E·XFL

NXP USA Inc. - MPC8560PXAQFB Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	1.0GHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DDR, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	-
Voltage - I/O	2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	783-BFBGA, FCBGA
Supplier Device Package	783-FCPBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8560pxaqfb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Electrical Characteristics

- System performance monitor
 - Supports eight 32-bit counters that count the occurrence of selected events
 - Ability to count up to 512 counter-specific events
 - Supports 64 reference events that can be counted on any of the 8 counters
 - Supports duration and quantity threshold counting
 - Burstiness feature that permits counting of burst events with a programmable time between bursts
 - Triggering and chaining capability
 - Ability to generate an interrupt on overflow
- System access port
 - Uses JTAG interface and a TAP controller to access entire system memory map
 - Supports 32-bit accesses to configuration registers
 - Supports cache-line burst accesses to main memory
 - Supports large block (4-Kbyte) uploads and downloads
 - Supports continuous bit streaming of entire block for fast upload and download
- IEEE Std 1149.1TM-compliant, JTAG boundary scan
- 783 FC-PBGA package

2 Electrical Characteristics

This section provides the electrical specifications and thermal characteristics for the MPC8560. The MPC8560 is currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer design specifications.

2.1 Overall DC Electrical Characteristics

This section covers the ratings, conditions, and other characteristics.

2.1.1 Absolute Maximum Ratings

Table 1 provides the absolute maximum ratings.

	Characteristic	Symbol	Max Value	Unit	Notes
Core supply voltage	For devices rated at 667 and 833 MHz For devices rated at 1 GHz	V _{DD}	–0.3 to 1.32 –0.3 to 1.43	V	_
PLL supply voltage	For devices rated at 667 and 833 MHz For devices rated at 1 GHz	AV _{DD}	-0.3 to 1.32 -0.3 to 1.43	V	_

Table 1. Absolute Maximum Ratings ¹

MPC8560 Integrated Processor Hardware Specifications, Rev. 4.2

4.2 TSEC Gigabit Reference Clock Timing

Table 7 provides the TSEC gigabit reference clock (EC_GTX_CLK125) AC timing specifications for the MPC8560.

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Notes
EC_GTX_CLK125 frequency	f _{G125}	_	125		MHz	
EC_GTX_CLK125 cycle time	t _{G125}	—	8		ns	
EC_GTX_CLK125 rise and fall time LV _{DD} =2.5 LV _{DD} =3.3	t _{G125R} , t _{G125F}	_	_	0.75 1	ns	2
EC_GTX_CLK125 duty cycle GMII, TBI RGMII, RTBI	t _{G125H} /t _{G125}	45 47	_	55 53	%	1, 3

Table 8. EC_GTX_	CLK125 AC Timing	Specifications
------------------	------------------	----------------

Notes:

1. Timing is guaranteed by design and characterization.

2. Rise and fall times for EC_GTX_CLK125 are measured from 0.5V and 2.0V for LV_{DD}=2.5V, and from 0.6 and 2.7V for LV_{DD}=3.3V.

3. EC_GTX_CLK125 is used to generate GTX clock for TSEC transmitter with 2% degradation EC_GTX_CLK125 duty cycle can be loosened from 47/53% as long as PHY device can tolerate the duty cycle generated by GTX_CLK of TSEC.

4.3 RapidIO Transmit Clock Input Timing

Table 9 provides the RapidIO transmit clock input (RIO_TX_CLK_IN) AC timing specifications for the MPC8560.

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Notes
RIO_TX_CLK_IN frequency	f _{RCLK}	125	_	_	MHz	—
RIO_TX_CLK_IN cycle time	t _{RCLK}	_	_	8	ns	—
RIO_TX_CLK_IN duty cycle	t _{RCLKH} /t _{RCLK}	48	—	52	%	1

Table 9. RIO_TX_CLK_IN AC Timing Specifications

Notes:

1. Requires ±100 ppm long term frequency stability. Timing is guaranteed by design and characterization.

7.2.2.2 MII Receive AC Timing Specifications

Table 24 provides the MII receive AC timing specifications.

Table 24. MII Receive AC Timing Specifications

At recommended operating conditions with LV_{DD} of 3.3 V \pm 5%, or LV_{DD}=2.5V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
RX_CLK clock period 10 Mbps	t _{MRX} ³	_	400	_	ns
RX_CLK clock period 100 Mbps	t _{MRX}		40		ns
RX_CLK duty cycle	t _{MRXH} /t _{MRX}	35	_	65	%
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK	t _{MRDVKH}	10.0	_	_	ns
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK	t _{MRDXKH}	10.0	_	_	ns
RX_CLK clock rise and fall time	t_{MRXR} , t_{MRXF} ^{2,3}	1.0		4.0	ns

Note:

1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MRDVKH} symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKL} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKL} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{MRX} represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2.Signal timings are measured at 0.7 V and 1.9 V voltage levels.

3.Guaranteed by design.

Figure 11 shows the MII receive AC timing diagram.

Figure 11. MII Receive AC Timing Diagram

Parameter	Symbol	Min	Мах	Unit
Input high current ($OV_{DD} = Max, V_{IN}^{1} = 2.1 V$)	Ι _Η	—	40	μΑ
Input low current ($OV_{DD} = Max, V_{IN} = 0.5 V$)	۱ _{۱L}	-600		μA

Table 28. MII Management DC Electrical Characteristics (continued)

Note:

1.Note that the symbol V_{IN}, in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

7.3.2 MII Management AC Electrical Specifications

Table 29 provides the MII management AC timing specifications.

Table 29. MII Management AC Timing Specifications

At recommended operating conditions with OV_{DD} is 3.3 V ± 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit	Notes
MDC frequency	f _{MDC}	0.893	—	10.4	MHz	2, 4
MDC period	t _{MDC}	96	—	1120	ns	
MDC clock pulse width high	t _{MDCH}	32	—	—	ns	
MDC to MDIO valid	t _{MDKHDV}			2*[1/(f _{ccb_clk} /8)]	ns	3
MDC to MDIO delay	t _{MDKHDX}	10	—	2*[1/(f _{ccb_clk} /8)]	ns	3
MDIO to MDC setup time	t _{MDDVKH}	5	—	—	ns	
MDIO to MDC hold time	t _{MDDXKH}	0	—	—	ns	
MDC rise time	t _{MDCR}	-	—	10	ns	4
MDC fall time	t _{MDHF}	_	—	10	ns	4

Notes:

1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state)

(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MDKHDX} symbolizes management data timing (MD) for the time t_{MDC} from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time. Also, t_{MDDVKH} symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MDC} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. This parameter is dependent on the CCB clock speed (that is, for a CCB clock of 267 MHz, the maximum frequency is 8.3 MHz and the minimum frequency is 1.2 MHz; for a CCB clock of 333 MHz, the maximum frequency is 10.4 MHz and the minimum frequency is 1.5 MHz).

3. This parameter is dependent on the CCB clock speed (that is, for a CCB clock of 267 MHz, the delay is 60 ns and for a CCB clock of 333 MHz, the delay is 48 ns).

4. Guaranteed by design.

Table 34. CPM Input AC Timing Specifications ¹ (continued)

Characteristic	Symbol ²	Min ³	Unit
COL/CRS width high (FCC)	t _{FCCH}	1.5	CLK

Notes:

- 1.Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of Serial Clock. Timings are measured at the pin.
- 2. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional}

block)(signal)(state) (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{FIIVKH} symbolizes the FCC inputs internal timing (FI) with respect to the time the input signals (I) reaching the valid state (V) relative to the reference clock t_{FCC} (K) going to the high (H) state or setup time. And t_{TDIXKH} symbolizes the TDM timing (TD) with respect to the time the input signals (I) reach the invalid state (X) relative to the reference clock t_{FCC} (K) going to the high (H) state or hold time.

3.PIO and TIMER inputs and outputs are asynchronous to SYSCLK or any other externally visible clock. PIO/TIMER inputs are internally synchronized to the CPM internal clock. PIO/TIMER outputs should be treated as asynchronous.

Characteristic	Symbol ²	Min	Мах	Unit
FCC outputs—internal clock (NMSI) delay	t _{FIKHOX}	1	5.5	ns
FCC outputs—external clock (NMSI) delay	t _{FEKHOX}	2	8	ns
SCC/SPI outputs-internal clock (NMSI) delay	t _{NIKHOX}	0.5	10	ns
SCC outputs—external clock (NMSI) delay	t _{NEKHOX}	2	8	ns
SPI output—external clock (NMSI) delay	t _{SEKHOX}	2	11	ns
TDM outputs/SI delay	t _{TDKHOX}	2.5	11	ns

Table 35. CPM Output AC Timing Specifications ¹

Notes:

1.Output specifications are measured from the 50% level of the rising edge of Serial Clock to the 50% level of the signal. Timings are measured at the pin.

2. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)}

(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{FIKHOX} symbolizes the FCC inputs internal timing (FI) for the time t_{FCC} memory clock reference (K) goes from the high state (H) until outputs (O) are invalid (X).

Figure 16 provides the AC test load for the CPM.

Figure 23. CPM AC Test Load

Figure 24 through Figure 29 represent the AC timing from Table 34 and Table 35. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

MPC8560 Integrated Processor Hardware Specifications, Rev. 4.2

Table 36 shows CPM I²C AC Timing.

Table	36.	СРМ	I ² C	AC	Timina
Iabio		v			g

Characteristic	Symbol	Min	Мах	Unit
SCL clock frequency (slave)	f _{SCL}	0	F _{MAX} ¹	Hz
SCL clock frequency (master)	f _{SCL}	BRGCLK/16512	BRGCLK/48	Hz
Bus free time between transmissions	t _{SDHDL}	1/(2.2 * f _{SCL})	—	S
Low period of SCL	t _{SCLCH}	1/(2.2 * f _{SCL})	—	S
High period of SCL	t _{SCHCL}	1/(2.2 * f _{SCL})	_	S
Start condition setup time ²	t _{SCHDL}	2/(divider * f _{SCL})	_	S
Start condition hold time ²	t _{SDLCL}	3/(divider * f _{SCL})	_	S
Data hold time ²	t _{SCLDX}	2/(divider * f _{SCL})	_	S
Data setup time ²	t _{SDVCH}	3/(divider * f _{SCL})	—	S
SDA/SCL rise time	t _{SRISE}	—	1/(10 * f _{SCL})	S
SDA/SCL fall time	t _{SFALL}	_	1/(33 * f _{SCL})	S
Stop condition setup time	t _{SCHDH}	2/(divider * f _{SCL})	—	S

Notes:

1.F_{MAX} = BRGCLK/(min_divider*prescaler). Where prescaler=25-I2MODE[PDIV]; and min_divider=12 if digital filter disabled and 18 if enabled.

Example #1: if I2MODE[PDIV]=11 (prescaler=4) and I2MODE[FLT]=0 (digital filter disabled) then FMAX=BRGCLK/48

Example #2: if I2MODE[PDIV]=00 (prescaler=32) and I2MODE[FLT]=1 (digital filter enabled) then FMAX=BRGCLK/576

2.divider = f_{SCL} /prescaler.

In master mode: divider = BRGCLK/(f_{SCL}*prescaler) = 2*(I2BRG[DIV]+3) In slave mode: divider = BRGCLK/(f_{SCL}*prescaler)

Figure 30 is a a diagram of CPM I²C Bus Timing.

Figure 30. CPM I²C Bus Timing Diagram

MPC8560 Integrated Processor Hardware Specifications, Rev. 4.2

Table 37 and Table 38 are examples of I^2C AC parameters at I^2C clock value of 100 kHz and 400 kHz respectively.

Characteristic	Symbol	Min	Max	Unit
SCL clock frequency (slave)	f _{SCL}	—	100	KHz
SCL clock frequency (master)	f _{SCL}	_	100	KHz
Bus free time between transmissions	t _{SDHDL}	4.7	—	μs
Low period of SCL	t _{SCLCH}	4.7	—	μs
High period of SCL	t _{SCHCL}	4	—	μs
Start condition setup time ²	t _{SCHDL}	2	—	μs
Start condition hold time ²	t _{SDLCL}	3	_	μs
Data hold time ²	t _{SCLDX}	2	—	μs
Data setup time ²	t _{SDVCH}	3	—	μs
SDA/SCL rise time	t _{SRISE}	—	1	μs
SDA/SCL fall time	t _{SFALL}	_	303	ns
Stop condition setup time	t _{SCHDH}	2	_	μs

Table 37. CPM	I ² C AC Timing	(f _{SCL} = 100 kHz)
---------------	----------------------------	------------------------------

Table 38. CPM I^2 C AC Timing (f_{SCL} = 400 kHz)

Characteristic	Symbol	Min	Мах	Unit
SCL clock frequency (slave)	f _{SCL}	_	400	KHz
SCL clock frequency (master)	f _{SCL}	—	400	KHz
Bus free time between transmissions	t _{SDHDL}	1.2	—	μs
Low period of SCL	t _{SCLCH}	1.2	—	μs
High period of SCL	t _{SCHCL}	1	—	μs
Start condition setup time ²	t _{SCHDL}	420	—	ns
Start condition hold time ²	t _{SDLCL}	630	—	ns
Data hold time ²	t _{SCLDX}	420	—	ns
Data setup time ²	t _{SDVCH}	630	—	ns
SDA/SCL rise time	t _{SRISE}	—	250	ns
SDA/SCL fall time	t _{SFALL}	—	75	ns
Stop condition setup time	t _{SCHDH}	420	_	ns

Figure 35 provides the test access port timing diagram.

Figure 35. Test Access Port Timing Diagram

11 I²C

I2C

This section describes the DC and AC electrical characteristics for the I²C interface of the MPC8560.

11.1 I²C DC Electrical Characteristics

Table 40 provides the DC electrical characteristics for the I²C interface of the MPC8560.

Table 40. I²C DC Electrical Characteristics

At recommended operating conditions with OV_{DD} of 3.3 V \pm 5%.

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage level	V _{IH}	$0.7\times \text{OV}_{\text{DD}}$	OV _{DD} + 0.3	V	_
Input low voltage level	V _{IL}	-0.3	$0.3\times\text{OV}_{\text{DD}}$	V	_
Low level output voltage	V _{OL}	0	$0.2\times\text{OV}_{\text{DD}}$	V	1
Pulse width of spikes which must be suppressed by the input filter	t _{i2KHKL}	0	50	ns	2
Input current each I/O pin (input voltage is between $0.1 \times OV_{DD}$ and $0.9 \times OV_{DD}$ (max)	lj	-10	10	μA	3
Capacitance for each I/O pin	CI	—	10	pF	_

Notes:

1.Output voltage (open drain or open collector) condition = 3 mA sink current.

2.Refer to the *MPC8560 PowerQUICC III Integrated Communications Processor Preliminary Reference Manual* for information on the digital filter used.

3.I/O pins will obstruct the SDA and SCL lines if OV_{DD} is switched off.

MPC8560 Integrated Processor Hardware Specifications, Rev. 4.2

52

PCI/PCI-X

Figure 37 shows the AC timing diagram for the I^2C bus.

Figure 37. I²C Bus AC Timing Diagram

12 PCI/PCI-X

This section describes the DC and AC electrical specifications for the PCI/PCI-X bus of the MPC8560.

12.1 PCI/PCI-X DC Electrical Characteristics

Table 42 provides the DC electrical characteristics for the PCI/PCI-X interface of the MPC8560.

Parameter	Symbol	Min	Мах	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
Input current $(V_{IN}^2 = 0 V \text{ or } V_{IN} = V_{DD})$	I _{IN}	—	±5	μA
High-level output voltage (OV _{DD} = min, I _{OH} = -100 μA)	V _{OH}	OV _{DD} - 0.2	—	V
Low-level output voltage (OV _{DD} = min, I _{OL} = 100 μA)	V _{OL}	—	0.2	V

Table 42. PCI/PCI-X DC Electrical Characteristics ¹

Notes:

1.Ranges listed do not meet the full range of the DC specifications of the *PCI 2.2 Local Bus Specifications*. 2.Note that the symbol V_{IN} , in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2. Figure 48 shows the definitions of the data to clock static skew parameter $t_{SKEW,PAIR}$ and the data valid window parameter DV. The data and frame bits are those that are associated with the clock. The figure applies for all zero-crossings of the clock. All of the signals are differential signals. V_D represents V_{OD} for the transmitter and V_{ID} for the receiver. The center of the eye is defined as the midpoint of the region in which the magnitude of the signal voltage is greater than or equal to the minimum DV voltage.

Figure 48. Data to Clock Skew

Figure 49 shows the definition of the data to data static skew parameter t_{DPAIR} and how the skew parameters are applied.

Figure 49. Static Skew Diagram

Package and Pin Listings

14 Package and Pin Listings

This section details package parameters, pin assignments, and dimensions.

14.1 Package Parameters for the MPC8560 FC-PBGA

The package parameters are as provided in the following list. The package type is $29 \text{ mm} \times 29 \text{ mm}$, 783 flip chip plastic ball grid array (FC-PBGA).

Die size	$12.2 \text{ mm} \times 9.5 \text{ mm}$
Package outline	$29 \text{ mm} \times 29 \text{ mm}$
Interconnects	783
Pitch	1 mm
Minimum module height	3.07 mm
Maximum module height	3.75 mm
Solder Balls	62 Sn/36 Pb/2 Ag
Ball diameter (typical)	0.5 mm

Characteristic	Symbol	Value	Unit	Notes
Junction-to-case thermal	$R_{ extsf{ heta}JC}$	0.8	°C/W	4

Table 60. Package Thermal Characteristics (continued)

Notes

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance
- 2. Per JEDEC JESD51-6 with the board horizontal.
- 3. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 4. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1). Cold plate temperature is used for case temperature; measured value includes the thermal resistance of the interface layer.

16.2 Thermal Management Information

This section provides thermal management information for the flip chip plastic ball grid array (FC-PBGA) package for air-cooled applications. Proper thermal control design is primarily dependent on the system-level design—the heat sink, airflow, and thermal interface material. The recommended attachment method to the heat sink is illustrated in Figure 51. The heat sink should be attached to the printed-circuit board with the spring force centered over the die. This spring force should not exceed 10 pounds force.

Figure 51. Package Exploded Cross-Sectional View with Several Heat Sink Options

The system board designer can choose between several types of heat sinks to place on the MPC8560. There are several commercially-available heat sinks from the following vendors:

Aavid Thermalloy 80 Commercial St. Concord, NH 03301 Internet: www.aavidthermalloy.com 603-224-9988

Figure 52. MPC8560 Thermal Model

16.2.2 Internal Package Conduction Resistance

For the packaging technology, shown in Table 60, the intrinsic internal conduction thermal resistance paths are as follows:

- The die junction-to-case thermal resistance
- The die junction-to-board thermal resistance

Figure 55. Thermalloy #2328B Heat Sink-to-Ambient Thermal Resistance Versus Airflow Velocity

16.2.4.2 Case 2

Every system application has different conditions that the thermal management solution must solve. As an alternate example, assume that the air reaching the component is 85 °C with an approach velocity of 1 m/sec. For a maximum junction temperature of 105 °C at 7 W, the total thermal resistance of junction to case thermal resistance plus thermal interface material plus heat sink thermal resistance must be less than 2.8 °C/W. The value of the junction to case thermal resistance in Table 60 includes the thermal interface resistance of a thin layer of thermal grease as documented in footnote 4 of the table. Assuming that the heat sink is flat enough to allow a thin layer of grease or phase change material, then the heat sink must be less than 2 °C/W.

Millennium Electronics (MEI) has tooled a heat sink MTHERM-1051 for this requirement assuming a compactPCI environment at 1 m/sec and a heat sink height of 12 mm. The MEI solution is illustrated in Figure 56 and Figure 57. This design has several significant advantages:

- The heat sink is clipped to a plastic frame attached to the application board with screws or plastic inserts at the corners away from the primary signal routing areas.
- The heat sink clip is designed to apply the force holding the heat sink in place directly above the die at a maximum force of less than 10 lbs.
- For applications with significant vibration requirements, silicone damping material can be applied between the heat sink and plastic frame.

Thermal

ltem No	QTY	MEI PN	Description
1	1	MFRAME-2000	HEATSINK FRAME
2	1	MSNK-1120	EXTRUDED HEATSINK
3	1	MCLIP-1013	CLIP
4	4	MPPINS-1000	FRAME ATTACHMENT PINS

Illustrative source provided by Millennium Electronics (MEI)

Figure 57. Exploded Views (2) of a Heat Sink Attachment using a Plastic Fence

The die junction-to-ambient and the heat sink-to-ambient thermal resistances are common figure-of-merits used for comparing the thermal performance of various microelectronic packaging technologies, one should exercise caution when only using this metric in determining thermal management because no single parameter can adequately describe three-dimensional heat flow. The final die-junction operating temperature is not only a function of the component-level thermal resistance, but the system level design and its operating conditions. In addition to the component's power consumption, a number of factors affect the final operating die-junction temperature: airflow, board population (local heat flux of adjacent components), system air temperature rise, altitude, etc.

Due to the complexity and the many variations of system-level boundary conditions for today's microelectronic equipment, the combined effects of the heat transfer mechanisms (radiation convection and conduction) may vary widely. For these reasons, we recommend using conjugate heat transfer models for the boards, as well as, system-level designs.

17 System Design Information

This section provides electrical and thermal design recommendations for successful application of the MPC8560.

17.1 System Clocking

The MPC8560 includes three PLLs.

- 1. The platform PLL generates the platform clock from the externally supplied SYSCLK input. The frequency ratio between the platform and SYSCLK is selected using the platform PLL ratio configuration bits as described in Section 15.2, "Platform/System PLL Ratio."
- 2. The e500 Core PLL generates the core clock as a slave to the platform clock. The frequency ratio between the e500 core clock and the platform clock is selected using the e500 PLL ratio configuration bits as described in Section 15.3, "e500 Core PLL Ratio."
- 3. The CPM PLL is slaved to the platform clock and is used to generate clocks used internally by the CPM block. The ratio between the CPM PLL and the platform clock is fixed and not under user control.

17.2 PLL Power Supply Filtering

Each of the PLLs listed above is provided with power through independent power supply pins (AV_{DD}1, AV_{DD}2, and AV_{DD}3, respectively). The AV_{DD} level should always be equivalent to V_{DD}, and preferably these voltages will be derived directly from V_{DD} through a low frequency filter scheme such as the following.

There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to provide three independent filter circuits as illustrated in Figure 58, one to each of the three AV_{DD} pins. By providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the other is reduced.

This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz range. It should be built with surface mount capacitors with minimum Effective Series Inductance (ESL). Consistent with the recommendations of Dr. Howard Johnson in *High Speed Digital Design: A Handbook of Black Magic* (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a single large value capacitor.

Each circuit should be placed as close as possible to the specific AV_{DD} pin being supplied to minimize noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AV_{DD} pin, which is on the periphery of the 783 FC-PBGA footprint, without the inductance of vias.

System Design Information

When data is held high, SW1 is closed (SW2 is open) and R_P is trimmed until the voltage at the pad equals $OV_{DD}/2$. R_P then becomes the resistance of the pull-up devices. R_P and R_N are designed to be close to each other in value. Then, $Z_0 = (R_P + R_N)/2$.

Figure 59. Driver Impedance Measurement

The output impedance of the RapidIO port drivers targets 200- Ω differential resistance. The value of this resistance and the strength of the driver's current source can be found by making two measurements. First, the output voltage is measured while driving logic 1 without an external differential termination resistor. The measured voltage is $V_1 = R_{source} \times I_{source}$. Second, the output voltage is measured while driving logic 1 with an external precision differential termination resistor of value R_{term} . The measured voltage is $V_2 = 1/(1/R_1 + 1/R_2)) \times I_{source}$. Solving for the output impedance gives $R_{source} = R_{term} \times (V_1/V_2 - 1)$. The drive current is then $I_{source} = V_1/R_{source}$.

Table 61 summarizes the signal impedance targets. The driver impedance are targeted at minimum V_{DD} , nominal OV_{DD} , 105°C.

Impedance	Local Bus, Ethernet, DUART, Control, Configuration, Power Management	PCI/PCI-X	DDR DRAM	RapidIO	Symbol	Unit
R _N	43 Target	25 Target	20 Target	NA	Z ₀	W
R _P	43 Target	25 Target	20 Target	NA	Z ₀	W
Differential	NA	NA	NA	200 Target	Z _{DIFF}	W

Table 61. Impedance Characteristics

Note: Nominal supply voltages. See Table 1, $T_i = 105^{\circ}C$.

18 Document Revision History

Table 62 provides a revision history for this hardware specification.

Rev. No.	Substantive Change(s)
4.2	Added "Note: Rise/Fall Time on CPM Input Pins" and following note text to Section 9.2, "CPM AC Timing Specifications."
4.1	Inserted Figure 3 and paragraph above it.
	Added PCI/PCI-X row to Input Voltage characteristic and added footnote 6 to Table 1.
4	Updated Section 2.1.2, "Power Sequencing."
	Updated back page information.
3.5	Updated Section 2.1.2, "Power Sequencing."
3.4	Updated MV _{REF} Max Value in Table 1.
	Updated MV _{REF} Max Value in Table 2.
	Added new revision level information to Table 63
3.3	Updated MV _{REF} Max Value in Table 1.
	Removed Figure 3.
	In Table 4, replaced TBD with power numbers and added footnote.
	Updated specs and footnotes in Table 8.
	Corrected max number for MV _{REF} in Table 13.
	Changed parameter "Clock cycle duration" to "Clock period" in Table 27.
	Added note 4 to $t_{LBKHOV1}$ and removed LALE reference from $t_{LBKHOV3}$ in Table 31 and Table 32.
	Updated LALE signal in Figure 17 and Figure 18.
	Modified Figure 21.
	Modified Figure 61.

Rev. No.	Substantive Change(s)
3.2	Updated Table 1 and Table 2 with 1.0 GHz device parameter requirements. Added Section 2.1.2, "Power Sequencing". Added CPM port signal drive strength to Table 3. Updated Table 4 with Maximum power data. Updated Table 4 and Table 5 with 1 GHz speed grade information. Updated Table 6 with corrected typical I/O power numbers. Updated Table 7 Note 2 lower voltage measurement point. Replaced Table 7 Note 5 with spread spectrum clocking guidelines. Added to Table 8 rise and fall time information.
	Added Section 4.4, "Real Time Clock Timing". Added precharge information to Section 6.2.2, "DDR SDRAM Output AC Timing Specifications". Removed V _{IL} and V _{IH} references from Table 21, Table 22, Table 23, and Table 24. Added reference level note to Table 21, Table 22, Table 23, Table 24, Table 25, Table 26, and Table 27. Updated TXD references to TCG in Section 7.2.3.1, "TBI Transmit AC Timing Specifications". Updated t _{TTKHDX} value in Table 25. Updated PMA_RX_CLK references to RX_CLK in Section 7.2.3.2, "TBI Receive AC Timing Specifications". Updated RXD references to RCG in Section 7.2.3.2, "TBI Receive AC Timing Specifications". Updated Table 27 Note 2. Corrected Table 29 f _{MDC} and t _{MDC} to reflect the correct minimum operating frequency. Updated Table 29 t _{MDKHDV} and t _{MDKHDX} values for clarification. Added t _{LBKHKT} and updated Note 2 in Table 32. Corrected LGTA timing references in Figure 17. Updated Figure 18, Figure 20, and Figure 22. Corrected FCC output timing reference labels in Figure 24 and Figure 25. Updated Figure 50. Clarified Table 54 Note 5. Updated Table 55 and Table 56 with 1 GHz information. Added heat sink removal discussion to Section 16.2.3, "Thermal Interface Materials".
3.1	Updated Table 4 and Table 5. Added Table 6. Added MCK duty cycle to Table 16. Updated f_{MDC} , t_{MDC} , t_{MDKHDV} , and t_{MDKHDX} parameters in Table 29. Added LALE to $t_{LBKHOV3}$ parameter in Table 31 and Table 32, and updated Figure 17. Corrected active level designations of some of the pins in Table 54. Updated Table 63.

Table 62. Document Revision History (continued)

19.2 Part Marking

Parts are marked as the example shown in Figure 62.

Notes:

MMMMM is the 5-digit mask number.

ATWLYYWWA is the traceability code.

CCCCC is the country of assembly. This space is left blank if parts are assembled in the United States. YWWLAZ is the assembly traceability code.

Figure 62. Part Marking for FC-PBGA Device