E·XFL

NXP USA Inc. - KMPC8560VT667LC Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	667MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DDR, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	-
Voltage - I/O	2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	783-BFBGA, FCBGA
Supplier Device Package	783-FCPBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8560vt667lc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

- General-purpose parallel ports—16 parallel I/O lines with interrupt capability
- Supports inverse muxing of ATM cells (IMA)
- 256 Kbyte L2 cache/SRAM
 - Can be configured as follows
 - Full cache mode (256-Kbyte cache).
 - Full memory-mapped SRAM mode (256-Kbyte SRAM mapped as a single 256-Kbyte block or two 128-Kbyte blocks)
 - Half SRAM and half cache mode (128-Kbyte cache and 128-Kbyte memory-mapped SRAM)
 - Full ECC support on 64-bit boundary in both cache and SRAM modes
 - Cache mode supports instruction caching, data caching, or both
 - External masters can force data to be allocated into the cache through programmed memory ranges or special transaction types (stashing)
 - Eight-way set-associative cache organization (1024 sets of 32-byte cache lines)
 - Supports locking the entire cache or selected lines. Individual line locks are set and cleared through Book E instructions or by externally mastered transactions
 - Global locking and flash clearing done through writes to L2 configuration registers
 - Instruction and data locks can be flash cleared separately
 - Read and write buffering for internal bus accesses
 - SRAM features include the following:
 - I/O devices access SRAM regions by marking transactions as snoopable (global)
 - Regions can reside at any aligned location in the memory map
 - Byte accessible ECC is protected using read-modify-write transactions accesses for smaller than cache-line accesses.
- Address translation and mapping unit (ATMU)
 - Eight local access windows define mapping within local 32-bit address space
 - Inbound and outbound ATMUs map to larger external address spaces
 - Three inbound windows plus a configuration window on PCI/PCI-X
 - Four inbound windows plus a default and configuration window on RapidIO
 - Four outbound windows plus default translation for PCI
 - Eight outbound windows plus default translation for RapidIO
- DDR memory controller
 - Programmable timing supporting DDR-1 SDRAM
 - 64-bit data interface, up to 333-MHz data rate
 - Four banks of memory supported, each up to 1 Gbyte
 - DRAM chip configurations from 64 Mbits to 1 Gbit with x8/x16 data ports
 - Full ECC support
 - Page mode support (up to 16 simultaneous open pages)

Overview

- Interrupts can be routed to the e500 core's standard or critical interrupt inputs
- Interrupt summary registers allow fast identification of interrupt source
- I²C controller
 - Two-wire interface
 - Multiple master support
 - Master or slave I²C mode support
 - On-chip digital filtering rejects spikes on the bus
- Boot sequencer
 - Optionally loads configuration data from serial ROM at reset via the I²C interface
 - Can be used to initialize configuration registers and/or memory
 - Supports extended I²C addressing mode
 - Data integrity checked with preamble signature and CRC
- Local bus controller (LBC)
 - Multiplexed 32-bit address and data operating at up to 166 MHz
 - Eight chip selects support eight external slaves
 - Up to eight-beat burst transfers
 - The 32-, 16-, and 8-bit port sizes are controlled by an on-chip memory controller
 - Three protocol engines available on a per chip select basis:
 - General purpose chip select machine (GPCM)
 - Three user programmable machines (UPMs)
 - Dedicated single data rate SDRAM controller
 - Parity support
 - Default boot ROM chip select with configurable bus width (8-,16-, or 32-bit)
- Two three-speed (10/100/1Gb) Ethernet controllers (TSECs)
 - Dual IEEE 802.3, 802.3u, 802.3x, 802.3z, 802.3ac, 802.3ab compliant controllers
 - Support for different Ethernet physical interfaces:
 - 10/100/1Gb Mbps IEEE 802.3 GMII
 - 10/100 Mbps IEEE 802.3 MII
 - 10 Mbps IEEE 802.3 MII
 - 1000 Mbps IEEE 802.3z TBI
 - 10/100/1Gb Mbps RGMII/RTBI
 - Full- and half-duplex support
 - Buffer descriptors are backward compatible with MPC8260 and MPC860T 10/100 programming models
 - 9.6-Kbyte jumbo frame support
 - RMON statistics support
 - 2-Kbyte internal transmit and receive FIFOs

NOTE

If the items on line 2 must precede items on line 1, please ensure that the delay will not exceed 500 ms and the power sequence is not done greater than once per day in production environment.

NOTE

From a system standpoint, if the I/O power supplies ramp prior to the V_{DD} core supply, the I/Os on the MPC8560 may drive a logic one or zero during power-up.

2.1.3 Recommended Operating Conditions

Table 2 provides the recommended operating conditions for the MPC8560. Note that the values in Table 2 are the recommended and tested operating conditions. Proper device operation outside of these conditions is not guaranteed.

Characteristic		Symbol	Recommended Value	Unit
Core supply voltage For devices rated at 667 and 833 MHz For devices rated at 1 GHz		V _{DD}	1.2 V ± 60 mV 1.3 V ± 50 mV	V
PLL supply voltage For devices rated at 667 and 833 MHz For devices rated at 1 GHz		AV _{DD}	1.2 V ± 60 mV 1.3 V ± 50 mV	V
DDR DRAM I/O voltage		GV _{DD}	2.5 V ± 125 mV	V
Three-speed Ethernet I/O voltage	LV _{DD}	3.3 V ± 165 mV 2.5 V ± 125 mV	V	
CPM, PCI/PCI-X, local bus, RapidIO, 10/100 Ethernet, MII management, DUART, system control and power management, I ² C, and JTAG I/O voltage		OV _{DD}	3.3 V ± 165 mV	V
Input voltage	DDR DRAM signals	MV _{IN}	GND to GV _{DD}	V
	DDR DRAM reference	MV _{REF}	GND to GV _{DD/2}	V
	Three-speed Ethernet signals	LV _{IN}	GND to LV _{DD}	V
	CPM, PCI/PCI-X, local bus, RapidIO, 10/100 Ethernet, MII management, DUART, SYSCLK, system control and power management, I ² C, and JTAG signals	OV _{IN}	GND to OV _{DD}	V
Die-junction temperature		Тj	0 to 105	°C

Table 2. Recommended Operating Conditions

t_{SYS} refers to the clock period associated with the SYSCLK signal.

Figure 2. Overshoot/Undershoot Voltage for GV_{DD}/OV_{DD}/LV_{DD}

The MPC8560 core voltage must always be provided at nominal 1.2 V (see Table 2 for actual recommended core voltage). Voltage to the processor interface I/Os are provided through separate sets of supply pins and must be provided at the voltages shown in Table 2. The input voltage threshold scales with respect to the associated I/O supply voltage. OV_{DD} and LV_{DD} based receivers are simple CMOS I/O circuits and satisfy appropriate LVCMOS type specifications. The DDR SDRAM interface uses a single-ended differential receiver referenced the externally supplied MV_{REF} signal (nominally set to $GV_{DD}/2$) as is appropriate for the SSTL2 electrical signaling standard.

4.4 Real Time Clock Timing

Table 10 provides the real time clock (RTC) AC timing specifications for the MPC8560.

Table 10. RTC AC Timing Specifications

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Notes
RTC clock high time	t _{RTCH}	2 x t _{CCB_CLK}	—	_	ns	—
RTC clock low time	t _{RTCL}	2 х t _{CCB_CLK}	—	_	ns	—

5 RESET Initialization

This section describes the AC electrical specifications for the RESET initialization timing requirements of the MPC8560. Table 7 provides the RESET initialization AC timing specifications for the MPC8560.

Table 11. RESET Initialization Timing Specifications

Parameter/Condition	Min	Мах	Unit	Notes
Required assertion time of HRESET	100	—	μs	—
Minimum assertion time for SRESET	512	—	SYSCLKs	1
PLL input setup time with stable SYSCLK before HRESET negation	100	—	μs	—
Input setup time for POR configs (other than PLL config) with respect to negation of HRESET	4	_	SYSCLKs	1
Input hold time for POR configs (including PLL config) with respect to negation of HRESET	2	_	SYSCLKs	1
Maximum valid-to-high impedance time for actively driven POR configs with respect to negation of HRESET		5	SYSCLKs	1

Notes:

1.SYSCLK is identical to the PCI_CLK signal and is the primary clock input for the MPC8560. See the MPC8560 PowerQUICC III[™] Integrated Communications Processor Preliminary Reference Manual for more details.

Table 12 provides the PLL and DLL lock times.

Table 12. PLL and DLL Lock Times

Parameter/Condition	Min	Мах	Unit	Notes
PLL lock times		100	μs	—
DLL lock times	7680	122,880	CCB Clocks	1, 2

Notes:

1.DLL lock times are a function of the ratio between the output clock and the platform (or CCB) clock. A 2:1 ratio results in the minimum and an 8:1 ratio results in the maximum.

2. The CCB clock is determined by the SYSCLK \times platform PLL ratio.

7.2.4 RGMII and RTBI AC Timing Specifications

Table 27 presents the RGMII and RTBI AC timing specifications.

Table 27. RGMII and RTBI AC Timing Specifications

At recommended operating conditions with LV_{DD} of 2.5 V ± 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
Data to clock output skew (at transmitter)	t _{SKRGT} 5	-500	0	500	ps
Data to clock input skew (at receiver) ²	^t SKRGT	1.0	_	2.8	ns
Clock period ³	t _{RGT} ⁶	7.2	8.0	8.8	ns
Duty cycle for 1000Base-T ⁴	t _{RGTH} /t _{RGT} ⁶	45	50	55	%
Duty cycle for 10BASE-T and 100BASE-TX 3	t _{RGTH} /t _{RGT} ⁶	40	50	60	%
Rise and fall time	t _{RGTR} , t _{RGTF} ^{6,7}	_	_	0.75	ns

Notes:

1.Note that, in general, the clock reference symbol representation for this section is based on the symbols RGT to represent RGMII and RTBI timing. For example, the subscript of t_{RGT} represents the TBI (T) receive (RX) clock. Note also that the notation for rise (R) and fall (F) times follows the clock symbol that is being represented. For symbols representing skews, the subscript is skew (SK) followed by the clock that is being skewed (RGT).

2. The RGMII specification requires that PC board designer add 1.5 ns or greater in trace delay to the RX_CLK in order to meet this specification. However, as stated above, this device will function with only 1.0 ns of delay.

3.For 10 and 100 Mbps, t_{RGT} scales to 400 ns ± 40 ns and 40 ns ± 4 ns, respectively.

4.Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domains as long as the minimum duty cycle is not violated and stretching occurs for no more than three t_{RGT} of the lowest speed transitioned between.

5.Guaranteed by characterization.

6.Guaranteed by design.

7.Signal timings are measured at 0.5 V and 2.0 V voltage levels.

Figure 14. RGMII and RTBI AC Timing and Multiplexing Diagrams

7.3 Ethernet Management Interface Electrical Characteristics

The electrical characteristics specified here apply to MII management interface signals MDIO (management data input/output) and MDC (management data clock). The electrical characteristics for GMII, RGMII, TBI and RTBI are specified in Section 7.1, "Three-Speed Ethernet Controller (TSEC) (10/100/1Gb Mbps)—GMII/MII/TBI/RGMII/RTBI Electrical Characteristics."

7.3.1 MII Management DC Electrical Characteristics

The MDC and MDIO are defined to operate at a supply voltage of 3.3 V. The DC electrical characteristics for MDIO and MDC are provided in Table 28.

Parameter	Symbol	Min	Мах	Unit
Supply voltage (3.3 V)	OV _{DD}	3.13	3.47	V
Output high voltage ($OV_{DD} = Min, I_{OH} = -1.0 mA$)	V _{OH}	2.10	OV _{DD} + 0.3	V
Output low voltage ($OV_{DD} = Min, I_{OL} = 1.0 mA$)	V _{OL}	GND	0.50	V
Input high voltage	V _{IH}	1.70	_	V
Input low voltage	V _{IL}	—	0.90	V

Table 28. MII Management DC Electrical Characteristics

	[1
Parameter	POR Configuration	Symbol ¹	Min	Max	Unit	Notes
Input setup to local bus clock (except LUPWAIT)	—	t _{LBIVKH1}	1.8	—	ns	4, 5, 8
LUPWAIT input setup to local bus clock	—	t _{LBIVKH2}	1.7	—	ns	4, 5
Input hold from local bus clock (except LUPWAIT)	—	t _{LBIXKH1}	0.5	—	ns	4, 5, 8
LUPWAIT input hold from local bus clock	—	t _{LBIXKH2}	1.0	—	ns	4, 5
LALE output transition to LAD/LDP output transition (LATCH hold time)	—	t _{lbotot}	1.5	—	ns	6
Local bus clock to output valid (except	TSEC2_TXD[6:5] = 00	t _{LBKHOV1}	_	2.0	ns	4, 8
LAD/LDP and LALE)	TSEC2_TXD[6:5] = 11 (default)			3.5		
Local bus clock to data valid for LAD/LDP	TSEC2_TXD[6:5] = 00	t _{LBKHOV2}	_	2.2	ns	4, 8
	TSEC2_TXD[6:5] = 11 (default)			3.7		
Local bus clock to address valid for LAD	TSEC2_TXD[6:5] = 00	t _{LBKHOV3}	_	2.3	ns	4, 8
	TSEC2_TXD[6:5] = 11 (default)			3.8		
Local bus clock to LALE assertion		t _{LBKHOV4}		2.3	ns	4, 8
Output hold from local bus clock (except	TSEC2_TXD[6:5] = 00	t _{LBKHOX1}	0.7	—	ns	4, 8
LAD/LDF and LALE)	TSEC2_TXD[6:5] = 11 (default)		1.6			
Output hold from local bus clock for	TSEC2_TXD[6:5] = 00	t _{LBKHOX2}	0.7	—	ns	4, 8
LAD/LDP	TSEC2_TXD[6:5] = 11 (default)		1.6			
Local bus clock to output high Impedance	TSEC2_TXD[6:5] = 00	t _{LBKHOZ1}	_	2.5	ns	7, 9
(except LAD/LDP and LALE)	TSEC2_TXD[6:5] = 11 (default)			3.8		

Table 31. Local Bus General Timing Parameters—DLL Enabled (continued)

Parameter	POR Configuration	Symbol ¹	Min	Max	Unit	Notes
Local bus clock to data valid for LAD/LDP	TSEC2_TXD[6:5] = 00	t _{LBKLOV2}		-0.1	ns	4
	TSEC2_TXD[6:5] = 11 (default)			1.4		
Local bus clock to address valid for LAD	TSEC2_TXD[6:5] = 00	t _{LBKLOV3}		0	ns	4
	TSEC2_TXD[6:5] = 11 (default)			1.5		
Local bus clock to LALE assertion		t _{LBKHOV4}		0	ns	4
Output hold from local bus clock (except	TSEC2_TXD[6:5] = 00	t _{LBKLOX1}	-3.2	—	ns	4
LAD/LDP and LALE)	TSEC2_TXD[6:5] = 11 (default)		-2.3			
Output hold from local bus clock for	TSEC2_TXD[6:5] = 00	t _{LBKLOX2}	-3.2	—	ns	4
LAD/LDP	TSEC2_TXD[6:5] = 11 (default)		-2.3			
Local bus clock to output high Impedance	TSEC2_TXD[6:5] = 00	t _{LBKLOZ1}	_	0.2	ns	7
(except LAD/LDP and LALE)	TSEC2_TXD[6:5] = 11 (default)			1.5		
Local bus clock to output high impedance	TSEC2_TXD[6:5] = 00	t _{LBKLOZ2}	_	0.2	ns	7
	TSEC2_TXD[6:5] = 11 (default)			1.5		

Table 32. Local Bus General	Timing Parameters—DLL B	vpassed (continued)
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Notes:

1. The symbols used for timing specifications herein follow the pattern of t_{(First two letters of functional block)(signal)(state) (reference)(state) for inputs and t_(First two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one(1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the output (O) going invalid (X) or output hold time.}

2.All timings are in reference to local bus clock for DLL bypass mode. Timings may be negative with respect to the local bus clock because the actual launch and capture of signals is done with the internal launch/capture clock, which precedes LCLK by tLBKHKT.

3.Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between complementary signals at OV_{DD}/2.

4.All signals are measured from $OV_{DD}/2$ of the rising edge of local bus clock for DLL bypass mode to $0.4 \times OV_{DD}$ of the signal in question for 3.3-V signaling levels.

5.Input timings are measured at the pin.

6. The value of t_{LBOTOT} is defined as the sum of 1/2 or 1 ccb_clk cycle as programmed by LBCR[AHD], and the number of local bus buffer delays used as programmed at power-on reset with configuration pins TSEC2_TXD[6:5].

7.For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

8. Guaranteed by characterization.

9. Guaranteed by design.

Local Bus

Figure 19. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 2 (DLL Enabled)

Figure 20. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 2 (DLL Bypass Mode)

Table 34. CPM Input AC Timing Specifications ¹ (continued)

Characteristic	Symbol ²	Min ³	Unit
COL/CRS width high (FCC)	t _{FCCH}	1.5	CLK

Notes:

- 1.Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of Serial Clock. Timings are measured at the pin.
- 2. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional}

block)(signal)(state) (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{FIIVKH} symbolizes the FCC inputs internal timing (FI) with respect to the time the input signals (I) reaching the valid state (V) relative to the reference clock t_{FCC} (K) going to the high (H) state or setup time. And t_{TDIXKH} symbolizes the TDM timing (TD) with respect to the time the input signals (I) reach the invalid state (X) relative to the reference clock t_{FCC} (K) going to the high (H) state or hold time.

3.PIO and TIMER inputs and outputs are asynchronous to SYSCLK or any other externally visible clock. PIO/TIMER inputs are internally synchronized to the CPM internal clock. PIO/TIMER outputs should be treated as asynchronous.

Characteristic	Symbol ²	Min	Мах	Unit
FCC outputs—internal clock (NMSI) delay	t _{FIKHOX}	1	5.5	ns
FCC outputs—external clock (NMSI) delay	t _{FEKHOX}	2	8	ns
SCC/SPI outputs-internal clock (NMSI) delay	t _{NIKHOX}	0.5	10	ns
SCC outputs—external clock (NMSI) delay	t _{NEKHOX}	2	8	ns
SPI output—external clock (NMSI) delay	t _{SEKHOX}	2	11	ns
TDM outputs/SI delay	t _{TDKHOX}	2.5	11	ns

Table 35. CPM Output AC Timing Specifications ¹

Notes:

1.Output specifications are measured from the 50% level of the rising edge of Serial Clock to the 50% level of the signal. Timings are measured at the pin.

2. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)}

(reference)(state) for inputs and t_{(first two letters of functional block})(reference)(state)(signal)(state) for outputs. For example, t_{FIKHOX} symbolizes the FCC inputs internal timing (FI) for the time t_{FCC} memory clock reference (K) goes from the high state (H) until outputs (O) are invalid (X).

Figure 16 provides the AC test load for the CPM.

Figure 23. CPM AC Test Load

Figure 24 through Figure 29 represent the AC timing from Table 34 and Table 35. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

10 JTAG

JTAG

This section describes the AC electrical specifications for the IEEE 1149.1 (JTAG) interface of the MPC8560.

Table 39 provides the JTAG AC timing specifications as defined in Figure 32 through Figure 35.

Table 39. JTAG AC Timing Specifications (Independent of SYSCLK)¹

At recommended operating conditions (see Table 2).

Parameter	Symbol ²	Min	Мах	Unit	Notes
JTAG external clock frequency of operation	f _{JTG}	0	33.3	MHz	_
JTAG external clock cycle time	t _{JTG}	30	—	ns	_
JTAG external clock pulse width measured at 1.4 V	t _{JTKHKL}	15	—	ns	_
JTAG external clock rise and fall times	t _{JTGR} & t _{JTGF}	0	2	ns	6
TRST assert time	t _{TRST}	25	_	ns	3
Input setup times: Boundary-scan data TMS, TDI	t _{JTDVKH} t _{JTIVKH}	4 0		ns	4
Input hold times: Boundary-scan data TMS, TDI	t _{JTDXKH} t _{JTIXKH}	20 25		ns	4
Valid times: Boundary-scan data TDO	^t jtkldv ^t jtklov	4 4	20 25	ns	5
Output hold times: Boundary-scan data TDO	^t jtkldx ^t jtklox		—	ns	5
JTAG external clock to output high impedance: Boundary-scan data TDO	t _{jtkldz} t _{jtkloz}	3 3	19 9	ns	5, 6

Notes:

2. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)}

(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{JTDVKH} symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{JTG} clock reference (K) going to the high (H) state or setup time. Also, t_{JTDXKH} symbolizes JTAG timing (JT) with respect to the time data input signals (D) went invalid (X) relative to the t_{JTG} clock reference (K) going to the high (H) state or setup time. Also, t_{JTDXKH} symbolizes JTAG timing (JT) with respect to the time data input signals (D) went invalid (X) relative to the t_{JTG} clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.

4.Non-JTAG signal input timing with respect to t_{TCLK}.

5.Non-JTAG signal output timing with respect to t_{TCLK} .

6.Guaranteed by design.

^{1.}All outputs are measured from the midpoint voltage of the falling/rising edge of t_{TCLK} to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50- Ω load (see Figure 31). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

Figure 35 provides the test access port timing diagram.

Figure 35. Test Access Port Timing Diagram

11 I²C

This section describes the DC and AC electrical characteristics for the I²C interface of the MPC8560.

11.1 I²C DC Electrical Characteristics

Table 40 provides the DC electrical characteristics for the I²C interface of the MPC8560.

Table 40. I²C DC Electrical Characteristics

At recommended operating conditions with OV_{DD} of 3.3 V \pm 5%.

Parameter	Symbol	Min	Мах	Unit	Notes
Input high voltage level	V _{IH}	$0.7 imes OV_{DD}$	OV _{DD} + 0.3	V	_
Input low voltage level	V _{IL}	-0.3	$0.3\times\text{OV}_{\text{DD}}$	V	
Low level output voltage	V _{OL}	0	$0.2\times\text{OV}_{\text{DD}}$	V	1
Pulse width of spikes which must be suppressed by the input filter	t _{i2KHKL}	0	50	ns	2
Input current each I/O pin (input voltage is between 0.1 \times OV_{DD} and 0.9 \times OV_{DD}(max)	lı	-10	10	μA	3
Capacitance for each I/O pin	CI	_	10	pF	_

Notes:

1.Output voltage (open drain or open collector) condition = 3 mA sink current.

2.Refer to the *MPC8560 PowerQUICC III Integrated Communications Processor Preliminary Reference Manual* for information on the digital filter used.

3.I/O pins will obstruct the SDA and SCL lines if OV_{DD} is switched off.

MPC8560 Integrated Processor Hardware Specifications, Rev. 4.2

I2C

Table 46. RapidIO 8/16 LP-LVDS Driver DC Electrical Characteristics (continued)

At recommended operating conditions with OV_{DD} of 3.3 V ± 5%.

Characteristic	Symbol	Min	Мах	Unit	Notes
Common mode offset voltage	ΔV_{OSCM}	_	50	mV	1, 6
Differential termination	R _{TERM}	90	220	W	—
Short circuit current (either output)	I _{SS}	_	24	mA	7
Bridged short circuit current	I _{SB}	_	12	mA	8

Notes:

1.Bridged 100- Ω load.

2.See Figure 41(a).

3.Differential offset voltage = $|V_{OHD}+V_{OLD}|$. See Figure 41(b).

4. $V_{OHCM} = (V_{OA} + V_{OB})/2$ when measuring V_{OHD} .

 $5.V_{OLCM} = (V_{OA} + V_{OB})/2$ when measuring V_{OLD} .

6.Common mode offset $\Delta V_{OSCM} = IV_{OHCM} - V_{OLCM}I$. See Figure 41(c).

7.Outputs shorted to V_{DD} or GND.

8. Outputs shorted together.

Table 47. RapidIO 8/16 LP-LVDS Receiver DC Electrical Characteristics

Characteristic	Symbol	Min	Мах	Unit	Notes
Voltage at either input	VI	0	2.4	V	—
Differential input high voltage	V _{IHD}	100	600	mV	1
Differential input low voltage	V _{ILD}	-600	-100	mV	1
Common mode input range (referenced to receiver ground)	V _{ICM}	0.050	2.350	V	2
Input differential resistance	R _{IN}	90	110	w	—

Notes:

1. Over the common mode range.

2.Limited by V_I. See Figure 48.

Package and Pin Listings

Table 54	. MPC8560	Pinout	Listing	(continued))
----------	-----------	--------	---------	-------------	---

Signal	Package Pin Number	Pin Type	Power Supply	Notes		
DDR SDRAM Memory Interface						
MDQ[0:63]	M26, L27, L22, K24, M24, M23, K27, K26, K22, J28, F26, E27, J26, J23, H26, G26, C26, E25, C24, E23, D26, C25, A24, D23, B23, F22, J21, G21, G22, D22, H21, E21, N18, J18, D18, L17, M18, L18, C18, A18, K17, K16, C16, B16, G17, L16, A16, L15, G15, E15, C14, K13, C15, D15, E14, D14, D13, E13, D12, A11, F13, H13, A13, B12	I/O	GV _{DD}	_		
MECC[0:7]	N20, M20, L19, E19, C21, A21, G19, A19	I/O	GV_DD	_		
MDM[0:8]	L24, H28, F24, L21, E18, E16, G14, B13, M19	0	GV _{DD}	-		
MDQS[0:8]	L26, J25, D25, A22, H18, F16, F14, C13, C20	I/O	GV _{DD}	_		
MBA[0:1]	B18, B19	0	GV _{DD}	_		
MA[0:14]	N19, B21, F21, K21, M21, C23, A23, B24, H23, G24, K19, B25, D27, J14, J13	0	GV _{DD}	-		
MWE	D17	0	GV _{DD}	_		
MRAS	F17	0	GV _{DD}	_		
MCAS	J16	0	GV _{DD}	_		
MCS[0:3]	H16, G16, J15, H15	0	GV _{DD}	_		
MCKE[0:1]	E26, E28	0	GV _{DD}	11		
MCK[0:5]	J20, H25, A15, D20, F28, K14	0	GV _{DD}	_		
MCK[0:5]	F20, G27, B15, E20, F27, L14	0	GV _{DD}	_		
MSYNC_IN	M28	I	GV _{DD}	_		
MSYNC_OUT	N28	0	GV _{DD}	_		
	Local Bus Controller Interface					
LA[27]	U18	0	OV _{DD}	5, 9		
LA[28:31]	T18, T19, T20, T21	0	OV _{DD}	7, 9		
LAD[0:31]	AD26, AD27, AD28, AC26, AC27, AC28, AA22, AA23, AA26, Y21, Y22, Y26, W20, W22, W26, V19, T22, R24, R23, R22, R21, R18, P26, P25, P20, P19, P18, N22, N23, N24, N25, N26	I/O	OV _{DD}	_		
LALE	V21	0	OV _{DD}	8, 9		
LBCTL	V20	0	OV _{DD}	9		
LCKE	U23	0	OV _{DD}	—		
LCLK[0:2]	U27, U28, V18	0	OV _{DD}	_		
LCS[0:4]	Y27, Y28, W27, W28, R27	0	OV _{DD}	18		
LCS5/DMA_DREQ2	R28	I/O	OV _{DD}	1		

Package and Pin Listings

Signal	Package Pin Number	Pin Type	Power Supply	Notes
PD[4:31]	Y1, Y2, Y3, Y4, Y5, Y6, AA8, AA7, AA4, AA3, AA2, AA1, AB1, AB2, AB3, AB5, AB6, AC7, AC4, AC3, AC2, AC1, AD1, AD2, AD5, AD6, AE3, AE2	Ι/Ο	OV _{DD}	

Notes:

- 1.All multiplexed signals are listed only once and do not re-occur. For example, LCS5/DMA_REQ2 is listed only once in the Local Bus Controller Interface section, and is not mentioned in the DMA section even though the pin also functions as DMA_REQ2.
- 2.Recommend a weak pull-up resistor (2–10 k Ω) be placed on this pin to OV_{DD}.
- 3. This pin must always be pulled up to $\ensuremath{\text{OV}_{\text{DD}}}$.
- 4. This pin is an open drain signal.
- 5. This pin is a reset configuration pin. It has a weak internal pull-up P-FET which is enabled only when the MPC8560 is in the reset state. This pull-up is designed such that it can be overpowered by an external 4.7-kΩ pull-down resistor. If an external device connected to this pin might pull it down during reset, then a pull-up or active driver is needed if the signal is intended to be high during reset.
- 6. Treat these pins as no connects (NC) unless using debug address functionality.
- 7. The value of LA[28:31] during reset sets the CCB clock to SYSCLK PLL ratio. These pins require 4.7-kΩ pull-up or pull-down resistors. See Section 15.2, "Platform/System PLL Ratio."
- 8. The value of LALE and LGPL2 at reset set the e500 core clock to CCB Clock PLL ratio. These pins require 4.7-kΩ pull-up or pull-down resistors. See the Section 15.3, "e500 Core PLL Ratio."
- 9. Functionally, this pin is an output, but structurally it is an I/O because it either samples configuration input during reset or because it has other manufacturing test functions. This pin will therefore be described as an I/O for boundary scan.
- 10. This pin functionally requires a pull-up resistor, but during reset it is a configuration input that controls 32- vs. 64-bit PCI operation. Therefore, it must be actively driven low during reset by reset logic if the device is to be configured to be a 64-bit PCI device. Refer to the *PCI Specification*.
- 11. This output is actively driven during reset rather than being three-stated during reset.
- 12. These JTAG pins have weak internal pull-up P-FETs that are always enabled.
- 13. These pins are connected to the V_{DD}/GND planes internally and may be used by the core power supply to improve tracking and regulation.
- 14.Internal thermally sensitive resistor.
- 15.No connections should be made to these pins.
- 16. These pins are not connected for any functional use.
- 17.PCI specifications recommend that a weak pull-up resistor (2–10 k Ω) be placed on the higher order pins to OV_{DD} when using 64-bit buffer mode (pins PCI_AD[63:32] and PCI_C_BE[7:4]).
- 18.Note that these signals are POR configurations for Rev. 1.x and notes 5 and 9 apply to these signals in Rev. 1.x but not in later revisions.
- 19 If this pin is connected to a device that pulls down during reset, an external pull-up is required to drive this pin to a logic -1 state during reset.
- 20.Recommend a pull-up resistor (~1 K Ω) b placed on this pin to OV_{DD}.
- 21. These are test signals for factory use only and must be pulled up (100 Ω 1 k Ω) to OVDD for normal machine operation.
- 22. If this signal is used as both an input and an output, a weak pull-up (~10 k Ω) is required on this pin.

Figure 52. MPC8560 Thermal Model

16.2.2 Internal Package Conduction Resistance

For the packaging technology, shown in Table 60, the intrinsic internal conduction thermal resistance paths are as follows:

- The die junction-to-case thermal resistance
- The die junction-to-board thermal resistance

Thermal

ltem No	QTY	MEI PN	Description
1	1	MFRAME-2000	HEATSINK FRAME
2	1	MSNK-1120	EXTRUDED HEATSINK
3	1	MCLIP-1013	CLIP
4	4	MPPINS-1000	FRAME ATTACHMENT PINS

Illustrative source provided by Millennium Electronics (MEI)

Figure 57. Exploded Views (2) of a Heat Sink Attachment using a Plastic Fence

The die junction-to-ambient and the heat sink-to-ambient thermal resistances are common figure-of-merits used for comparing the thermal performance of various microelectronic packaging technologies, one should exercise caution when only using this metric in determining thermal management because no single parameter can adequately describe three-dimensional heat flow. The final die-junction operating temperature is not only a function of the component-level thermal resistance, but the system level design and its operating conditions. In addition to the component's power consumption, a number of factors affect the final operating die-junction temperature: airflow, board population (local heat flux of adjacent components), system air temperature rise, altitude, etc.

Due to the complexity and the many variations of system-level boundary conditions for today's microelectronic equipment, the combined effects of the heat transfer mechanisms (radiation convection and conduction) may vary widely. For these reasons, we recommend using conjugate heat transfer models for the boards, as well as, system-level designs.

Device Nomenclature

THIS PAGE INTENTIONALLY LEFT BLANK