E·XFL

NXP USA Inc. - KMPC8560VT833LC Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	833MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DDR, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	-
Voltage - I/O	2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	783-BFBGA, FCBGA
Supplier Device Package	783-FCPBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8560vt833lc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 21. GMII Transmit AC Timing Specifications (continued)

At recommended operating conditions with LV_{DD} of 3.3 V ± 5%, or LV_{DD} =2.5V ± 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
GTX_CLK data clock rise and fall time	t _{GTXR} , t _{GTXF} 2,4		_	1.0	ns

Notes:

1. The symbols used for timing specifications herein follow the pattern t(first two letters of functional block)(signal)(state)

(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{GTKHDV} symbolizes GMII transmit timing (GT) with respect to the t_{GTX} clock reference (K) going to the high state (H) relative to the time date input signals (D) reaching the valid state (V) to state or setup time. Also, t_{GTKHDX} symbolizes GMII transmit timing (GT) with respect to the t_{GTX} clock reference (K) going to the high state (H) relative to the time date input signals (D) reaching the valid state (V) to state or setup time. Also, t_{GTKHDX} symbolizes GMII transmit timing (GT) with respect to the t_{GTX} clock reference (K) going to the high state (H) relative to the time date input signals (D) going invalid (X) or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{GTX} represents the GMII(G) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2.Signal timings are measured at 0.7 V and 1.9 V voltage levels.

3.Guaranteed by characterization.

4.Guaranteed by design.

Figure 7 shows the GMII transmit AC timing diagram.

Figure 7. GMII Transmit AC Timing Diagram

7.2.1.2 GMII Receive AC Timing Specifications

Table 22 provides the GMII receive AC timing specifications.

Table 22. GMII Receive AC Timing Specifications

At recommended operating conditions with LV_{DD} of 3.3 V \pm 5%, or LV_{DD}=2.5V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
RX_CLK clock period	t _{GRX}	—	8.0	—	ns
RX_CLK duty cycle	t _{GRXH} /t _{GRX}	40	—	60	ns
RXD[7:0], RX_DV, RX_ER setup time to RX_CLK	t _{GRDVKH}	2.0	—	—	ns
RXD[7:0], RX_DV, RX_ER hold time to RX_CLK	t _{GRDXKH}	0.5	_	—	ns

7.2.4 RGMII and RTBI AC Timing Specifications

Table 27 presents the RGMII and RTBI AC timing specifications.

Table 27. RGMII and RTBI AC Timing Specifications

At recommended operating conditions with LV_{DD} of 2.5 V ± 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
Data to clock output skew (at transmitter)	t _{SKRGT} 5	-500	0	500	ps
Data to clock input skew (at receiver) ²	^t skrgt	1.0	_	2.8	ns
Clock period ³	t _{RGT} ⁶	7.2	8.0	8.8	ns
Duty cycle for 1000Base-T ⁴	t _{RGTH} /t _{RGT} 6	45	50	55	%
Duty cycle for 10BASE-T and 100BASE-TX ³	t _{RGTH} /t _{RGT} ⁶	40	50	60	%
Rise and fall time	t _{RGTR} , t _{RGTF} ^{6,7}	_	_	0.75	ns

Notes:

1.Note that, in general, the clock reference symbol representation for this section is based on the symbols RGT to represent RGMII and RTBI timing. For example, the subscript of t_{RGT} represents the TBI (T) receive (RX) clock. Note also that the notation for rise (R) and fall (F) times follows the clock symbol that is being represented. For symbols representing skews, the subscript is skew (SK) followed by the clock that is being skewed (RGT).

2. The RGMII specification requires that PC board designer add 1.5 ns or greater in trace delay to the RX_CLK in order to meet this specification. However, as stated above, this device will function with only 1.0 ns of delay.

3.For 10 and 100 Mbps, t_{RGT} scales to 400 ns ± 40 ns and 40 ns ± 4 ns, respectively.

4.Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domains as long as the minimum duty cycle is not violated and stretching occurs for no more than three t_{RGT} of the lowest speed transitioned between.

5.Guaranteed by characterization.

6.Guaranteed by design.

7.Signal timings are measured at 0.5 V and 2.0 V voltage levels.

Figure 14. RGMII and RTBI AC Timing and Multiplexing Diagrams

7.3 Ethernet Management Interface Electrical Characteristics

The electrical characteristics specified here apply to MII management interface signals MDIO (management data input/output) and MDC (management data clock). The electrical characteristics for GMII, RGMII, TBI and RTBI are specified in Section 7.1, "Three-Speed Ethernet Controller (TSEC) (10/100/1Gb Mbps)—GMII/MII/TBI/RGMII/RTBI Electrical Characteristics."

7.3.1 MII Management DC Electrical Characteristics

The MDC and MDIO are defined to operate at a supply voltage of 3.3 V. The DC electrical characteristics for MDIO and MDC are provided in Table 28.

Parameter	Symbol	Min	Мах	Unit
Supply voltage (3.3 V)	OV _{DD}	3.13	3.47	V
Output high voltage ($OV_{DD} = Min, I_{OH} = -1.0 mA$)	V _{OH}	2.10	OV _{DD} + 0.3	V
Output low voltage ($OV_{DD} = Min, I_{OL} = 1.0 mA$)	V _{OL}	GND	0.50	V
Input high voltage	V _{IH}	1.70	_	V
Input low voltage	V _{IL}	—	0.90	V

Table 28. MII Management DC Electrical Characteristics

Parameter	POR Configuration	Symbol ¹	Min	Max	Unit	Notes
Local bus clock to data valid for LAD/LDP	TSEC2_TXD[6:5] = 00	t _{LBKLOV2}		-0.1	ns	4
	TSEC2_TXD[6:5] = 11 (default)			1.4		
Local bus clock to address valid for LAD	TSEC2_TXD[6:5] = 00	t _{LBKLOV3}		0	ns	4
	TSEC2_TXD[6:5] = 11 (default)			1.5		
Local bus clock to LALE assertion		t _{LBKHOV4}		0	ns	4
Output hold from local bus clock (except	TSEC2_TXD[6:5] = 00	t _{LBKLOX1}	-3.2	—	ns	4
LAD/LDP and LALE)	TSEC2_TXD[6:5] = 11 (default)		-2.3			
Output hold from local bus clock for	TSEC2_TXD[6:5] = 00	t _{LBKLOX2}	-3.2	—	ns	4
LAD/LDP	TSEC2_TXD[6:5] = 11 (default)		-2.3			
Local bus clock to output high Impedance	TSEC2_TXD[6:5] = 00	t _{LBKLOZ1}	_	0.2	ns	7
(except LAD/LDP and LALE)	TSEC2_TXD[6:5] = 11 (default)			1.5		
Local bus clock to output high impedance	TSEC2_TXD[6:5] = 00	t _{LBKLOZ2}	_	0.2	ns	7
	TSEC2_TXD[6:5] = 11 (default)			1.5		

Table 32. Local Bus General	Timing Parameters—DLL B	vpassed (continued)
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Notes:

1. The symbols used for timing specifications herein follow the pattern of t_{(First two letters of functional block)(signal)(state) (reference)(state) for inputs and t_(First two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one(1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the output (O) going invalid (X) or output hold time.}

2.All timings are in reference to local bus clock for DLL bypass mode. Timings may be negative with respect to the local bus clock because the actual launch and capture of signals is done with the internal launch/capture clock, which precedes LCLK by tLBKHKT.

3.Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between complementary signals at OV_{DD}/2.

4.All signals are measured from $OV_{DD}/2$ of the rising edge of local bus clock for DLL bypass mode to $0.4 \times OV_{DD}$ of the signal in question for 3.3-V signaling levels.

5.Input timings are measured at the pin.

6. The value of t_{LBOTOT} is defined as the sum of 1/2 or 1 ccb_clk cycle as programmed by LBCR[AHD], and the number of local bus buffer delays used as programmed at power-on reset with configuration pins TSEC2_TXD[6:5].

7.For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

8. Guaranteed by characterization.

9. Guaranteed by design.

Figure 18. Local Bus Signals (DLL Bypass Mode)

Figure 20. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 2 (DLL Bypass Mode)

СРМ

Figure 24 shows the FCC internal clock.

Figure 24. FCC Internal AC Timing Clock Diagram

Figure 25 shows the FCC external clock.

Figure 26 shows Ethernet collision timing on FCCs.

Figure 26. Ethernet Collision AC Timing Diagram (FCC)

Table 36 shows CPM I²C AC Timing.

Table	36.	СРМ	I ² C	AC	Timina
Iabio		v			g

Characteristic	Symbol	Min	Мах	Unit
SCL clock frequency (slave)	f _{SCL}	0	F _{MAX} ¹	Hz
SCL clock frequency (master)	f _{SCL}	BRGCLK/16512	BRGCLK/48	Hz
Bus free time between transmissions	t _{SDHDL}	1/(2.2 * f _{SCL})	—	S
Low period of SCL	t _{SCLCH}	1/(2.2 * f _{SCL})	—	S
High period of SCL	t _{SCHCL}	1/(2.2 * f _{SCL})	_	S
Start condition setup time ²	t _{SCHDL}	2/(divider * f _{SCL})	_	S
Start condition hold time ²	t _{SDLCL}	3/(divider * f _{SCL})	_	S
Data hold time ²	t _{SCLDX}	2/(divider * f _{SCL})	_	S
Data setup time ²	t _{SDVCH}	3/(divider * f _{SCL})	_	S
SDA/SCL rise time	t _{SRISE}	—	1/(10 * f _{SCL})	S
SDA/SCL fall time	t _{SFALL}	_	1/(33 * f _{SCL})	S
Stop condition setup time	t _{SCHDH}	2/(divider * f _{SCL})	—	S

Notes:

1.F_{MAX} = BRGCLK/(min_divider*prescaler). Where prescaler=25-I2MODE[PDIV]; and min_divider=12 if digital filter disabled and 18 if enabled.

Example #1: if I2MODE[PDIV]=11 (prescaler=4) and I2MODE[FLT]=0 (digital filter disabled) then FMAX=BRGCLK/48

Example #2: if I2MODE[PDIV]=00 (prescaler=32) and I2MODE[FLT]=1 (digital filter enabled) then FMAX=BRGCLK/576

2.divider = f_{SCL} /prescaler.

In master mode: divider = BRGCLK/(f_{SCL}*prescaler) = 2*(I2BRG[DIV]+3) In slave mode: divider = BRGCLK/(f_{SCL}*prescaler)

Figure 30 is a a diagram of CPM I²C Bus Timing.

Figure 30. CPM I²C Bus Timing Diagram

Figure 35 provides the test access port timing diagram.

Figure 35. Test Access Port Timing Diagram

11 I²C

I2C

This section describes the DC and AC electrical characteristics for the I²C interface of the MPC8560.

11.1 I²C DC Electrical Characteristics

Table 40 provides the DC electrical characteristics for the I²C interface of the MPC8560.

Table 40. I²C DC Electrical Characteristics

At recommended operating conditions with OV_{DD} of 3.3 V \pm 5%.

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage level	V _{IH}	$0.7\times \text{OV}_{\text{DD}}$	OV _{DD} + 0.3	V	_
Input low voltage level	V _{IL}	-0.3	$0.3\times\text{OV}_{\text{DD}}$	V	_
Low level output voltage	V _{OL}	0	$0.2\times\text{OV}_{\text{DD}}$	V	1
Pulse width of spikes which must be suppressed by the input filter	t _{i2KHKL}	0	50	ns	2
Input current each I/O pin (input voltage is between $0.1 \times OV_{DD}$ and $0.9 \times OV_{DD}$ (max)	lj	-10	10	μA	3
Capacitance for each I/O pin	CI	—	10	pF	_

Notes:

1.Output voltage (open drain or open collector) condition = 3 mA sink current.

2.Refer to the *MPC8560 PowerQUICC III Integrated Communications Processor Preliminary Reference Manual* for information on the digital filter used.

3.I/O pins will obstruct the SDA and SCL lines if OV_{DD} is switched off.

MPC8560 Integrated Processor Hardware Specifications, Rev. 4.2

52

PCI/PCI-X

12.2 PCI/PCI-X AC Electrical Specifications

This section describes the general AC timing parameters of the PCI/PCI-X bus of the MPC8560. Note that the SYSCLK signal is used as the PCI input clock. Table 43 provides the PCI AC timing specifications at 66 MHz.

Parameter	Symbol ¹	Min	Max	Unit	Notes
SYSCLK to output valid	^t PCKHOV	-	6.0	ns	2
Output hold from SYSCLK	t _{PCKHOX}	2.0	_	ns	2, 9
SYSCLK to output high impedance	t _{PCKHOZ}	-	14	ns	2, 3, 10
Input setup to SYSCLK	t _{PCIVKH}	3.0	_	ns	2, 4, 9
Input hold from SYSCLK	^t РСІХКН	0	_	ns	2, 4, 9
REQ64 to HRESET ⁹ setup time	t _{PCRVRH}	$10 imes t_{SYS}$	_	clocks	5, 6, 10
HRESET to REQ64 hold time	t _{PCRHRX}	0	50	ns	6, 10
HRESET high to first FRAME assertion	t _{PCRHFV}	10	_	clocks	7, 10

Table 43. PCI AC Timing Specifications at 66 MHz

Notes:

1.Note that the symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional}

block)(signal)(state) (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{PCIVKH} symbolizes PCI/PCI-X timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the SYSCLK clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI/PCI-X timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.

2.See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.

3.For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

- 4.Input timings are measured at the pin.
- 5. The timing parameter t_{SYS} indicates the minimum and maximum CLK cycle times for the various specified frequencies. The system clock period must be kept within the minimum and maximum defined ranges. For values see Section 15, "Clocking."

6.The setup and hold time is with respect to the rising edge of HRESET.

- 7. The timing parameter t_{PCRHFV} is a minimum of 10 clocks rather than the minimum of 5 clocks in the *PCI 2.2 Local Bus Specifications*.
- 8. The reset assertion timing requirement for $\overline{\text{HRESET}}$ is 100 µs.
- 9. Guaranteed by characterization.

10.Guaranteed by design.

Parameter	Symbol	Min	Max	Unit	Notes
PCI-X initialization pattern to HRESET setup time	^t PCIVRH	10		clocks	11
HRESET to PCI-X initialization pattern hold time	t _{PCRHIX}	0	50	ns	6, 11

Table 44. PCI-X AC Timing Specifications at 66 MHz (continued)

Notes:

1.See the timing measurement conditions in the PCI-X 1.0a Specification.

2. Minimum times are measured at the package pin (not the test point). Maximum times are measured with the test point and load circuit.

3.Setup time for point-to-point signals applies to REQ and GNT only. All other signals are bused.

4.For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

5. Setup time applies only when the device is not driving the pin. Devices cannot drive and receive signals at the same time.

6.Maximum value is also limited by delay to the first transaction (time for HRESET high to first configuration access, t_{PCRHFV}). The PCI-X initialization pattern control signals after the rising edge of HRESET must be negated no later than two clocks before the first FRAME and must be floated no later than one clock before FRAME is asserted.

7.A PCI-X device is permitted to have the minimum values shown for t_{PCKHOV} and t_{CYC} only in PCI-X mode. In conventional mode, the device must meet the requirements specified in PCI 2.2 for the appropriate clock frequency.

8.Device must meet this specification independent of how many outputs switch simultaneously.

9. The timing parameter t_{PCRHFV} is a minimum of 10 clocks rather than the minimum of 5 clocks in the *PCI-X 1.0a Specification*. 10. Guaranteed by characterization.

11.Guaranteed by design.

Table 45 provides the PCI-X AC timing specifications at 133 MHz.

Parameter	Symbol	Min	Мах	Unit	Notes				
SYSCLK to signal valid delay	^t PCKHOV	_	3.8	ns	1, 2, 3, 7, 8				
Output hold from SYSCLK	t _{PCKHOX}	0.7	—	ns	1, 11				
SYSCLK to output high impedance	t _{PCKHOZ}	_	7	ns	1, 4, 8, 12				
Input setup time to SYSCLK	^t РСІVКН	1.4	—	ns	3, 5, 9, 11				
Input hold time from SYSCLK	t _{PCIXKH}	0.5	—	ns	11				
REQ64 to HRESET setup time	t _{PCRVRH}	10	—	clocks	12				
HRESET to REQ64 hold time	t _{PCRHRX}	0	50	ns	12				
HRESET high to first FRAME assertion	t _{PCRHFV}	10	—	clocks	10, 12				
PCI-X initialization pattern to HRESET setup time	^t PCIVRH	10	—	clocks	12				

Table 45. PCI-X AC Timing Specifications at 133 MHz

The eye pattern for a data signal is generated by making a large number of recordings of the signal and then overlaying the recordings. The number of recordings used to generate the eye shall be large enough that further increasing the number of recordings used does not cause the resulting eye pattern to change from one that complies with the RapidIO transmit mask to one that does not. Each data signal in the interface shall be carrying random or pseudo-random data when the recordings are made. If pseudo-random data is used, the length of the pseudo-random sequence (repeat length) shall be long enough that increasing the length of the sequence does not cause the resulting eye pattern to change from one that complies with the RapidIO transmit mask to one that does not comply with the mask. The data carried by any given data signal in the interface may not be correlated with the data carried by any other data signal in the interface. The zero-crossings of the clock associated with a data signal shall be used as the timing reference for aligning the multiple recordings of the data signal when the recordings are overlaid.

While the method used to make the recordings and overlay them to form the eye pattern is not specified, the method used shall be demonstrably equivalent to the following method. The signal under test is repeatedly recorded with a digital oscilloscope in infinite persistence mode. Each recording is triggered by a zero-crossing of the clock associated with the data signal under test. Roughly half of the recordings are triggered by positive-going clock zero-crossings and roughly half are triggered by negative-going clock zero-crossings. Each recording is at least 1.9 UI in length (to ensure that at least one complete eye is formed) and begins 0.5 UI before the trigger point (0.5 UI before the associated clock zero-crossing). Depending on the length of the individual recordings used to generate the eye pattern, one or more complete eyes will be formed. Regardless of the number of eyes, the eye whose center is immediately to the right of the trigger point is the eye used for compliance testing.

An example of an eye pattern generated using the above method with recordings 3 UI in length is shown in Figure 45. In this example, there is no skew between the signal under test and the associated clock used to trigger the recordings. If skew was present, the eye pattern would be shifted to the left or right relative to the oscilloscope trigger point.

Figure 45. Example Driver Output Eye Pattern

- 3. Maximum solder ball diameter measured parallel to datum A.
- 4. Datum A, the seating plane, is defined by the spherical crowns of the solder balls.
- 5. Capacitors may not be present on all devices.
- 6. Caution must be taken not to short capacitors or exposed metal capacitor pads on package top.
- 7. The socket lid must always be oriented to A1.

14.3 Pinout Listings

Table 54 provides the pin-out listing for the MPC8560, 783 FC-PBGA package.

Table 54. MPC8560 Pinout Listing

Signal	Package Pin Number	Pin Type	Power Supply	Notes					
PCI/PCI-X									
PCI_AD[63:0]	AA14, AB14, AC14, AD14, AE14, AF14, AG14, AH14, V15, W15, Y15, AA15, AB15, AC15, AD15, AG15, AH15, V16, W16, AB16, AC16, AD16, AE16, AF16, V17, W17, Y17, AA17, AB17, AE17, AF17, AF18, AH6, AD7, AE7, AH7, AB8, AC8, AF8, AG8, AD9, AE9, AF9, AG9, AH9, W10, Y10, AA10, AE11, AF11, AG11, AH11, V12, W12, Y12, AB12, AD12, AE12, AG12, AH12, V13, Y13, AB13, AC13	I/O	OV _{DD}	17					
PCI_C_BE[7:0]	AG13, AH13, V14, W14, AH8, AB10, AD11, AC12	I/O	OV_{DD}	17					
PCI_PAR	AA11	I/O	OV_{DD}	_					
PCI_PAR64	Y14	I/O	OV_{DD}	_					
PCI_FRAME	AC10	I/O	OV_{DD}	2					
PCI_TRDY	AG10	I/O	OV_{DD}	2					
PCI_IRDY	AD10	I/O	OV_{DD}	2					
PCI_STOP	V11	I/O	OV_{DD}	2					
PCI_DEVSEL	AH10	I/O	OV_{DD}	2					
PCI_IDSEL	AA9	I	OV_{DD}	_					
PCI_REQ64	AE13	I/O	OV_{DD}	5, 10					
PCI_ACK64	AD13	I/O	OV_{DD}	2					
PCI_PERR	W11	I/O	OV_{DD}	2					
PCI_SERR	Y11	I/O	OV_DD	2, 4					
PCI_REQ0	AF5	I/O	OV_{DD}	-					
PCI_REQ[1:4]	AF3, AE4, AG4, AE5	I	OV _{DD}	_					
PCI_GNT[0]	AE6	I/O	OV _{DD}	—					
PCI_GNT[1:4]	AG5, AH5, AF6, AG6	0	OV _{DD}	5, 9					

Table 54. MPC8560 F	Pinout Listing	(continued)
---------------------	----------------	-------------

Signal	Package Pin Number	Pin Type	Power Supply	Notes
LCS6/DMA_DACK2	P27 C		OV _{DD}	1
LCS7/DMA_DDONE2	P28	0	OV _{DD}	1
LDP[0:3]	AA27, AA28, T26, P21	I/O	OV _{DD}	
LGPL0/LSDA10	U19	0	OV _{DD}	5, 9
LGPL1/LSDWE	U22	0	OV _{DD}	5, 9
LGPL2/LOE/LSDRAS	V28	0	OV _{DD}	8, 9
LGPL3/LSDCAS	V27	0	OV _{DD}	5, 9
LGPL4/LGTA/LUPWAIT/ LPBSE	V23	I/O	OV _{DD}	22
LGPL5	V22	0	OV_{DD}	5, 9
LSYNC_IN	T27	I	OV _{DD}	_
LSYNC_OUT	T28	0	OV _{DD}	_
LWE[0:1]/LSDDQM[0:1]/LBS [0:1]	AB28, AB27	0	OV _{DD}	1, 5, 9
LWE[2:3]/LSDDQM[2:3]/LBS [2:3]	T23, P24	0	OV _{DD}	1, 5, 9
	DMA			
DMA_DREQ[0:1]	H5, G4	I	OV _{DD}	_
DMA_DACK[0:1]	H6, G5	0	OV_{DD}	_
DMA_DDONE[0:1] H7, G6		0	OV_{DD}	-
	Programmable Interrupt Controller			
MCP	AG17	I	OV_{DD}	
UDE	AG16	I	OV _{DD}	
IRQ[0:7]	AA18, Y18, AB18, AG24, AA21, Y19, AA19, AG25	I	OV_{DD}	—
IRQ8	AB20	I	OV_{DD}	9
IRQ9/DMA_DREQ3	Y20	I	OV_{DD}	1
IRQ10/DMA_DACK3	AF26	I/O	OV_{DD}	1
IRQ11/DMA_DDONE3	AH24	I/O	OV _{DD}	1
IRQ_OUT	AB21	0	OV _{DD}	2, 4
	Ethernet Management Interface			
EC_MDC	F1	0	OV _{DD}	5, 9
EC_MDIO	E1	I/O	OV _{DD}	

Package and Pin Listings

Table 54.	MPC8560	Pinout	Listing	(continued))
-----------	---------	--------	---------	-------------	---

Signal	Package Pin Number	Pin Type	Power Supply	Notes					
Gigabit Reference Clock									
EC_GTX_CLK125 E2 I									
Three-Speed Ethernet Controller (Gigabit Ethernet 1)									
TSEC1_TXD[7:4]	A6, F7, D7, C7	0	LV _{DD}	5, 9					
TSEC1_TXD[3:0]	B7, A7, G8, E8	0	LV _{DD}	9, 19					
TSEC1_TX_EN	C8	0	LV _{DD}	11					
TSEC1_TX_ER	B8	0	LV _{DD}	_					
TSEC1_TX_CLK	C6	I	LV _{DD}	_					
TSEC1_GTX_CLK	B6	0	LV _{DD}	18					
TSEC1_CRS	C3	I	LV _{DD}						
TSEC1_COL	G7	I	LV _{DD}						
TSEC1_RXD[7:0]	D4, B4, D3, D5, B5, A5, F6, E6	I	LV _{DD}	_					
TSEC1_RX_DV	D2	I	LV _{DD}						
TSEC1_RX_ER	E5	I	LV _{DD}						
TSEC1_RX_CLK	D6	I	LV _{DD}	_					
Three-Speed Ethernet Controller (Gigabit Ethernet 2)									
TSEC2_TXD[7:2]	B10, A10, J10, K11,J11, H11	0	LV _{DD}	5, 9					
TSEC2_TXD[1:0]	G11, E11	0	LV _{DD}	_					
TSEC2_TX_EN	B11	0	LV _{DD}	11					
TSEC2_TX_ER	D11	0	LV _{DD}						
TSEC2_TX_CLK	D10	I	LV _{DD}						
TSEC2_GTX_CLK	C10	0	LV _{DD}	18					
TSEC2_CRS	D9	I	LV _{DD}	_					
TSEC2_COL	F8	I	LV _{DD}						
TSEC2_RXD[7:0]	F9, E9, C9, B9, A9, H9, G10, F10	I	LV _{DD}	_					
TSEC2_RX_DV	H8	I	LV _{DD}						
TSEC2_RX_ER	A8	I	LV _{DD}	_					
TSEC2_RX_CLK	E10	I	LV _{DD}	-					
	RapidIO Interface								
RIO_RCLK	Y25	I	OV _{DD}	—					
RIO_RCLK	Y24	 	OV _{DD}	—					

Package and Pin Listings

Signal	Package Pin Number	Pin Type	Power Supply	Notes
PD[4:31]	Y1, Y2, Y3, Y4, Y5, Y6, AA8, AA7, AA4, AA3, AA2, AA1, AB1, AB2, AB3, AB5, AB6, AC7, AC4, AC3, AC2, AC1, AD1, AD2, AD5, AD6, AE3, AE2	Ι/Ο	OV _{DD}	

Notes:

- 1.All multiplexed signals are listed only once and do not re-occur. For example, LCS5/DMA_REQ2 is listed only once in the Local Bus Controller Interface section, and is not mentioned in the DMA section even though the pin also functions as DMA_REQ2.
- 2.Recommend a weak pull-up resistor (2–10 k Ω) be placed on this pin to OV_{DD}.
- 3. This pin must always be pulled up to $\ensuremath{\text{OV}_{\text{DD}}}$.
- 4. This pin is an open drain signal.
- 5. This pin is a reset configuration pin. It has a weak internal pull-up P-FET which is enabled only when the MPC8560 is in the reset state. This pull-up is designed such that it can be overpowered by an external 4.7-kΩ pull-down resistor. If an external device connected to this pin might pull it down during reset, then a pull-up or active driver is needed if the signal is intended to be high during reset.
- 6. Treat these pins as no connects (NC) unless using debug address functionality.
- 7. The value of LA[28:31] during reset sets the CCB clock to SYSCLK PLL ratio. These pins require 4.7-kΩ pull-up or pull-down resistors. See Section 15.2, "Platform/System PLL Ratio."
- 8. The value of LALE and LGPL2 at reset set the e500 core clock to CCB Clock PLL ratio. These pins require 4.7-kΩ pull-up or pull-down resistors. See the Section 15.3, "e500 Core PLL Ratio."
- 9. Functionally, this pin is an output, but structurally it is an I/O because it either samples configuration input during reset or because it has other manufacturing test functions. This pin will therefore be described as an I/O for boundary scan.
- 10. This pin functionally requires a pull-up resistor, but during reset it is a configuration input that controls 32- vs. 64-bit PCI operation. Therefore, it must be actively driven low during reset by reset logic if the device is to be configured to be a 64-bit PCI device. Refer to the *PCI Specification*.
- 11. This output is actively driven during reset rather than being three-stated during reset.
- 12. These JTAG pins have weak internal pull-up P-FETs that are always enabled.
- 13. These pins are connected to the V_{DD}/GND planes internally and may be used by the core power supply to improve tracking and regulation.
- 14.Internal thermally sensitive resistor.
- 15.No connections should be made to these pins.
- 16. These pins are not connected for any functional use.
- 17.PCI specifications recommend that a weak pull-up resistor (2–10 k Ω) be placed on the higher order pins to OV_{DD} when using 64-bit buffer mode (pins PCI_AD[63:32] and PCI_C_BE[7:4]).
- 18.Note that these signals are POR configurations for Rev. 1.x and notes 5 and 9 apply to these signals in Rev. 1.x but not in later revisions.
- 19 If this pin is connected to a device that pulls down during reset, an external pull-up is required to drive this pin to a logic -1 state during reset.
- 20.Recommend a pull-up resistor (~1 K Ω) b placed on this pin to OV_{DD}.
- 21. These are test signals for factory use only and must be pulled up (100 Ω 1 k Ω) to OVDD for normal machine operation.
- 22. If this signal is used as both an input and an output, a weak pull-up (~10 k Ω) is required on this pin.

```
Thermal
```

15.4 Frequency Options

Table 59 shows the expected frequency values for the platform frequency when using a CCB to SYSCLK ratio in comparison to the memory bus speed.

CCB to SYSCLK Ratio	SYSCLK (MHz)								
	16.67	25	33.33	41.63	66.67	83	100	111	133.33
				Platform/0	CCB Freque	ency (MHz)			
2							200	222	267
3					200	250	300	333	
4					267	333			-
5				208	333		-		
6			200	250		-			
8		200	267	333	-				
9		225	300		_				
10		250	333						
12	200	300		_					
16	267		-						

Table 59. Frequency Options with Respect to Memory Bus Speeds

16 Thermal

This section describes the thermal specifications of the MPC8560.

16.1 Thermal Characteristics

Table 60 provides the package thermal characteristics for the MPC8560.

 Table 60. Package Thermal Characteristics

Characteristic	Symbol	Value	Unit	Notes
Junction-to-ambient Natural Convection on four layer board (2s2p)	R _{θJMA}	16	°C/W	1, 2
Junction-to-ambient (@100 ft/min or 0.5 m/s) on four layer board (2s2p)	$R_{ extsf{ heta}JMA}$	14	°C/W	1, 2
Junction-to-ambient (@200 ft/min or 1 m/s) on four layer board (2s2p)	$R_{ extsf{ heta}JMA}$	12	°C/W	1, 2
Junction-to-board thermal	$R_{\theta JB}$	7.5	°C/W	3

Thermal

888-246-9050

Thermagon Inc. 4707 Detroit Ave. Cleveland, OH 44102 Internet: www.thermagon.com

16.2.4 Heat Sink Selection Examples

The following section provides a heat sink selection example using one of the commercially available heat sinks.

16.2.4.1 Case 1

For preliminary heat sink sizing, the die-junction temperature can be expressed as follows:

$$T_{J} = T_{I} + T_{R} + (\theta_{JC} + \theta_{INT} + \theta_{SA}) \times P_{D}$$

where

 T_J is the die-junction temperature

T_I is the inlet cabinet ambient temperature

 T_R is the air temperature rise within the computer cabinet

 θ_{IC} is the junction-to-case thermal resistance

 θ_{INT} is the adhesive or interface material thermal resistance

 θ_{SA} is the heat sink base-to-ambient thermal resistance

P_D is the power dissipated by the device

During operation the die-junction temperatures (T_J) should be maintained within the range specified in Table 2. The temperature of air cooling the component greatly depends on the ambient inlet air temperature and the air temperature rise within the electronic cabinet. An electronic cabinet inlet-air temperature (T_A) may range from 30° to 40°C. The air temperature rise within a cabinet (T_R) may be in the range of 5° to 10°C. The thermal resistance of some thermal interface material (θ_{INT}) may be about 1°C/W. Assuming a T_I of 30°C, a T_R of 5°C, a FC-PBGA package $\theta_{JC} = 0.8$, and a power consumption (P_D) of 7.0 W, the following expression for T_J is obtained:

Die-junction temperature: $T_J = 30^{\circ}C + 5^{\circ}C + (0.8^{\circ}C/W + 1.0^{\circ}C/W + \theta_{SA}) \times 7.0 W$

The heat sink-to-ambient thermal resistance (θ_{SA}) versus airflow velocity for a Thermalloy heat sink #2328B is shown in Figure 55.

Assuming an air velocity of 2 m/s, we have an effective θ_{SA+} of about 3.3°C/W, thus

 $T_{I} = 30^{\circ}C + 5^{\circ}C + (0.8^{\circ}C/W + 1.0^{\circ}C/W + 3.3^{\circ}C/W) \times 7.0 W,$

resulting in a die-junction temperature of approximately 71°C which is well within the maximum operating temperature of the component.

Figure 60. COP Connector Physical Pinout

17.8.1 Termination of Unused Signals

If the JTAG interface and COP header will not be used, Freescale recommends the following connections:

- TRST should be tied to HRESET through a 0 k Ω isolation resistor so that it is asserted when the system reset signal (HRESET) is asserted, ensuring that the JTAG scan chain is initialized during the power-on reset flow. Freescale recommends that the COP header be designed into the system as shown in Figure 61. If this is not possible, the isolation resistor will allow future access to TRST in case a JTAG interface may need to be wired onto the system in future debug situations.
- Tie TCK to OV_{DD} through a 10 k Ω resistor. This will prevent TCK from changing state and reading incorrect data into the device.
- No connection is required for TDI, TMS, or TDO.

THIS PAGE INTENTIONALLY LEFT BLANK