E·XFL

NXP USA Inc. - MPC8560PX833LB Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	833MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DDR, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	-
Voltage - I/O	2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	783-BFBGA, FCBGA
Supplier Device Package	783-FCPBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8560px833lb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Contiguous or discontiguous memory mapping
- Read-modify-write support for RapidIO atomic increment, decrement, set, and clear transactions
- Sleep mode support for self refresh SDRAM
- Supports auto refreshing
- On-the-fly power management using CKE signal
- Registered DIMM support
- Fast memory access via JTAG port
- 2.5-V SSTL2 compatible I/O
- RapidIO interface unit
 - 8-bit RapidIO I/O and messaging protocols
 - Source-synchronous double data rate (DDR) interfaces
 - Supports small type systems (small domain, 8-bit device ID)
 - Supports four priority levels (ordering within a level)
 - Reordering across priority levels
 - Maximum data payload of 256 bytes per packet
 - Packet pacing support at the physical layer
 - CRC protection for packets
 - Supports atomic operations increment, decrement, set, and clear
 - LVDS signaling
- RapidIO-compliant message unit
 - One inbound data message structure (inbox)
 - One outbound data message structure (outbox)
 - Supports chaining and direct modes in the outbox
 - Support of up to 16 packets per message
 - Support of up to 256 bytes per packet and up to 4 Kbytes of data per message
 - Supports one inbound doorbell message structure
- Programmable interrupt controller (PIC)
 - Programming model is compliant with the OpenPIC architecture
 - Supports 16 programmable interrupt and processor task priority levels
 - Supports 12 discrete external interrupts
 - Supports 4 message interrupts with 32-bit messages
 - Supports connection of an external interrupt controller such as the 8259 programmable interrupt controller
 - Four global high resolution timers/counters that can generate interrupts
 - Supports 22 other internal interrupt sources
 - Supports fully nested interrupt delivery
 - Interrupts can be routed to external pin for external processing

- MII management interface for control and status
- Programmable CRC generation and checking
- Ability to force allocation of header information and buffer descriptors into L2 cache.
- OCeaN switch fabric
 - Four-port crossbar packet switch
 - Reorders packets from a source based on priorities
 - Reorders packets to bypass blocked packets
 - Implements starvation avoidance algorithms
 - Supports packets with payloads of up to 256 bytes
- Integrated DMA controller
 - Four-channel controller
 - All channels accessible by both the local and remote masters
 - Extended DMA functions (advanced chaining and striding capability)
 - Support for scatter and gather transfers
 - Misaligned transfer capability
 - Interrupt on completed segment, link, list, and error
 - Supports transfers to or from any local memory or I/O port
 - Selectable hardware-enforced coherency (snoop/no-snoop)
 - Ability to start and flow control each DMA channel from external 3-pin interface
 - Ability to launch DMA from single write transaction
- PCI/PCI-X controller
 - PCI 2.2 and PCI-X 1.0 compatible
 - 64- or 32-bit PCI port supports at 16 to 66 MHz
 - 64-bit PCI-X support up to 133 MHz
 - Host and agent mode support
 - 64-bit dual address cycle (DAC) support
 - PCI-X supports multiple split transactions
 - Supports PCI-to-memory and memory-to-PCI streaming
 - Memory prefetching of PCI read accesses
 - Supports posting of processor-to-PCI and PCI-to-memory writes
 - PCI 3.3-V compatible
 - Selectable hardware-enforced coherency
- Power management
 - Fully static 1.2-V CMOS design with 3.3- and 2.5-V I/O
 - Supports power saving modes: doze, nap, and sleep
 - Employs dynamic power management, which automatically minimizes power consumption of blocks when they are idle.

Power Characteristics

Table 6 provides estimated I/O power numbers for each block: DDR, PCI, Local Bus, RapidIO, TSEC, and CPM.

Interface	Parameter	GV _{DD} (2.5 V)	OV _{DD} (3.3 V)	LV _{DD} (3.3 V)	LV _{DD} (2.5 V)	Units	Notes
DDR I/O	CCB = 200 MHz	0.46	—	—	—	W	1
	CCB = 266 MHz	0.59	_	_	_		
	CCB = 300 MHz	0.66	_	_	_		
	CCB = 333 MHz	0.73	—	—	_		
PCI/PCI-X I/O	32-bit, 33 MHz	—	0.04	—	_	W	2
	32-bit 66 MHz	—	0.07	—	—		
	64-bit, 66 MHz	—	0.14	—	—		
	64-bit, 133 MHz	—	0.25	—	—		
Local Bus I/O	32-bit, 33 MHz	—	0.07	—	_	W	3
	32-bit, 66 MHz	—	0.13	—	—		
	32-bit, 133 MHz	—	0.24	—	—		
	32-bit, 167 MHz	—	0.30	—	_		
RapidIO I/O	500 MHz data rate	—	0.96	—	_	W	4
TSEC I/O	MII	—	—	10	—	mW	5, 6
	GMII, TBI (2.5 V)	—	—	—	40		
	GMII, TBI (3.3 V)	—	—	70	—		
	RGMII, RTBI	—	—	—	40		
CPM-FCC	MII	—	15	—	—	mW	7
	RMII	—	13	—	—		
	HDLC 16 Mbps	—	9	—	—		
	UTOPIA-8 SPHY	—	60	—	—		
	UTOPIA-8 MPHY	—	100	—	—		
	UTOPIA-16 SPHY	—	94	—	—		
	UTOPIA-16 MPHY	_	135	_	_		
CPM-SCC	HDLC 16 Mbps	—	4		—	mW	7

Table 6. Estimated Typical I/O Power Consumption

4.2 TSEC Gigabit Reference Clock Timing

Table 7 provides the TSEC gigabit reference clock (EC_GTX_CLK125) AC timing specifications for the MPC8560.

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Notes
EC_GTX_CLK125 frequency	f _{G125}	_	125		MHz	
EC_GTX_CLK125 cycle time	t _{G125}	—	8		ns	
EC_GTX_CLK125 rise and fall time LV _{DD} =2.5 LV _{DD} =3.3	t _{G125R} , t _{G125F}	_	_	0.75 1	ns	2
EC_GTX_CLK125 duty cycle GMII, TBI RGMII, RTBI	t _{G125H} /t _{G125}	45 47	_	55 53	%	1, 3

Table 8. EC_GTX_	CLK125 AC Timing	Specifications
------------------	------------------	----------------

Notes:

1. Timing is guaranteed by design and characterization.

2. Rise and fall times for EC_GTX_CLK125 are measured from 0.5V and 2.0V for LV_{DD}=2.5V, and from 0.6 and 2.7V for LV_{DD}=3.3V.

3. EC_GTX_CLK125 is used to generate GTX clock for TSEC transmitter with 2% degradation EC_GTX_CLK125 duty cycle can be loosened from 47/53% as long as PHY device can tolerate the duty cycle generated by GTX_CLK of TSEC.

4.3 RapidIO Transmit Clock Input Timing

Table 9 provides the RapidIO transmit clock input (RIO_TX_CLK_IN) AC timing specifications for the MPC8560.

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Notes
RIO_TX_CLK_IN frequency	f _{RCLK}	125	_	_	MHz	—
RIO_TX_CLK_IN cycle time	t _{RCLK}	_	_	8	ns	—
RIO_TX_CLK_IN duty cycle	t _{RCLKH} /t _{RCLK}	48	—	52	%	1

Table 9. RIO_TX_CLK_IN AC Timing Specifications

Notes:

1. Requires ±100 ppm long term frequency stability. Timing is guaranteed by design and characterization.

7.2.3 TBI AC Timing Specifications

This section describes the TBI transmit and receive AC timing specifications.

7.2.3.1 TBI Transmit AC Timing Specifications

Table 25 provides the TBI transmit AC timing specifications.

Table 25. TBI Transmit AC Timing Specifications

At recommended operating conditions with LV_{DD} of 3.3 V ± 5%, or LV_{DD}=2.5V ± 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
GTX_CLK clock period	t _{TTX}	—	8.0	_	ns
GTX_CLK duty cycle	t _{TTXH} /t _{TTX}	40	—	60	%
TCG[9:0] setup time GTX_CLK going high	t _{TTKHDV}	2.0	—	_	ns
TCG[9:0] hold time from GTX_CLK going high	t _{TTKHDX}	1.0	—	_	ns
GTX_CLK clock rise and fall time	t _{TTXR} , t _{TTXF} ^{2,3}		—	1.0	ns

Notes:

1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state

)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{TTKHDV} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the valid state (V) or setup time. Also, t_{TTKHDX} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the valid state (X) or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{TTX} represents the TBI (T) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2.Signal timings are measured at 0.7 V and 1.9 V voltage levels.

3.Guaranteed by design.

Figure 12 shows the TBI transmit AC timing diagram.

Figure 12. TBI Transmit AC Timing Diagram

Parameter	Symbol	Min	Мах	Unit
Input high current ($OV_{DD} = Max, V_{IN}^{1} = 2.1 V$)	Ι _Η	—	40	μΑ
Input low current ($OV_{DD} = Max, V_{IN} = 0.5 V$)	۱ _{۱L}	-600		μA

Table 28. MII Management DC Electrical Characteristics (continued)

Note:

1.Note that the symbol V_{IN}, in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

7.3.2 MII Management AC Electrical Specifications

Table 29 provides the MII management AC timing specifications.

Table 29. MII Management AC Timing Specifications

At recommended operating conditions with OV_{DD} is 3.3 V ± 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit	Notes
MDC frequency	f _{MDC}	0.893	—	10.4	MHz	2, 4
MDC period	t _{MDC}	96	—	1120	ns	
MDC clock pulse width high	t _{MDCH}	32	—	—	ns	
MDC to MDIO valid	t _{MDKHDV}			2*[1/(f _{ccb_clk} /8)]	ns	3
MDC to MDIO delay	t _{MDKHDX}	10	—	2*[1/(f _{ccb_clk} /8)]	ns	3
MDIO to MDC setup time	t _{MDDVKH}	5	—	—	ns	
MDIO to MDC hold time	t _{MDDXKH}	0	—	—	ns	
MDC rise time	t _{MDCR}	-	—	10	ns	4
MDC fall time	t _{MDHF}	_	—	10	ns	4

Notes:

1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state)

(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MDKHDX} symbolizes management data timing (MD) for the time t_{MDC} from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time. Also, t_{MDDVKH} symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MDC} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. This parameter is dependent on the CCB clock speed (that is, for a CCB clock of 267 MHz, the maximum frequency is 8.3 MHz and the minimum frequency is 1.2 MHz; for a CCB clock of 333 MHz, the maximum frequency is 10.4 MHz and the minimum frequency is 1.5 MHz).

3. This parameter is dependent on the CCB clock speed (that is, for a CCB clock of 267 MHz, the delay is 60 ns and for a CCB clock of 333 MHz, the delay is 48 ns).

4. Guaranteed by design.

Characteristic	Symbol	Min	Max	Unit	Notes
Output high voltage (I _{OH} = -2.0 mA)	V _{OH}	2.4	-	V	1
Output low voltage (I _{OL} = 3.2 mA)	V _{OL}	_	0.4	V	1

Table 33. CPM DC Electrical Characteristics (continued)

Note:

1. This specification applies to the following pins: PA[0-31], PB[4-31], PC[0-31], and PD[4-31].

2. VIL (max) for the IIC interface is 0.8 V rather than the 1.5 V specified in the IIC standard

9.2 CPM AC Timing Specifications

Table 34 and Table 35 provide the CPM input and output AC timing specifications, respectively.

NOTE: Rise/Fall Time on CPM Input Pins

It is recommended that the rise/fall time on CPM input pins should not exceed 5 ns. This should be enforced especially on clock signals. Rise time refers to signal transitions from 10% to 90% of VCC; fall time refers to transitions from 90% to 10% of VCC.

Characteristic	Symbol ²	Min ³	Unit
FCC inputs—internal clock (NMSI) input setup time	t _{FIIVKH}	6	ns
FCC inputs—internal clock (NMSI) hold time	t _{FIIXKH}	0	ns
FCC inputs—external clock (NMSI) input setup time	t _{FEIVKH}	2.5	ns
FCC inputs—external clock (NMSI) hold time	t _{FEIXKH} b	2	ns
SCC/SPI inputs—internal clock (NMSI) input setup time	t _{NIIVKH}	6	ns
SCC/SPI inputs—internal clock (NMSI) input hold time	t _{NIIXKH}	0	ns
SCC/SPI inputs—external clock (NMSI) input setup time	t _{NEIVKH}	4	ns
SCC/SPI inputs—external clock (NMSI) input hold time	t _{NEIXKH}	2	ns
TDM inputs/SI—input setup time	t _{TDIVKH}	4	ns
TDM inputs/SI—hold time	t _{TDIXKH}	3	ns

Table 34. CPM Input AC Timing Specifications ¹

СРМ

Figure 24 shows the FCC internal clock.

Figure 24. FCC Internal AC Timing Clock Diagram

Figure 25 shows the FCC external clock.

Figure 26 shows Ethernet collision timing on FCCs.

Figure 26. Ethernet Collision AC Timing Diagram (FCC)

Figure 31 provides the AC test load for TDO and the boundary-scan outputs of the MPC8560.

Figure 31. AC Test Load for the JTAG Interface

Figure 32 provides the JTAG clock input timing diagram.

VM = Midpoint Voltage (OV_{DD}/2)

Figure 32. JTAG Clock Input Timing Diagram

Figure 33 provides the $\overline{\text{TRST}}$ timing diagram.

Figure 34 provides the boundary-scan timing diagram.

VM = Midpoint Voltage (OV_{DD}/2)

11.2 I²C AC Electrical Specifications

Table 41 provides the AC timing parameters for the I^2C interface of the MPC8560.

Table 41. I²C AC Electrical Specifications

All values refer to V_{IH} (min) and V_{IL} (max) levels (see Table 40).

Parameter	Symbol ¹	Min	Мах	Unit
SCL clock frequency	f _{I2C}	0	400	kHz
Low period of the SCL clock	t _{I2CL} ⁶	1.3	—	μs
High period of the SCL clock	t _{I2CH} ⁶	0.6	—	μs
Setup time for a repeated START condition	t _{I2SVKH} ⁶	0.6	—	μs
Hold time (repeated) START condition (after this period, the first clock pulse is generated)	t _{I2SXKL} 6	0.6		μs
Data setup time	t _{I2DVKH} ⁶	100	—	ns
Data hold time: CBUS compatible masters I ² C bus devices	t _{i2DXKL}	0 ²	0.9 ³	μs
Set-up time for STOP condition	t _{I2PVKH}	0.6	_	μs
Bus free time between a STOP and START condition	t _{I2KHDX}	1.3	—	μs
Noise margin at the LOW level for each connected device (including hysteresis)	V _{NL}	$0.1 \times OV_{DD}$		V
Noise margin at the HIGH level for each connected device (including hysteresis)	V _{NH}	$0.2 \times OV_{DD}$		V

Notes:

1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state)

(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{l2DVKH} symbolizes I²C timing (I2) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{l2C} clock reference (K) going to the high (H) state or setup time. Also, t_{l2SXKL} symbolizes I²C timing (I2) for the time that the data with respect to the start condition (S) went invalid (X) relative to the t_{l2C} clock reference (K) going to the low (L) state or hold time. Also, t_{l2PVKH} symbolizes I²C timing (I2) for the stop condition (P) reaching the valid state (V) relative to the t_{l2C} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2.MPC8560 provides a hold time of at least 300 ns for the SDA signal (referred to the V_{IHmin} of the SCL signal) to bridge the undefined region of the falling edge of SCL.

3. The maximum t_{I2DVKH} has only to be met if the device does not stretch the LOW period (t_{I2CL}) of the SCL signal.

 $4.C_B$ = capacitance of one bus line in pF.

6.Guaranteed by design.

Figure 16 provides the AC test load for the I^2C .

Figure 36. I²C AC Test Load

Parameter	Symbol	Min	Max	Unit	Notes
PCI-X initialization pattern to HRESET setup time	^t PCIVRH	10		clocks	11
HRESET to PCI-X initialization pattern hold time	t _{PCRHIX}	0	50	ns	6, 11

Table 44. PCI-X AC Timing Specifications at 66 MHz (continued)

Notes:

1.See the timing measurement conditions in the PCI-X 1.0a Specification.

2. Minimum times are measured at the package pin (not the test point). Maximum times are measured with the test point and load circuit.

3.Setup time for point-to-point signals applies to REQ and GNT only. All other signals are bused.

4.For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

5. Setup time applies only when the device is not driving the pin. Devices cannot drive and receive signals at the same time.

6.Maximum value is also limited by delay to the first transaction (time for HRESET high to first configuration access, t_{PCRHFV}). The PCI-X initialization pattern control signals after the rising edge of HRESET must be negated no later than two clocks before the first FRAME and must be floated no later than one clock before FRAME is asserted.

7.A PCI-X device is permitted to have the minimum values shown for t_{PCKHOV} and t_{CYC} only in PCI-X mode. In conventional mode, the device must meet the requirements specified in PCI 2.2 for the appropriate clock frequency.

8.Device must meet this specification independent of how many outputs switch simultaneously.

9. The timing parameter t_{PCRHFV} is a minimum of 10 clocks rather than the minimum of 5 clocks in the *PCI-X 1.0a Specification*. 10. Guaranteed by characterization.

11.Guaranteed by design.

Table 45 provides the PCI-X AC timing specifications at 133 MHz.

Parameter	Symbol	Min	Мах	Unit	Notes	
SYSCLK to signal valid delay	^t PCKHOV	_	3.8	ns	1, 2, 3, 7, 8	
Output hold from SYSCLK	t _{PCKHOX}	0.7	—	ns	1, 11	
SYSCLK to output high impedance	t _{PCKHOZ}	_	7	ns	1, 4, 8, 12	
Input setup time to SYSCLK	^t РСІVКН	1.4	—	ns	3, 5, 9, 11	
Input hold time from SYSCLK	t _{PCIXKH}	0.5	—	ns	11	
REQ64 to HRESET setup time	t _{PCRVRH}	10	—	clocks	12	
HRESET to REQ64 hold time	t _{PCRHRX}	0	50	ns	12	
HRESET high to first FRAME assertion	t _{PCRHFV}	10	—	clocks	10, 12	
PCI-X initialization pattern to HRESET setup time	^t PCIVRH	10	_	clocks	12	

Table 45. PCI-X AC Timing Specifications at 133 MHz

- The peak differential signal of the transmitter output or receiver input, is A B volts.
- The peak-to-peak differential signal of the transmitter output or receiver input, is $2 \times (A B)$ volts.

Figure 42. Differential Peak-to-Peak Voltage of Transmitter or Receiver

To illustrate these definitions using numerical values, consider the case where a LVDS transmitter has a common mode voltage of 1.2 V and each signal has a swing that goes between 1.4 and 1.0 V. Using these values, the peak-to-peak voltage swing of the signals TD, TD, RD, and RD is 400 mV. The differential signal ranges between 400 and -400 mV. The peak differential signal is 400 mV, and the peak-to-peak differential signal is 800 mV.

A timing edge is the zero-crossing of a differential signal. Each skew timing parameter on a parallel bus is synchronously measured on two signals relative to each other in the same cycle, such as data to data, data to clock, or clock to clock. A skew timing parameter may be relative to the edge of a signal or to the middle of two sequential edges.

Static skew represents the timing difference between signals that does not vary over time regardless of system activity or data pattern. Path length differences are a primary source of static skew.

Dynamic skew represents the amount of timing difference between signals that is dependent on the activity of other signals and varies over time. Crosstalk between signals is a source of dynamic skew.

Eye diagrams and compliance masks are a useful way to visualize and specify driver and receiver performance. This technique is used in several serial bus specifications. An example compliance mask is shown in Figure 43. The key difference in the application of this technique for a parallel bus is that the data is source synchronous to its bus clock while serial data is referenced to its embedded clock. Eye diagrams reveal the quality (cleanness, openness, goodness) of a driver output or receiver input. An advantage of using an eye diagram and a compliance mask is that it allows specifying the quality of a signal without requiring separate specifications for effects such as rise time, duty cycle distortion, data dependent dynamic skew, random dynamic skew, etc. This allows the individual semiconductor manufacturer maximum flexibility to trade off various performance criteria while keeping the system performance constant.

In using the eye pattern and compliance mask approach, the quality of the signal is specified by the compliance mask. The mask specifies the maximum permissible magnitude of the signal and the minimum permissible eye opening. The eye diagram for the signal under test is generated according to the specification. Compliance is determined by whether the compliance mask can be positioned over the eye diagram such that the eye pattern falls entirely within the unshaded portion of the mask.

Serial specifications have clock encoded with the data, but the LP-LVDS physical layer defined by RapidIO is a source synchronous parallel port so additional specifications to include effects that are not found in serial links are required. Specifications for the effect of bit to bit timing differences caused by static skew have been added and the eye diagrams specified are measured relative to the associated clock in order to include clock to data effects. With the transmit output (or receiver input) eye diagram, the user can determine if the transmitter output (or receiver input) is compliant with an oscilloscope with the appropriate software.

RapidIO

Figure 43. Example Compliance Mask

Y = minimum data valid amplitude

Z = maximum amplitude

1 UI = 1 unit interval = 1/baud rate

X1 = end of zero crossing region

X2 = beginning of data valid window

 $DV = data valid window = 1 - 2 \times X2$

The waveform of the signal under test must fall within the unshaded area of the mask to be compliant. Different masks are used for the driver output and the receiver input allowing each to be separately specified.

13.3.1 RapidIO Driver AC Timing Specifications

Driver AC timing specifications are provided in Table 48, Table 49, and Table 50. A driver shall comply with the specifications for each data rate/frequency for which operation of the driver is specified. Unless otherwise specified, these specifications are subject to the following conditions.

- The specifications apply over the supply voltage and ambient temperature ranges specified by the device vendor.
- The specifications apply for any combination of data patterns on the data signals.
- The output of a driver shall be connected to a 100 Ω , $\pm 1\%$, differential (bridged) resistive load.
- Clock specifications apply only to clock signals.
- Data specifications apply only to data signals (FRAME, D[0:7]).

Table 48. RapidIO Driver AC Timing Specifications—500 Mbps Data Rate

Characteristic	Ra		nge	Unit	Notos
Characteristic	Symbol	Min	Мах		Notes
Differential output high voltage	V _{OHD}	200	540	mV	1
Differential output low voltage	V _{OLD}	-540	-200	mV	1

The eye pattern for a data signal is generated by making a large number of recordings of the signal and then overlaying the recordings. The number of recordings used to generate the eye shall be large enough that further increasing the number of recordings used does not cause the resulting eye pattern to change from one that complies with the RapidIO transmit mask to one that does not. Each data signal in the interface shall be carrying random or pseudo-random data when the recordings are made. If pseudo-random data is used, the length of the pseudo-random sequence (repeat length) shall be long enough that increasing the length of the sequence does not cause the resulting eye pattern to change from one that complies with the RapidIO transmit mask to one that does not comply with the mask. The data carried by any given data signal in the interface may not be correlated with the data carried by any other data signal in the interface. The zero-crossings of the clock associated with a data signal shall be used as the timing reference for aligning the multiple recordings of the data signal when the recordings are overlaid.

While the method used to make the recordings and overlay them to form the eye pattern is not specified, the method used shall be demonstrably equivalent to the following method. The signal under test is repeatedly recorded with a digital oscilloscope in infinite persistence mode. Each recording is triggered by a zero-crossing of the clock associated with the data signal under test. Roughly half of the recordings are triggered by positive-going clock zero-crossings and roughly half are triggered by negative-going clock zero-crossings. Each recording is at least 1.9 UI in length (to ensure that at least one complete eye is formed) and begins 0.5 UI before the trigger point (0.5 UI before the associated clock zero-crossing). Depending on the length of the individual recordings used to generate the eye pattern, one or more complete eyes will be formed. Regardless of the number of eyes, the eye whose center is immediately to the right of the trigger point is the eye used for compliance testing.

An example of an eye pattern generated using the above method with recordings 3 UI in length is shown in Figure 45. In this example, there is no skew between the signal under test and the associated clock used to trigger the recordings. If skew was present, the eye pattern would be shifted to the left or right relative to the oscilloscope trigger point.

Figure 45. Example Driver Output Eye Pattern

Package and Pin Listings

Table 54	. MPC8560	Pinout	Listing	(continued))
----------	-----------	--------	---------	-------------	---

Signal	Package Pin Number	Pin Type	Power Supply	Notes		
DDR SDRAM Memory Interface						
MDQ[0:63]	M26, L27, L22, K24, M24, M23, K27, K26, K22, J28, F26, E27, J26, J23, H26, G26, C26, E25, C24, E23, D26, C25, A24, D23, B23, F22, J21, G21, G22, D22, H21, E21, N18, J18, D18, L17, M18, L18, C18, A18, K17, K16, C16, B16, G17, L16, A16, L15, G15, E15, C14, K13, C15, D15, E14, D14, D13, E13, D12, A11, F13, H13, A13, B12	I/O	GV _{DD}	_		
MECC[0:7]	N20, M20, L19, E19, C21, A21, G19, A19	I/O	GV_DD	_		
MDM[0:8]	L24, H28, F24, L21, E18, E16, G14, B13, M19	0	GV _{DD}	-		
MDQS[0:8]	L26, J25, D25, A22, H18, F16, F14, C13, C20	I/O	GV _{DD}	_		
MBA[0:1]	B18, B19	0	GV _{DD}	_		
MA[0:14]	N19, B21, F21, K21, M21, C23, A23, B24, H23, G24, K19, B25, D27, J14, J13	0	GV _{DD}	-		
MWE	D17	0	GV _{DD}	_		
MRAS	F17	0	GV _{DD}	_		
MCAS	J16	0	GV _{DD}	_		
MCS[0:3]	H16, G16, J15, H15	0	GV _{DD}	_		
MCKE[0:1]	E26, E28	0	GV _{DD}	11		
MCK[0:5]	J20, H25, A15, D20, F28, K14	0	GV _{DD}	_		
MCK[0:5]	F20, G27, B15, E20, F27, L14	0	GV _{DD}	_		
MSYNC_IN	M28	I	GV _{DD}	_		
MSYNC_OUT	N28	0	GV _{DD}	_		
Local Bus Controller Interface						
LA[27]	U18	0	OV _{DD}	5, 9		
LA[28:31]	T18, T19, T20, T21	0	OV _{DD}	7, 9		
LAD[0:31]	AD26, AD27, AD28, AC26, AC27, AC28, AA22, AA23, AA26, Y21, Y22, Y26, W20, W22, W26, V19, T22, R24, R23, R22, R21, R18, P26, P25, P20, P19, P18, N22, N23, N24, N25, N26	I/O	OV _{DD}	_		
LALE	V21	0	OV _{DD}	8, 9		
LBCTL	V20	0	OV _{DD}	9		
LCKE	U23	0	OV _{DD}	—		
LCLK[0:2]	U27, U28, V18	0	OV _{DD}	_		
LCS[0:4]	Y27, Y28, W27, W28, R27	0	OV _{DD}	18		
LCS5/DMA_DREQ2	R28	I/O	OV _{DD}	1		

Signal	Package Pin Number	Pin Type	Power Supply	Notes
LV _{DD}	A4, C5, E7, H10	Reference Voltage; Three-Speed Ethernet I/O (2.5 V, 3.3 V)	LV _{DD}	_
MV _{REF}	N27	Reference Voltage Signal; DDR	MV _{REF}	_
No Connects	AH26, AH27, AH28, AG28, AF28, AE28, AH1, AG1, AH2, B1, B2, A2, A3, AH25	_	—	16
OV _{DD}	D1, E4, H3, K4, K10, L7, M5, N3, P22, R19, R25, T2, T7, U5, U20, U26, V8, W4, W13, W19, W21, Y7, Y23, AA5, AA12, AA16, AA20, AB7, AB9, AB26, AC5, AC11, AC17, AD4, AE1, AE8, AE10, AE15, AF7, AF12, AG27, AH4	PCI/PCI-X, RapidIO, 10/100 Ethernet, and other Standard (3.3 V)	OV _{DD}	_
RESERVED	C1, T11, U11, AF1	—	—	15
SENSEVDD	L12	Power for Core (1.2 V)	V _{DD}	13
SENSEVSS	K12	—	—	13
V _{DD}	M13, M15, M17, N14, N16, P13, P15, P17, R12, R14, R16, T13, T15, T17, U12, U14	Power for Core (1.2 V)	V _{DD}	_
	СРМ			
PA[0:31]	H1, H2, J1, J2, J3, J4, J5, J6, J7, J8, K8, K7, K6, K3, K2, K1, L1, L2, L3, L4, L5, L8, L9, L10, L11, M10, M9, M8, M7, M6, M3, M2	1/0 OV		_
PB[4:31]	M1, N1, N4, N5, N6, N7, N8, N9, N10, N11, P11, P10, P9, P8, P7, P6, P5, P4, P3, P2, P1, R1, R2, R3, R4, R5, R6, R7	I/O	OV _{DD}	—
PC[0:31]	R8, R9, R10, R11, T9, T6, T5, T4, T1, U1, U2, U3, U4, U7, U8, U9, U10, V9, V6, V5, V4, V3, V2, V1, W1, W2, W3, W6, W7, W8, W9, Y9	Ι/Ο	OV _{DD}	_

Table 54. MPC8560 Pinout Listing (continued)

The system board designer can choose between several types of thermal interface. There are several commercially-available thermal interfaces provided by the following vendors:

Chomerics, Inc.	781-935-4850
77 Dragon Ct.	
Woburn, MA 01888-4014	
Internet: www.chomerics.com	
Dow-Corning Corporation	800-248-2481
Dow-Corning Electronic Materials	
2200 W. Salzburg Rd.	
Midland, MI 48686-0997	
Internet: www.dowcorning.com	
Shin-Etsu MicroSi, Inc.	888-642-7674
10028 S. 51st St.	
Phoenix, AZ 85044	
Internet: www.microsi.com	
The Bergquist Company	800-347-4572
18930 West 78 th St.	
Chanhassen, MN 55317	
Internet: www.bergquistcompany.com	

System Design Information

When data is held high, SW1 is closed (SW2 is open) and R_P is trimmed until the voltage at the pad equals $OV_{DD}/2$. R_P then becomes the resistance of the pull-up devices. R_P and R_N are designed to be close to each other in value. Then, $Z_0 = (R_P + R_N)/2$.

Figure 59. Driver Impedance Measurement

The output impedance of the RapidIO port drivers targets 200- Ω differential resistance. The value of this resistance and the strength of the driver's current source can be found by making two measurements. First, the output voltage is measured while driving logic 1 without an external differential termination resistor. The measured voltage is $V_1 = R_{source} \times I_{source}$. Second, the output voltage is measured while driving logic 1 with an external precision differential termination resistor of value R_{term} . The measured voltage is $V_2 = 1/(1/R_1 + 1/R_2)) \times I_{source}$. Solving for the output impedance gives $R_{source} = R_{term} \times (V_1/V_2 - 1)$. The drive current is then $I_{source} = V_1/R_{source}$.

Table 61 summarizes the signal impedance targets. The driver impedance are targeted at minimum V_{DD} , nominal OV_{DD} , 105°C.

Impedance	Local Bus, Ethernet, DUART, Control, Configuration, Power Management	PCI/PCI-X	DDR DRAM	RapidIO	Symbol	Unit
R _N	43 Target	25 Target	20 Target	NA	Z ₀	W
R _P	43 Target	25 Target	20 Target	NA	Z ₀	W
Differential	NA	NA	NA	200 Target	Z _{DIFF}	W

Table 61. Impedance Characteristics

Note: Nominal supply voltages. See Table 1, $T_i = 105^{\circ}C$.

Device Nomenclature

THIS PAGE INTENTIONALLY LEFT BLANK

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 +1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. The described product is a PowerPC microprocessor. The PowerPC mare is a trademark of IBM Corp. and is used under license. IEEE 802.3, 802.1, and 1149.1 are registered trademarks of the Institute of Electrical and Electronics Engineers, Inc. (IEEE). This product is not endorsed or approved by the IEEE. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2008. All rights reserved.

Document Number: MPC8560EC Rev. 4.2 1/2008

