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• System performance monitor 

— Supports eight 32-bit counters that count the occurrence of selected events

— Ability to count up to 512 counter-specific events

— Supports 64 reference events that can be counted on any of the 8 counters

— Supports duration and quantity threshold counting 

— Burstiness feature that permits counting of burst events with a programmable time between 
bursts

— Triggering and chaining capability

— Ability to generate an interrupt on overflow

• System access port

— Uses JTAG interface and a TAP controller to access entire system memory map

— Supports 32-bit accesses to configuration registers

— Supports cache-line burst accesses to main memory

— Supports large block (4-Kbyte) uploads and downloads

— Supports continuous bit streaming of entire block for fast upload and download

• IEEE Std 1149.1™-compliant, JTAG boundary scan

• 783 FC-PBGA package

2  Electrical Characteristics
This section provides the electrical specifications and thermal characteristics for the MPC8560. The 
MPC8560 is currently targeted to these specifications. Some of these specifications are independent of the 
I/O cell, but are included for a more complete reference. These are not purely I/O buffer design 
specifications.

2.1 Overall DC Electrical Characteristics
This section covers the ratings, conditions, and other characteristics.

2.1.1 Absolute Maximum Ratings
Table 1 provides the absolute maximum ratings.

Table 1. Absolute Maximum Ratings 1

Characteristic Symbol Max Value Unit Notes

Core supply voltage

For devices rated at 667 and 833 MHz

For devices rated at 1 GHz

VDD
–0.3 to 1.32
–0.3 to 1.43

V —

PLL supply voltage

For devices rated at 667 and 833 MHz

For devices rated at 1 GHz

AVDD
–0.3 to 1.32
–0.3 to 1.43

V —
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4.2 TSEC Gigabit Reference Clock Timing
Table 7 provides the TSEC gigabit reference clock (EC_GTX_CLK125) AC timing specifications for the 
MPC8560.

4.3 RapidIO Transmit Clock Input Timing
Table 9 provides the RapidIO transmit clock input (RIO_TX_CLK_IN) AC timing specifications for the 
MPC8560.

Table 8. EC_GTX_CLK125 AC Timing Specifications

Parameter/Condition Symbol Min Typical Max Unit Notes

EC_GTX_CLK125 frequency fG125 — 125 — MHz —

EC_GTX_CLK125 cycle time tG125 — 8 — ns —

EC_GTX_CLK125 rise and fall time

LVDD=2.5
LVDD=3.3

tG125R, tG125F — —
0.75

1

ns 2

EC_GTX_CLK125 duty cycle

GMII, TBI

RGMII, RTBI

tG125H/tG125
45
47

—
55
53

% 1, 3

Notes:
1. Timing is guaranteed by design and characterization.

2. Rise and fall times for EC_GTX_CLK125 are measured from 0.5V and 2.0V for LVDD=2.5V, and from 0.6 and 2.7V for 
LVDD=3.3V.

3. EC_GTX_CLK125 is used to generate GTX clock for TSEC transmitter with 2% degradation EC_GTX_CLK125 duty cycle 
can be loosened from 47/53% as long as PHY device can tolerate the duty cycle generated by GTX_CLK of TSEC.

Table 9. RIO_TX_CLK_IN AC Timing Specifications

Parameter/Condition Symbol Min Typical Max Unit Notes

RIO_TX_CLK_IN frequency fRCLK 125 — — MHz —

RIO_TX_CLK_IN cycle time tRCLK — — 8 ns —

RIO_TX_CLK_IN duty cycle tRCLKH/tRCLK 48 — 52 % 1

Notes:
1. Requires ±100 ppm long term frequency stability. Timing is guaranteed by design and characterization.
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7.2.2.2 MII Receive AC Timing Specifications
Table 24 provides the MII receive AC timing specifications.

 

Figure 11 shows the MII receive AC timing diagram.

Figure 11. MII Receive AC Timing Diagram

Table 24. MII Receive AC Timing Specifications

At recommended operating conditions with LVDD of 3.3 V ± 5%, or LVDD=2.5V ± 5%.

Parameter/Condition Symbol 1 Min Typ Max Unit

RX_CLK clock period 10 Mbps tMRX
 3 — 400 — ns

RX_CLK clock period 100 Mbps tMRX — 40 — ns

RX_CLK duty cycle tMRXH/tMRX 35 — 65 %

RXD[3:0], RX_DV, RX_ER setup time to RX_CLK tMRDVKH 10.0 — — ns

RXD[3:0], RX_DV, RX_ER hold time to RX_CLK tMRDXKH 10.0 — — ns

RX_CLK clock rise and fall time tMRXR, tMRXF 
2,3 1.0 — 4.0 ns

Note:
1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state) 

(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMRDVKH 
symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to 
the tMRX clock reference (K) going to the high (H) state or setup time. Also, tMRDXKL symbolizes MII receive timing 
(GR) with respect to the time data input signals (D) went invalid (X) relative to the tMRX clock reference (K) going to 
the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters 
representing the clock of a particular functional. For example, the subscript of tMRX represents the MII (M) receive 
(RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2.Signal timings are measured at 0.7 V and 1.9 V voltage levels.

3.Guaranteed by design.

RX_CLK

RXD[3:0]

tMRDXKH

tMRX

tMRXH

tMRXR

tMRXF

RX_DV
RX_ER

tMRDVKH

Valid Data
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7.3.2 MII Management AC Electrical Specifications
Table 29 provides the MII management AC timing specifications.

Input high current (OVDD = Max, VIN 1 = 2.1 V) IIH — 40 μA

Input low current (OVDD = Max, VIN = 0.5 V) IIL –600 — μA

Note:
1.Note that the symbol VIN, in this case, represents the OVIN symbol referenced in Table 1 and Table 2.

Table 29. MII Management AC Timing Specifications

At recommended operating conditions with OVDD is 3.3 V ± 5%.

Parameter/Condition Symbol 1 Min Typ Max Unit Notes

MDC frequency fMDC 0.893 — 10.4 MHz 2, 4

MDC period tMDC 96 — 1120 ns

MDC clock pulse width high tMDCH 32 — — ns

MDC to MDIO valid tMDKHDV 2*[1/(fccb_clk/8)] ns 3

MDC to MDIO delay tMDKHDX 10 — 2*[1/(fccb_clk/8)] ns 3

MDIO to MDC setup time tMDDVKH 5 — — ns

MDIO to MDC hold time tMDDXKH 0 — — ns

MDC rise time tMDCR — — 10 ns 4

MDC fall time tMDHF — — 10 ns 4

Notes:
1.The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state) 

(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMDKHDX 
symbolizes management data timing (MD) for the time tMDC from clock reference (K) high (H) until data outputs (D) are 
invalid (X) or data hold time. Also, tMDDVKH symbolizes management data timing (MD) with respect to the time data 
input signals (D) reach the valid state (V) relative to the tMDC clock reference (K) going to the high (H) state or setup 
time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2.This parameter is dependent on the CCB clock speed (that is, for a CCB clock of 267 MHz, the maximum frequency is 
8.3 MHz and the minimum frequency is 1.2 MHz; for a CCB clock of 333 MHz, the maximum frequency is 10.4 MHz 
and the minimum frequency is 1.5 MHz).

3.This parameter is dependent on the CCB clock speed (that is, for a CCB clock of 267 MHz, the delay is 60 ns and for a 
CCB clock of 333 MHz, the delay is 48 ns).

4.Guaranteed by design.

Table 28. MII Management DC Electrical Characteristics (continued)

Parameter Symbol Min Max Unit
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Figure 16 provides the AC test load for the CPM.

Figure 23. CPM AC Test Load

Figure 24 through Figure 29 represent the AC timing from Table 34 and Table 35. Note that although the 
specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when 
the falling edge is the active edge.

COL/CRS width high (FCC) tFCCH 1.5 CLK

Notes:
1.Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of 

Serial Clock. Timings are measured at the pin.

2.The symbols used for timing specifications herein follow the pattern of t(first two letters of functional 

block)(signal)(state) (reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for 
outputs. For example, tFIIVKH symbolizes the FCC inputs internal timing (FI) with respect to the time the 
input signals (I) reaching the valid state (V) relative to the reference clock tFCC (K) going to the high (H) 
state or setup time. And tTDIXKH symbolizes the TDM timing (TD) with respect to the time the input 
signals (I) reach the invalid state (X) relative to the reference clock tFCC (K) going to the high (H) state 
or hold time.

3.PIO and TIMER inputs and outputs are asynchronous to SYSCLK or any other externally visible clock. 
PIO/TIMER inputs are internally synchronized to the CPM internal clock. PIO/TIMER outputs should be 
treated as asynchronous.

Table 35.  CPM Output AC Timing Specifications 1

Characteristic Symbol 2 Min Max Unit

FCC outputs—internal clock (NMSI) delay tFIKHOX 1 5.5 ns

FCC outputs—external clock (NMSI) delay tFEKHOX 2 8 ns

SCC/SPI outputs—internal clock (NMSI) delay tNIKHOX 0.5 10 ns

SCC outputs—external clock (NMSI) delay tNEKHOX 2 8 ns

SPI output—external clock (NMSI) delay tSEKHOX 2 11 ns

TDM outputs/SI delay tTDKHOX 2.5 11 ns

Notes:
1.Output specifications are measured from the 50% level of the rising edge of Serial Clock to the 50% level of the 

signal. Timings are measured at the pin.

2.The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state) 

(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, 
tFIKHOX symbolizes the FCC inputs internal timing (FI) for the time tFCC memory clock reference (K) goes from the 
high state (H) until outputs (O) are invalid (X). 

Table 34. CPM Input AC Timing Specifications 1 (continued)

Characteristic Symbol 2 Min 3 Unit

Output OVDD/2
RL = 50 Ω

Z0 = 50 Ω
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Table 36 shows CPM I2C AC Timing.

Figure 30 is a a diagram of CPM I2C Bus Timing.

Figure 30. CPM I2C Bus Timing Diagram

Table 36. CPM I2C AC Timing

Characteristic Symbol Min Max Unit

SCL clock frequency (slave) fSCL 0 FMAX
1 Hz

SCL clock frequency (master) fSCL BRGCLK/16512 BRGCLK/48 Hz

Bus free time between transmissions tSDHDL 1/(2.2 * fSCL) — s

Low period of SCL tSCLCH 1/(2.2 * fSCL) — s

High period of SCL tSCHCL 1/(2.2 * fSCL) — s

Start condition setup time 2 tSCHDL 2/(divider * fSCL) — s

Start condition hold time 2 tSDLCL 3/(divider * fSCL) — s

Data hold time 2 tSCLDX 2/(divider * fSCL) — s

Data setup time 2 tSDVCH 3/(divider * fSCL) — s

SDA/SCL rise time tSRISE — 1/(10 * fSCL) s

SDA/SCL fall time tSFALL — 1/(33 * fSCL) s

Stop condition setup time tSCHDH 2/(divider * fSCL) — s

Notes:

1.FMAX = BRGCLK/(min_divider*prescaler). Where prescaler=25-I2MODE[PDIV]; and min_divider=12 if digital filter 
disabled and 18 if enabled.

      Example #1: if I2MODE[PDIV]=11 (prescaler=4) and I2MODE[FLT]=0 (digital filter disabled) then 
FMAX=BRGCLK/48

      Example #2: if I2MODE[PDIV]=00 (prescaler=32) and I2MODE[FLT]=1 (digital filter enabled) then 
FMAX=BRGCLK/576

2.divider = fSCL/prescaler. 

      In master mode: divider = BRGCLK/(fSCL*prescaler) = 2*(I2BRG[DIV]+3)

      In slave mode: divider = BRGCLK/(fSCL*prescaler)

SCL

SDA

tSDHDL tSCLCH tSCHCL

tSCHDL

tSDLCL

tSCLDX tSDVCH

tSRISE tSFALL tSCHDH
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Table 37 and Table 38 are examples of I2C AC parameters at I2C clock value of 100 kHz and 400 kHz 
respectively.

Table 37. CPM I2C AC Timing (fSCL = 100 kHz)

Characteristic Symbol Min Max Unit

SCL clock frequency (slave) fSCL — 100 KHz

SCL clock frequency (master) fSCL — 100 KHz

Bus free time between transmissions tSDHDL 4.7 — μs

Low period of SCL tSCLCH 4.7 — μs

High period of SCL tSCHCL 4 — μs

Start condition setup time 2 tSCHDL 2 — μs

Start condition hold time 2 tSDLCL 3 — μs

Data hold time 2 tSCLDX 2 — μs

Data setup time 2 tSDVCH 3 — μs

SDA/SCL rise time tSRISE — 1 μs

SDA/SCL fall time tSFALL — 303 ns

Stop condition setup time tSCHDH 2 — μs

Table 38. CPM I2C AC Timing (fSCL = 400 kHz)

Characteristic Symbol Min Max Unit

SCL clock frequency (slave) fSCL — 400 KHz

SCL clock frequency (master) fSCL — 400 KHz

Bus free time between transmissions tSDHDL 1.2 — μs

Low period of SCL tSCLCH 1.2 — μs

High period of SCL tSCHCL 1 — μs

Start condition setup time 2 tSCHDL 420 — ns

Start condition hold time 2 tSDLCL 630 — ns

Data hold time 2 tSCLDX 420 — ns

Data setup time 2 tSDVCH 630 — ns

SDA/SCL rise time tSRISE — 250 ns

SDA/SCL fall time tSFALL — 75 ns

Stop condition setup time tSCHDH 420 — ns
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Figure 35 provides the test access port timing diagram.

Figure 35. Test Access Port Timing Diagram

11  I2C 
This section describes the DC and AC electrical characteristics for the I2C interface of the MPC8560.

11.1 I2C DC Electrical Characteristics
Table 40 provides the DC electrical characteristics for the I2C interface of the MPC8560.

Table 40. I2C DC Electrical Characteristics

At recommended operating conditions with OVDD of 3.3 V ± 5%.

Parameter Symbol Min Max Unit Notes

Input high voltage level VIH 0.7 × OVDD OVDD+ 0.3 V —

Input low voltage level VIL –0.3 0.3 × OVDD V —

Low level output voltage VOL 0 0.2 × OVDD V 1

Pulse width of spikes which must be suppressed 
by the input filter

tI2KHKL 0 50 ns 2

Input current each I/O pin (input voltage is 
between 0.1 × OVDD and 0.9 × OVDD(max)

II –10 10 μA 3

Capacitance for each I/O pin CI — 10 pF —

Notes:
1.Output voltage (open drain or open collector) condition = 3 mA sink current.

2.Refer to the MPC8560 PowerQUICC III Integrated Communications Processor Preliminary Reference Manual for 
information on the digital filter used.

3.I/O pins will obstruct the SDA and SCL lines if OVDD is switched off.

VM = Midpoint Voltage (OVDD/2)

VM VM

tJTIVKH
tJTIXKH

JTAG
External Clock

Output Data Valid

tJTKLOX

tJTKLOZ

tJTKLOV

Input
Data Valid

Output Data Valid

TDI, TMS

TDO

TDO
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Figure 37 shows the AC timing diagram for the I2C bus.

Figure 37. I2C Bus AC Timing Diagram

12  PCI/PCI-X
This section describes the DC and AC electrical specifications for the PCI/PCI-X bus of the MPC8560. 

12.1 PCI/PCI-X DC Electrical Characteristics
Table 42 provides the DC electrical characteristics for the PCI/PCI-X interface of the MPC8560.

Table 42. PCI/PCI-X DC Electrical Characteristics 1

Parameter Symbol Min Max Unit

High-level input voltage VIH 2 OVDD + 0.3 V

Low-level input voltage VIL –0.3 0.8 V

Input current

(VIN 2 = 0 V or VIN = VDD)

IIN — ±5 μA

High-level output voltage

(OVDD = min, IOH = –100 μA)

VOH OVDD – 0.2 — V

Low-level output voltage

(OVDD = min, IOL = 100 μA)

VOL — 0.2 V

Notes:
1.Ranges listed do not meet the full range of the DC specifications of the PCI 2.2 Local Bus Specifications.

2.Note that the symbol VIN, in this case, represents the OVIN symbol referenced in Table 1 and Table 2.

SrS

SDA

SCL

tI2CF

tI2SXKL

tI2CL

tI2CH
tI2DXKL

tI2DVKH

tI2SXKL

tI2SVKH

tI2KHKL

tI2PVKH

tI2CR

tI2CF

P S
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Figure 48 shows the definitions of the data to clock static skew parameter tSKEW,PAIR and the data valid 
window parameter DV. The data and frame bits are those that are associated with the clock. The figure 
applies for all zero-crossings of the clock. All of the signals are differential signals. VD represents VOD for 
the transmitter and VID for the receiver. The center of the eye is defined as the midpoint of the region in 
which the magnitude of the signal voltage is greater than or equal to the minimum DV voltage.

Figure 48. Data to Clock Skew

Figure 49 shows the definition of the data to data static skew parameter tDPAIR and how the skew 
parameters are applied.

Figure 49. Static Skew Diagram

VD Clock x

tSKEW,PAIR

1.0 UI Nominal

0.5 UI

0.5 DV 0.5 DV

Eye Opening

DV

VHDmim

VHDmim

VD = 0 V

VD = 0 V

VD Clock x

D[0:7]/D[8:15], FRAME

CLK0 (CLK1)

1.0 UI Nominal
0.5 UI

tDPAIR
tSKEW,PAIR

Center Point for Clock

D[0:7]/D[8:15], FRAME

Center point of the
data valid window of
the latest allowed data
bit for data grouped
late with respect
to clock

Center point of the
data valid window of
the earliest allowed data
bit for data grouped
late with respect
to clock
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14  Package and Pin Listings
This section details package parameters, pin assignments, and dimensions.

14.1 Package Parameters for the MPC8560 FC-PBGA
The package parameters are as provided in the following list. The package type is 29 mm × 29 mm, 783 
flip chip plastic ball grid array (FC-PBGA).

Die size 12.2 mm × 9.5 mm 

Package outline 29 mm × 29 mm

Interconnects 783 

Pitch 1 mm

Minimum module height 3.07 mm

Maximum module height 3.75 mm

Solder Balls 62 Sn/36 Pb/2 Ag 

Ball diameter (typical) 0.5 mm
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16.2 Thermal Management Information
This section provides thermal management information for the flip chip plastic ball grid array (FC-PBGA) 
package for air-cooled applications. Proper thermal control design is primarily dependent on the 
system-level design—the heat sink, airflow, and thermal interface material. The recommended attachment 
method to the heat sink is illustrated in Figure 51. The heat sink should be attached to the printed-circuit 
board with the spring force centered over the die. This spring force should not exceed 10 pounds force. 

Figure 51. Package Exploded Cross-Sectional View with Several Heat Sink Options

The system board designer can choose between several types of heat sinks to place on the MPC8560. There 
are several commercially-available heat sinks from the following vendors:

Aavid Thermalloy 603-224-9988
80 Commercial St.
Concord, NH 03301
Internet: www.aavidthermalloy.com

Junction-to-case thermal RθJC 0.8 °C/W 4

Notes
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site 

(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and 
board thermal resistance

2. Per JEDEC JESD51-6 with the board horizontal.

3. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is 
measured on the top surface of the board near the package.

4. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 
Method 1012.1). Cold plate temperature is used for case temperature; measured value includes the thermal 
resistance of the interface layer.

Table 60. Package Thermal Characteristics (continued)

Characteristic Symbol Value Unit Notes

Thermal Interface Material

Heat Sink
FC-PBGA Package

Heat Sink
Clip

Printed-Circuit Board

Die

Lid

Adhesive or
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Figure 52. MPC8560 Thermal Model

16.2.2 Internal Package Conduction Resistance
For the packaging technology, shown in Table 60, the intrinsic internal conduction thermal resistance paths 
are as follows:

• The die junction-to-case thermal resistance

• The die junction-to-board thermal resistance

Die

Lid

Substrate and solder balls

Heat Source

Substrate

Side View of Model (Not to Scale)

Top View of Model (Not to Scale)

x

y

z

Conductivity Value Unit

Lid
(12 × 14 × 1 mm)

kx 360 W/(m × K)

ky 360

kz 360

Lid Adhesive—Collapsed resistance
(10 × 12 × 0.050 mm)

kx 1

ky 1

kz 1

Die
(10 × 12 × 0.76 mm)

Bump/Underfill—Collapsed resistance
(10 × 12 × 0.070 mm)

kx 0.6

ky 0.6

kz 1.9

Substrate and Solder Balls
(29 × 29 × 1.47 mm)

kx 10.2

ky 10.2

kz 1.6

Adhesive

Bump/underfill
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Figure 55. Thermalloy #2328B Heat Sink-to-Ambient Thermal Resistance Versus Airflow Velocity

16.2.4.2 Case 2
Every system application has different conditions that the thermal management solution must solve. As an 
alternate example, assume that the air reaching the component is 85 °C with an approach velocity of 1 
m/sec. For a maximum junction temperature of 105 °C at 7 W, the total thermal resistance of junction to 
case thermal resistance plus thermal interface material plus heat sink thermal resistance must be less than 
2.8 °C/W. The value of the junction to case thermal resistance in Table 60 includes the thermal interface 
resistance of a thin layer of thermal grease as documented in footnote 4 of the table. Assuming that the 
heat sink is flat enough to allow a thin layer of grease or phase change material, then the heat sink must be 
less than 2 °C/W. 

Millennium Electronics (MEI) has tooled a heat sink MTHERM-1051 for this requirement assuming a 
compactPCI environment at 1 m/sec and a heat sink height of 12 mm. The MEI solution is illustrated in 
Figure 56 and Figure 57. This design has several significant advantages: 

• The heat sink is clipped to a plastic frame attached to the application board with screws or plastic 
inserts at the corners away from the primary signal routing areas. 

• The heat sink clip is designed to apply the force holding the heat sink in place directly above the 
die at a maximum force of less than 10 lbs. 

• For applications with significant vibration requirements, silicone damping material can be applied 
between the heat sink and plastic frame. 
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Figure 57. Exploded Views (2) of a Heat Sink Attachment using a Plastic Fence

The die junction-to-ambient and the heat sink-to-ambient thermal resistances are common figure-of-merits 
used for comparing the thermal performance of various microelectronic packaging technologies, one 
should exercise caution when only using this metric in determining thermal management because no single 
parameter can adequately describe three-dimensional heat flow. The final die-junction operating 
temperature is not only a function of the component-level thermal resistance, but the system level design 
and its operating conditions. In addition to the component’s power consumption, a number of factors affect 
the final operating die-junction temperature: airflow, board population (local heat flux of adjacent 
components), system air temperature rise, altitude, etc.

Due to the complexity and the many variations of system-level boundary conditions for today’s 
microelectronic equipment, the combined effects of the heat transfer mechanisms (radiation convection 
and conduction) may vary widely. For these reasons, we recommend using conjugate heat transfer models 
for the boards, as well as, system-level designs.
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17  System Design Information
This section provides electrical and thermal design recommendations for successful application of the 
MPC8560.

17.1 System Clocking
The MPC8560 includes three PLLs.

1. The platform PLL generates the platform clock from the externally supplied SYSCLK input. The 
frequency ratio between the platform and SYSCLK is selected using the platform PLL ratio 
configuration bits as described in Section 15.2, “Platform/System PLL Ratio.”

2. The e500 Core PLL generates the core clock as a slave to the platform clock. The frequency ratio 
between the e500 core clock and the platform clock is selected using the e500 PLL ratio 
configuration bits as described in Section 15.3, “e500 Core PLL Ratio.”

3. The CPM PLL is slaved to the platform clock and is used to generate clocks used internally by the 
CPM block. The ratio between the CPM PLL and the platform clock is fixed and not under user 
control.

17.2 PLL Power Supply Filtering
Each of the PLLs listed above is provided with power through independent power supply pins (AVDD1, 
AVDD2, and AVDD3, respectively). The AVDD level should always be equivalent to VDD, and preferably 
these voltages will be derived directly from VDD through a low frequency filter scheme such as the 
following.

There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to 
provide three independent filter circuits as illustrated in Figure 58, one to each of the three AVDD pins. By 
providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the 
other is reduced.

This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz 
range. It should be built with surface mount capacitors with minimum Effective Series Inductance (ESL). 
Consistent with the recommendations of Dr. Howard Johnson in High Speed Digital Design: A Handbook 
of Black Magic (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a 
single large value capacitor.

Each circuit should be placed as close as possible to the specific AVDD pin being supplied to minimize 
noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AVDD 
pin, which is on the periphery of the 783 FC-PBGA footprint, without the inductance of vias.
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When data is held high, SW1 is closed (SW2 is open) and RP is trimmed until the voltage at the pad equals 
OVDD/2. RP then becomes the resistance of the pull-up devices. RP and RN are designed to be close to each 
other in value. Then, Z0 = (RP + RN)/2.

Figure 59. Driver Impedance Measurement

The output impedance of the RapidIO port drivers targets 200-Ω differential resistance. The value of this 
resistance and the strength of the driver’s current source can be found by making two measurements. First, 
the output voltage is measured while driving logic 1 without an external differential termination resistor. 
The measured voltage is V1 = Rsource × Isource. Second, the output voltage is measured while driving logic 
1 with an external precision differential termination resistor of value Rterm. The measured voltage is 
V2 = 1/(1/R1 + 1/R2)) × Isource. Solving for the output impedance gives Rsource = Rterm × (V1/V2 – 1). The 
drive current is then Isource = V1/Rsource.

Table 61 summarizes the signal impedance targets. The driver impedance are targeted at minimum VDD, 
nominal OVDD, 105°C.

Table 61. Impedance Characteristics

Impedance
Local Bus, Ethernet, DUART, Control, 

Configuration, Power Management
PCI/PCI-X DDR DRAM RapidIO Symbol Unit

RN 43 Target 25 Target 20 Target NA Z0 W

RP 43 Target 25 Target 20 Target NA Z0 W

Differential NA NA NA 200 Target ZDIFF W

Note: Nominal supply voltages. See Table 1, Tj = 105°C.

OVDD

OGND

RP

RN

Pad
Data

SW1

SW2
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18  Document Revision History
Table 62 provides a revision history for this hardware specification.

Table 62. Document Revision History

Rev. No. Substantive Change(s)

4.2 Added “Note: Rise/Fall Time on CPM Input Pins” and following note text to Section 9.2, “CPM AC Timing 
Specifications.”

4.1 Inserted Figure 3 and paragraph above it.

Added PCI/PCI-X row to Input Voltage characteristic and added footnote 6 to Table 1.

4 Updated Section 2.1.2, “Power Sequencing.”

Updated back page information.

3.5 Updated Section 2.1.2, “Power Sequencing.”

3.4 Updated MVREF Max Value in Table 1.

Updated MVREF Max Value in Table 2.

Added new revision level information to Table 63

3.3 Updated MVREF Max Value in Table 1.

Removed Figure 3.

In Table 4, replaced TBD with power numbers and added footnote.

Updated specs and footnotes in Table 8.

Corrected max number for MVREF in Table 13.

Changed parameter “Clock cycle duration” to “Clock period” in Table 27.

Added note 4 to tLBKHOV1 and removed LALE reference from tLBKHOV3 in Table 31 and Table 32.

Updated LALE signal in Figure 17 and Figure 18.

Modified Figure 21.

Modified Figure 61.
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3.2 Updated Table 1 and Table 2 with 1.0 GHz device parameter requirements.

Added Section 2.1.2, “Power Sequencing”.

Added CPM port signal drive strength to Table 3.

Updated Table 4 with Maximum power data.

Updated Table 4 and Table 5 with 1 GHz speed grade information.

Updated Table 6 with corrected typical I/O power numbers.

Updated Table 7 Note 2 lower voltage measurement point.

Replaced Table 7 Note 5 with spread spectrum clocking guidelines.

Added to Table 8 rise and fall time information.

Added Section 4.4, “Real Time Clock Timing”.

Added precharge information to Section 6.2.2, “DDR SDRAM Output AC Timing Specifications”.

Removed VIL and VIH references from Table 21, Table 22, Table 23, and Table 24.

Added reference level note to Table 21, Table 22, Table 23, Table 24, Table 25, Table 26, and Table 27.

Updated TXD references to TCG in Section 7.2.3.1, “TBI Transmit AC Timing Specifications”.

Updated tTTKHDX value in Table 25.

Updated PMA_RX_CLK references to RX_CLK in Section 7.2.3.2, “TBI Receive AC Timing 
Specifications”.

Updated RXD references to RCG in Section 7.2.3.2, “TBI Receive AC Timing Specifications”.

Updated Table 27 Note 2.

Corrected Table 29 fMDC and tMDC to reflect the correct minimum operating frequency.

Updated Table 29 tMDKHDV and tMDKHDX values for clarification.

Added tLBKHKT and updated Note 2 in Table 32.

Corrected LGTA timing references in Figure 17.

Updated Figure 18, Figure 20, and Figure 22.

Corrected FCC output timing reference labels in Figure 24 and Figure 25.

Updated Figure 50.

Clarified Table 54 Note 5.

Updated Table 55 and Table 56 with 1 GHz information.

Added heat sink removal discussion to Section 16.2.3, “Thermal Interface Materials”.

Corrected and added 1 GHz part number to Table 63.

3.1 Updated Table 4 and Table 5.

Added Table 6.

Added MCK duty cycle to Table 16.

Updated fMDC, tMDC, tMDKHDV, and tMDKHDX parameters in Table 29.

Added LALE to tLBKHOV3 parameter in Table 31 and Table 32, and updated Figure 17.

Corrected active level designations of some of the pins in Table 54.

Updated Table 63.

Table 62. Document Revision History (continued)

Rev. No. Substantive Change(s)
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19.2 Part Marking
Parts are marked as the example shown in Figure 62.

Figure 62. Part Marking for FC-PBGA Device

Notes:

CCCCC is the country of assembly. This space is left blank if parts are assembled in the United States.

MMMMM is the 5-digit mask number.
ATWLYYWWA is the traceability code.

FC-PBGANotes:

CCCCC is the country of assembly. This space is left blank if parts are assembled in the United States.

MMMMM is the 5-digit mask number.
ATWLYYWWA is the traceability code.

MPC85nn
xPXxxxn

MMMMM
ATWLYYWWA
CCCCC

MPCnnnntppfffcr

MMMMM CCCCC
YWWLAZ

ATWLYYWWA

YWWLAZ is the assembly traceability code.


