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Power Characteristics

Table 6 provides estimated I/O power numbers for each block: DDR, PCI, Local Bus, RapidIO, TSEC, and 
CPM.

Table 6. Estimated Typical I/O Power Consumption

Interface Parameter GVDD (2.5 V) OVDD (3.3 V) LVDD (3.3 V) LVDD (2.5 V) Units Notes

DDR I/O CCB = 200 MHz 0.46 — — — W 1

CCB = 266 MHz 0.59 — — —

CCB = 300 MHz 0.66 — — —

CCB = 333 MHz 0.73 — — —

PCI/PCI-X I/O 32-bit, 33 MHz — 0.04 — — W 2

32-bit 66 MHz — 0.07 — —

64-bit, 66 MHz — 0.14 — —

64-bit, 133 MHz — 0.25 — —

Local Bus I/O 32-bit, 33 MHz — 0.07 — — W 3

32-bit, 66 MHz — 0.13 — —

32-bit, 133 MHz — 0.24 — —

32-bit, 167 MHz — 0.30 — —

RapidIO I/O 500 MHz data rate — 0.96 — — W 4

TSEC I/O MII — — 10 — mW 5, 6

GMII, TBI (2.5 V) — — — 40

GMII, TBI (3.3 V) — — 70 —

RGMII, RTBI — — — 40

CPM-FCC MII — 15 — — mW 7

RMII — 13 — —

HDLC 16 Mbps — 9 — —

UTOPIA-8 SPHY — 60 — —

UTOPIA-8 MPHY — 100 — —

UTOPIA-16 SPHY — 94 — —

UTOPIA-16 MPHY — 135 — —

CPM-SCC HDLC 16 Mbps — 4 — — mW 7
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Clock Timing

4  Clock Timing

4.1 System Clock Timing
Table 7 provides the system clock (SYSCLK) AC timing specifications for the MPC8560.

TDMA or TDMB Nibble mode — 10 — — mW 7

Per channel — 5 — —

Notes:
1. GVDD=2.5, ECC enabled, 66% bus utilization, 33% write cycles, 10pF load on data, 10pF load on address/command, 10pF 

load on clock

2. OVDD=3.3, 30pF load per pin, 54% bus utilization, 33% write cycles

3. OVDD=3.3, 25pF load per pin, 5pF load on clock, 40% bus utilization, 33% write cycles

4. VDD=1.2, OVDD=3.3

5. LVDD=2.5/3.3, 15pF load per pin, 25% bus utilization

6. Power dissipation for one TSEC only

7. OVDD=3.3, 10pF load per pin, 50% bus utilization

Table 7. SYSCLK AC Timing Specifications

Parameter/Condition Symbol Min Typical Max Unit Notes

SYSCLK frequency fSYSCLK — — 166 MHz 1

SYSCLK cycle time tSYSCLK 6.0 — — ns —

SYSCLK rise and fall time tKH, tKL 0.6 1.0 1.2 ns 2

SYSCLK duty cycle tKHKL/tSYSCLK 40 — 60 % 3

SYSCLK jitter — — — +/- 150 ps 4, 5

Notes:
1.Caution: The CCB to SYSCLK ratio and e500 core to CCB ratio settings must be chosen such that the resulting SYSCLK 

frequency, e500 (core) frequency, and CCB frequency do not exceed their respective maximum or minimum operating 
frequencies. Refer to Section 15.2, “Platform/System PLL Ratio,” and Section 15.3, “e500 Core PLL Ratio,” for ratio 
settings.

2. Rise and fall times for SYSCLK are measured at 0.6 V and 2.7 V.

3. Timing is guaranteed by design and characterization.

4. This represents the total input jitter—short term and long term—and is guaranteed by design.

5. For spread spectrum clocking, guidelines are +/-1% of the input frequency with a maximum of 60 kHz of modulation 
regardless of the input frequency.

Table 6. Estimated Typical I/O Power Consumption (continued)

Interface Parameter GVDD (2.5 V) OVDD (3.3 V) LVDD (3.3 V) LVDD (2.5 V) Units Notes
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Figure 6 shows the DDR SDRAM output timing diagram.

Figure 6. DDR SDRAM Output Timing Diagram

6.2.2.2 Load Effects on Address/Command Bus
Table 18 provides approximate delay information that can be expected for the address and command 
signals of the DDR controller for various loadings. These numbers are the result of simulations for one 
topology. The delay numbers will strongly depend on the topology used. These delay numbers show the 
total delay for the address and command to arrive at the DRAM devices. The actual delay could be 
different than the delays seen in simulation, depending on the system topology. If a heavily loaded system 
is used, the DLL loop may need to be adjusted to meet setup requirements at the DRAM.

Table 18. Expected Delays for Address/Command

Load Delay Unit

4 devices (12 pF) 3.0 ns

9 devices (27 pF) 3.6 ns

36 devices (108 pF) + 40 pF compensation capacitor 5.0 ns

36 devices (108 pF) + 80 pF compensation capacitor 5.2 ns

ADDR/CMD

DLL Phase Alignment

tDDKHOV

tDDSHMH

tDDKLDS

tDDKHDS

MDQ[x]

MDQS[n]

MSYNC_IN

MSYNC_OUT

MCK[n]

MCK[n]
tMCK

tDDSHME

tDDKLDX

tDDKHDX

tDDSHMP

D1D0

tDDKHOX

Write A0 NOOP

tMCK tMCKH
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Ethernet: Three-Speed, MII Management

7.2 GMII, MII, TBI, RGMII, and RTBI AC Timing Specifications
The AC timing specifications for GMII, MII, TBI, RGMII, and RTBI are presented in this section. 

7.2.1 GMII AC Timing Specifications
This section describes the GMII transmit and receive AC timing specifications.

7.2.1.1 GMII Transmit AC Timing Specifications

Table 21 provides the GMII transmit AC timing specifications.

Table 20. GMII, MII, RGMII, RTBI, and TBI DC Electrical Characteristics

Parameters Symbol Min Max Unit

Supply voltage 2.5 V LVDD 2.37 2.63 V

Output high voltage (LVDD = Min, IOH = –1.0 mA) VOH 2.00 LVDD + 0.3 V

Output low voltage (LVDD = Min, IOL = 1.0 mA) VOL GND – 0.3 0.40 V

Input high voltage VIH 1.70 LVDD + 0.3 V

Input low voltage VIL –0.3 0.70 V

Input high current (VIN 
1 = LVDD) IIH — 10 μA

Input low current (VIN 
1 = GND) IIL –15 — μA

Note:
1.Note that the symbol VIN, in this case, represents the LVIN symbol referenced in Table 1and Table 2.

Table 21. GMII Transmit AC Timing Specifications

At recommended operating conditions with LVDD of 3.3 V ± 5%, or LVDD=2.5V ± 5%.

Parameter/Condition Symbol 1 Min Typ Max Unit

GTX_CLK clock period tGTX — 8.0 — ns

GTX_CLK duty cycle tGTXH/tGTX 40 — 60 %

GMII data TXD[7:0], TX_ER, TX_EN setup time tGTKHDV 2.5 — — ns

GTX_CLK to GMII data TXD[7:0], TX_ER, TX_EN delay  tGTKHDX 
3 0.5 — 5.0 ns
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Local Bus

Figure 20. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 2 (DLL Bypass Mode)

Internal launch/capture clock

UPM Mode Input Signal:
LUPWAIT

T1

T3

Input Signals:
LAD[0:31]/LDP[0:3]

UPM Mode Output Signals:
LCS[0:7]/LBS[0:3]/LGPL[0:5]

GPCM Mode Output Signals:
LCS[0:7]/LWE

tLBKLOV1

tLBKLOZ1

(DLL Bypass Mode)

LCLK

tLBKLOX1

tLBIVKH2
tLBIXKH2

tLBIVKH1
tLBIXKH1

tLBKHKT



MPC8560 Integrated Processor Hardware Specifications, Rev. 4.2

Freescale Semiconductor 43
 

CPM

Figure 22. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 or 8 (DLL Bypass Mode)

9  CPM
This section describes the DC and AC electrical specifications for the CPM of the MPC8560.

9.1 CPM DC Electrical Characteristics
Table 33 provides the DC electrical characteristics for the MPC8560 CPM.

Table 33. CPM DC Electrical Characteristics

Characteristic Symbol Min Max Unit Notes

Input high voltage VIH 2.0 3.465 V 1

Input low voltage VIL GND 0.8 V 1, 2

Output high voltage (IOH = –8.0 mA) VOH 2.4 — V 1

Output low voltage (IOL = 8.0 mA) VOL — 0.5 V 1

Internal launch/capture clock

UPM Mode Input Signal:
LUPWAIT

T1

T3

UPM Mode Output Signals:
LCS[0:7]/LBS[0:3]/LGPL[0:5]

GPCM Mode Output Signals:
LCS[0:7]/LWE

T2

T4

Input Signals:
LAD[0:31]/LDP[0:3]
(DLL Bypass Mode)

LCLK

tLBKLOV1

tLBKLOZ1

tLBKLOX1

tLBIVKH2
tLBIXKH2

tLBIVKH1
tLBIXKH1

tLBKHKT
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9.2 CPM AC Timing Specifications
Table 34 and Table 35 provide the CPM input and output AC timing specifications, respectively. 

NOTE: Rise/Fall Time on CPM Input Pins

It is recommended that the rise/fall time on CPM input pins should not 
exceed 5 ns. This should be enforced especially on clock signals. Rise time 
refers to signal transitions from 10% to 90% of VCC; fall time refers to 
transitions from 90% to 10% of VCC.

Output high voltage (IOH = –2.0 mA) VOH 2.4 — V 1

Output low voltage (IOL = 3.2 mA) VOL — 0.4 V 1

Note: 
1. This specification applies to the following pins: PA[0–31], PB[4–31], PC[0–31], and PD[4–31].

2. VIL(max) for the IIC interface is 0.8 V rather than the 1.5 V specified in the IIC standard

Table 34. CPM Input AC Timing Specifications 1

Characteristic Symbol 2 Min 3 Unit

FCC inputs—internal clock (NMSI) input setup time tFIIVKH 6 ns

FCC inputs—internal clock (NMSI) hold time tFIIXKH 0 ns

FCC inputs—external clock (NMSI) input setup time tFEIVKH 2.5 ns

FCC inputs—external clock (NMSI) hold time tFEIXKHb 2 ns

SCC/SPI inputs—internal clock (NMSI) input setup time tNIIVKH 6 ns

SCC/SPI inputs—internal clock (NMSI) input hold time tNIIXKH 0 ns

SCC/SPI inputs—external clock (NMSI) input setup time tNEIVKH 4 ns

SCC/SPI inputs—external clock (NMSI) input hold time tNEIXKH 2 ns

TDM inputs/SI—input setup time tTDIVKH 4 ns

TDM inputs/SI—hold time tTDIXKH 3 ns

Table 33. CPM DC Electrical Characteristics (continued)

Characteristic Symbol Min Max Unit Notes
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10  JTAG
This section describes the AC electrical specifications for the IEEE 1149.1 (JTAG) interface of the 
MPC8560.

Table 39 provides the JTAG AC timing specifications as defined in Figure 32 through Figure 35.

Table 39. JTAG AC Timing Specifications (Independent of SYSCLK) 1

At recommended operating conditions (see Table 2).

Parameter Symbol 2 Min Max Unit Notes

JTAG external clock frequency of operation fJTG 0 33.3 MHz —

JTAG external clock cycle time t JTG 30 — ns —

JTAG external clock pulse width measured at 1.4 V tJTKHKL 15 — ns —

JTAG external clock rise and fall times tJTGR & tJTGF 0 2 ns 6

TRST assert time tTRST 25 — ns 3

Input setup times:

Boundary-scan data
TMS, TDI

tJTDVKH
tJTIVKH

4
0

—
—

ns
4

Input hold times:

Boundary-scan data
TMS, TDI

tJTDXKH
tJTIXKH

20
25

—
—

ns
4

Valid times:

Boundary-scan data
TDO

tJTKLDV
tJTKLOV

4
4

20
25

ns
5

Output hold times:

Boundary-scan data
TDO

tJTKLDX
tJTKLOX

— ns
5

JTAG external clock to output high impedance:

Boundary-scan data
TDO

tJTKLDZ
tJTKLOZ

3
3

19
9

ns
5, 6

Notes:
1.All outputs are measured from the midpoint voltage of the falling/rising edge of tTCLK to the midpoint of the signal in 

question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load 
(see Figure 31). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

2.The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state) 

(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, 
tJTDVKH symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state 
(V) relative to the tJTG clock reference (K) going to the high (H) state or setup time. Also, tJTDXKH symbolizes JTAG 
timing (JT) with respect to the time data input signals (D) went invalid (X) relative to the tJTG clock reference (K) 
going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three 
letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with 
the appropriate letter: R (rise) or F (fall).

3.TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.

4.Non-JTAG signal input timing with respect to tTCLK.

5.Non-JTAG signal output timing with respect to tTCLK.

6.Guaranteed by design.
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RapidIO

Duty cycle DC 48 52 % 2, 6

VOD rise time, 20%–80% of peak-to-peak 
differential signal swing

tFALL 200 — ps 3, 6

VOD fall time, 20%–80% of peak-to-peak 
differential signal swing

tRISE 200 — ps 6

Data valid DV 1260 — ps

Skew of any two data outputs tDPAIR — 180 ps 4, 6

Skew of single data outputs to associated clock tSKEW,PAIR –180 180 ps 5, 6

Notes:
1.See Figure 44.

2.Requires ±100 ppm long term frequency stability.

3.Measured at VOD = 0 V.

4.Measured using the RapidIO transmit mask shown in Figure 44.

5.See Figure 49.

6.Guaranteed by design.

Table 49. RapidIO Driver AC Timing Specifications—750 Mbps Data Rate

Characteristic Symbol
Range

Unit Notes
Min Max

Differential output high voltage VOHD 200 540 mV 1

Differential output low voltage VOLD –540 –200 mV 1

Duty cycle DC 48 52 % 2, 6

VOD rise time, 20%–80% of peak-to-peak 
differential signal swing

tFALL 133 — ps 3, 6

VOD fall time, 20%–80% of peak-to-peak 
differential signal swing

tRISE 133 — ps 6

Data valid DV 800 — ps 6

Skew of any two data outputs tDPAIR — 133 ps 4, 6

Skew of single data outputs to associated clock tSKEW,PAIR –133 133 ps 5, 6

Notes:
1.See Figure 44.

2.Requires ±100 ppm long term frequency stability.

3.Measured at VOD = 0 V.

4.Measured using the RapidIO transmit mask shown in Figure 44.

5.See Figure 49.

6.Guaranteed by design.

Table 48. RapidIO Driver AC Timing Specifications—500 Mbps Data Rate (continued)

Characteristic Symbol
Range

Unit Notes
Min Max
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Package and Pin Listings

Gigabit Reference Clock

EC_GTX_CLK125 E2 I LVDD —

Three-Speed Ethernet Controller (Gigabit Ethernet 1)

TSEC1_TXD[7:4] A6, F7, D7, C7 O LVDD 5, 9

TSEC1_TXD[3:0] B7, A7, G8, E8 O LVDD 9, 19

TSEC1_TX_EN C8 O LVDD 11

TSEC1_TX_ER B8 O LVDD —

TSEC1_TX_CLK C6 I LVDD —

TSEC1_GTX_CLK B6 O LVDD 18

TSEC1_CRS C3 I LVDD —

TSEC1_COL G7 I LVDD —

TSEC1_RXD[7:0] D4, B4, D3, D5, B5, A5, F6, E6 I LVDD —

TSEC1_RX_DV D2 I LVDD —

TSEC1_RX_ER E5 I LVDD —

TSEC1_RX_CLK D6 I LVDD —

Three-Speed Ethernet Controller (Gigabit Ethernet 2)

TSEC2_TXD[7:2] B10, A10, J10, K11,J11, H11 O LVDD 5, 9

TSEC2_TXD[1:0] G11, E11 O LVDD —

TSEC2_TX_EN B11 O LVDD 11

TSEC2_TX_ER D11 O LVDD —

TSEC2_TX_CLK D10 I LVDD —

TSEC2_GTX_CLK C10 O LVDD 18

TSEC2_CRS D9 I LVDD —

TSEC2_COL F8 I LVDD —

TSEC2_RXD[7:0] F9, E9, C9, B9, A9, H9, G10, F10 I LVDD —

TSEC2_RX_DV H8 I LVDD —

TSEC2_RX_ER A8 I LVDD —

TSEC2_RX_CLK E10 I LVDD —

RapidIO Interface

RIO_RCLK Y25 I OVDD —

RIO_RCLK Y24 I OVDD —

Table 54. MPC8560 Pinout Listing (continued)

Signal Package Pin Number Pin Type
Power
Supply

Notes
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Alpha Novatech 408-749-7601
473 Sapena Ct. #15
Santa Clara, CA 95054
Internet: www.alphanovatech.com

International Electronic Research Corporation (IERC) 818-842-7277
413 North Moss St.
Burbank, CA 91502
Internet: www.ctscorp.com

Millennium Electronics (MEI) 408-436-8770
Loroco Sites
671 East Brokaw Road
San Jose, CA 95112
Internet: www.mei-millennium.com

Tyco Electronics 800-522-6752
Chip Coolers™
P.O. Box 3668
Harrisburg, PA 17105-3668
Internet: www.chipcoolers.com

Wakefield Engineering 603-635-5102
33 Bridge St.
Pelham, NH 03076
Internet: www.wakefield.com

Ultimately, the final selection of an appropriate heat sink depends on many factors, such as thermal 
performance at a given air velocity, spatial volume, mass, attachment method, assembly, and cost. Several 
heat sinks offered by Aavid Thermalloy, Alpha Novatech, IERC, Chip Coolers, Millennium Electronics, 
and Wakefield Engineering offer different heat sink-to-ambient thermal resistances, that will allow the 
MPC8560 to function in various environments. 

16.2.1 Recommended Thermal Model
For system thermal modeling, the MPC8560 thermal model is shown in Figure 52. Five cuboids are used 
to represent this device. To simplify the model, the solder balls and substrate are modeled as a single block 
29x29x1.47 mm with the conductivity adjusted accordingly. For modeling, the planar dimensions of the 
die are rounded to the nearest mm, so the die is modeled as 10x12 mm at a thickness of 0.76 mm. The 
bump/underfill layer is modeled as a collapsed resistance between the die and substrate assuming a 
conductivity of 0.6 in-plane and 1.9 W/m•K in the thickness dimension of 0.76 mm. The lid attach 
adhesive is also modeled as a collapsed resistance with dimensions of 10x12x0.050 mm and the 
conductivity of 1 W/m•K. The nickel plated copper lid is modeled as 12x14x1 mm. Note that the die and 
lid are not centered on the substrate; there is a 1.5 mm offset documented in the case outline drawing in 
Figure 50.
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Figure 52. MPC8560 Thermal Model

16.2.2 Internal Package Conduction Resistance
For the packaging technology, shown in Table 60, the intrinsic internal conduction thermal resistance paths 
are as follows:

• The die junction-to-case thermal resistance

• The die junction-to-board thermal resistance

Die

Lid

Substrate and solder balls

Heat Source

Substrate

Side View of Model (Not to Scale)

Top View of Model (Not to Scale)

x

y

z

Conductivity Value Unit

Lid
(12 × 14 × 1 mm)

kx 360 W/(m × K)

ky 360

kz 360

Lid Adhesive—Collapsed resistance
(10 × 12 × 0.050 mm)

kx 1

ky 1

kz 1

Die
(10 × 12 × 0.76 mm)

Bump/Underfill—Collapsed resistance
(10 × 12 × 0.070 mm)

kx 0.6

ky 0.6

kz 1.9

Substrate and Solder Balls
(29 × 29 × 1.47 mm)

kx 10.2

ky 10.2

kz 1.6

Adhesive

Bump/underfill
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Figure 55. Thermalloy #2328B Heat Sink-to-Ambient Thermal Resistance Versus Airflow Velocity

16.2.4.2 Case 2
Every system application has different conditions that the thermal management solution must solve. As an 
alternate example, assume that the air reaching the component is 85 °C with an approach velocity of 1 
m/sec. For a maximum junction temperature of 105 °C at 7 W, the total thermal resistance of junction to 
case thermal resistance plus thermal interface material plus heat sink thermal resistance must be less than 
2.8 °C/W. The value of the junction to case thermal resistance in Table 60 includes the thermal interface 
resistance of a thin layer of thermal grease as documented in footnote 4 of the table. Assuming that the 
heat sink is flat enough to allow a thin layer of grease or phase change material, then the heat sink must be 
less than 2 °C/W. 

Millennium Electronics (MEI) has tooled a heat sink MTHERM-1051 for this requirement assuming a 
compactPCI environment at 1 m/sec and a heat sink height of 12 mm. The MEI solution is illustrated in 
Figure 56 and Figure 57. This design has several significant advantages: 

• The heat sink is clipped to a plastic frame attached to the application board with screws or plastic 
inserts at the corners away from the primary signal routing areas. 

• The heat sink clip is designed to apply the force holding the heat sink in place directly above the 
die at a maximum force of less than 10 lbs. 

• For applications with significant vibration requirements, silicone damping material can be applied 
between the heat sink and plastic frame. 
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The spring mounting should be designed to apply the force only directly above the die. By localizing the 
force, rocking of the heat sink is minimized. One suggested mounting method attaches a plastic fence to 
the board to provide the structure on which the heat sink spring clips. The plastic fence also provides the 
opportunity to minimize the holes in the printed-circuit board and to locate them at the corners of the 
package. Figure 56 and Figure 57 provide exploded views of the plastic fence, heat sink, and spring clip.

Figure 56. Exploded Views (1) of a Heat Sink Attachment using a Plastic Force
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17  System Design Information
This section provides electrical and thermal design recommendations for successful application of the 
MPC8560.

17.1 System Clocking
The MPC8560 includes three PLLs.

1. The platform PLL generates the platform clock from the externally supplied SYSCLK input. The 
frequency ratio between the platform and SYSCLK is selected using the platform PLL ratio 
configuration bits as described in Section 15.2, “Platform/System PLL Ratio.”

2. The e500 Core PLL generates the core clock as a slave to the platform clock. The frequency ratio 
between the e500 core clock and the platform clock is selected using the e500 PLL ratio 
configuration bits as described in Section 15.3, “e500 Core PLL Ratio.”

3. The CPM PLL is slaved to the platform clock and is used to generate clocks used internally by the 
CPM block. The ratio between the CPM PLL and the platform clock is fixed and not under user 
control.

17.2 PLL Power Supply Filtering
Each of the PLLs listed above is provided with power through independent power supply pins (AVDD1, 
AVDD2, and AVDD3, respectively). The AVDD level should always be equivalent to VDD, and preferably 
these voltages will be derived directly from VDD through a low frequency filter scheme such as the 
following.

There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to 
provide three independent filter circuits as illustrated in Figure 58, one to each of the three AVDD pins. By 
providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the 
other is reduced.

This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz 
range. It should be built with surface mount capacitors with minimum Effective Series Inductance (ESL). 
Consistent with the recommendations of Dr. Howard Johnson in High Speed Digital Design: A Handbook 
of Black Magic (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a 
single large value capacitor.

Each circuit should be placed as close as possible to the specific AVDD pin being supplied to minimize 
noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AVDD 
pin, which is on the periphery of the 783 FC-PBGA footprint, without the inductance of vias.
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Figure 58 shows the PLL power supply filter circuit.

Figure 58. PLL Power Supply Filter Circuit

17.3 Decoupling Recommendations
Due to large address and data buses, and high operating frequencies, the MPC8560 can generate transient 
power surges and high frequency noise in its power supply, especially while driving large capacitive loads. 
This noise must be prevented from reaching other components in the MPC8560 system, and the MPC8560 
itself requires a clean, tightly regulated source of power. Therefore, it is recommended that the system 
designer place at least one decoupling capacitor at each VDD, OVDD, GVDD, and LVDD pins of the 
MPC8560. These decoupling capacitors should receive their power from separate VDD, OVDD, GVDD, 
LVDD, and GND power planes in the PCB, utilizing short traces to minimize inductance. Capacitors may 
be placed directly under the device using a standard escape pattern. Others may surround the part.

These capacitors should have a value of 0.01 or 0.1 µF. Only ceramic SMT (surface mount technology) 
capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.

In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB, 
feeding the VDD, OVDD, GVDD, and LVDD planes, to enable quick recharging of the smaller chip 
capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the 
quick response time necessary. They should also be connected to the power and ground planes through two 
vias to minimize inductance. Suggested bulk capacitors—100–330 µF (AVX TPS tantalum or Sanyo 
OSCON).

17.4 Connection Recommendations
To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal 
level. Unused active low inputs should be tied to OVDD, GVDD, or LVDD as required. Unused active high 
inputs should be connected to GND. All NC (no-connect) signals must remain unconnected.

Power and ground connections must be made to all external VDD, GVDD, LVDD, OVDD, and GND pins of 
the MPC8560.

17.5 Output Buffer DC Impedance
The MPC8560 drivers are characterized over process, voltage, and temperature. There are two driver 
types: a push-pull single-ended driver (open drain for I2C) for all buses except RapidIO, and a 
current-steering differential driver for the RapidIO port.

To measure Z0 for the single-ended drivers, an external resistor is connected from the chip pad to OVDD 
or GND. Then, the value of each resistor is varied until the pad voltage is OVDD/2 (see Figure 59). The 
output impedance is the average of two components, the resistances of the pull-up and pull-down devices. 

VDD AVDD (or L2AVDD)

 2.2 µF  2.2 µF

 GND
Low ESL Surface Mount Capacitors

10 Ω
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When data is held high, SW1 is closed (SW2 is open) and RP is trimmed until the voltage at the pad equals 
OVDD/2. RP then becomes the resistance of the pull-up devices. RP and RN are designed to be close to each 
other in value. Then, Z0 = (RP + RN)/2.

Figure 59. Driver Impedance Measurement

The output impedance of the RapidIO port drivers targets 200-Ω differential resistance. The value of this 
resistance and the strength of the driver’s current source can be found by making two measurements. First, 
the output voltage is measured while driving logic 1 without an external differential termination resistor. 
The measured voltage is V1 = Rsource × Isource. Second, the output voltage is measured while driving logic 
1 with an external precision differential termination resistor of value Rterm. The measured voltage is 
V2 = 1/(1/R1 + 1/R2)) × Isource. Solving for the output impedance gives Rsource = Rterm × (V1/V2 – 1). The 
drive current is then Isource = V1/Rsource.

Table 61 summarizes the signal impedance targets. The driver impedance are targeted at minimum VDD, 
nominal OVDD, 105°C.

Table 61. Impedance Characteristics

Impedance
Local Bus, Ethernet, DUART, Control, 

Configuration, Power Management
PCI/PCI-X DDR DRAM RapidIO Symbol Unit

RN 43 Target 25 Target 20 Target NA Z0 W

RP 43 Target 25 Target 20 Target NA Z0 W

Differential NA NA NA 200 Target ZDIFF W

Note: Nominal supply voltages. See Table 1, Tj = 105°C.

OVDD

OGND

RP

RN

Pad
Data

SW1

SW2
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Figure 60. COP Connector Physical Pinout

17.8.1 Termination of Unused Signals
If the JTAG interface and COP header will not be used, Freescale recommends the following connections:

• TRST should be tied to HRESET through a 0 kΩ isolation resistor so that it is asserted when the 
system reset signal (HRESET) is asserted, ensuring that the JTAG scan chain is initialized during 
the power-on reset flow. Freescale recommends that the COP header be designed into the system 
as shown in Figure 61. If this is not possible, the isolation resistor will allow future access to TRST 
in case a JTAG interface may need to be wired onto the system in future debug situations.

• Tie TCK to OVDD through a 10 kΩ resistor. This will prevent TCK from changing state and 
reading incorrect data into the device. 

• No connection is required for TDI, TMS, or TDO.

3
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Updated PMA_RX_CLK references to RX_CLK in Section 7.2.3.2, “TBI Receive AC Timing 
Specifications”.

Updated RXD references to RCG in Section 7.2.3.2, “TBI Receive AC Timing Specifications”.

Updated Table 27 Note 2.

Corrected Table 29 fMDC and tMDC to reflect the correct minimum operating frequency.

Updated Table 29 tMDKHDV and tMDKHDX values for clarification.

Added tLBKHKT and updated Note 2 in Table 32.

Corrected LGTA timing references in Figure 17.

Updated Figure 18, Figure 20, and Figure 22.

Corrected FCC output timing reference labels in Figure 24 and Figure 25.

Updated Figure 50.
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Updated Table 55 and Table 56 with 1 GHz information.

Added heat sink removal discussion to Section 16.2.3, “Thermal Interface Materials”.
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Added Table 6.

Added MCK duty cycle to Table 16.

Updated fMDC, tMDC, tMDKHDV, and tMDKHDX parameters in Table 29.

Added LALE to tLBKHOV3 parameter in Table 31 and Table 32, and updated Figure 17.
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