated LALE signal in Figure 17 and Figure 18.

Modified Figure 21.

Modified Figure 61.


