E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	667MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DDR, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	-
Voltage - I/O	2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	783-BFBGA, FCBGA
Supplier Device Package	783-FCPBGA (29x29)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc8560vt667lb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Power Characteristics

Table 6 provides estimated I/O power numbers for each block: DDR, PCI, Local Bus, RapidIO, TSEC, and CPM.

Interface	Parameter	GV _{DD} (2.5 V)	OV _{DD} (3.3 V)	LV _{DD} (3.3 V)	LV _{DD} (2.5 V)	Units	Notes
DDR I/O	CCB = 200 MHz	0.46	—	—	—	W	1
	CCB = 266 MHz	0.59	_	_	_		
	CCB = 300 MHz	0.66	_	_	_		
	CCB = 333 MHz	0.73	—	—	_		
PCI/PCI-X I/O	32-bit, 33 MHz	—	0.04	—	_	W	2
	32-bit 66 MHz	—	0.07	—	—		
	64-bit, 66 MHz	—	0.14	—	—		
	64-bit, 133 MHz	—	0.25	—	—		
Local Bus I/O	32-bit, 33 MHz	—	0.07	—	_	W	3
	32-bit, 66 MHz	—	0.13	—	—		
	32-bit, 133 MHz	—	0.24	—	—		
	32-bit, 167 MHz	—	0.30	—	—		
RapidIO I/O	500 MHz data rate	—	0.96	—	_	W	4
TSEC I/O	MII	—	—	10	—	mW	5, 6
	GMII, TBI (2.5 V)	—	—	—	40		
	GMII, TBI (3.3 V)	—	—	70	—		
	RGMII, RTBI	—	—	—	40		
CPM-FCC	MII	—	15	—	—	mW	7
	RMII	—	13	—	—		
	HDLC 16 Mbps	—	9	—	—		
	UTOPIA-8 SPHY	—	60	—	—		
	UTOPIA-8 MPHY	—	100	—	—		
	UTOPIA-16 SPHY	—	94	—	—		
	UTOPIA-16 MPHY	_	135	_	_		
CPM-SCC	HDLC 16 Mbps	—	4		—	mW	7

Table 6. Estimated Typical I/O Power Consumption

Table 6. Estimated Typical I/O Power Consumption (continued)

Interface	Parameter	GV _{DD} (2.5 V)	OV _{DD} (3.3 V)	LV _{DD} (3.3 V)	LV _{DD} (2.5 V)	Units	Notes
TDMA or TDMB	Nibble mode	—	10		_	mW	7
	Per channel	—	5		_		

Notes:

1. GV_{DD}=2.5, ECC enabled, 66% bus utilization, 33% write cycles, 10pF load on data, 10pF load on address/command, 10pF load on clock

- 2. OV_{DD}=3.3, 30pF load per pin, 54% bus utilization, 33% write cycles
- 3. OV_{DD}=3.3, 25pF load per pin, 5pF load on clock, 40% bus utilization, 33% write cycles

4. V_{DD}=1.2, OV_{DD}=3.3

- 5. LVDD=2.5/3.3, 15pF load per pin, 25% bus utilization
- 6. Power dissipation for one TSEC only
- 7. OV_{DD}=3.3, 10pF load per pin, 50% bus utilization

4 Clock Timing

4.1 System Clock Timing

Table 7 provides the system clock (SYSCLK) AC timing specifications for the MPC8560.

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Notes
SYSCLK frequency	f _{SYSCLK}	—	—	166	MHz	1
SYSCLK cycle time	t _{SYSCLK}	6.0	—	—	ns	—
SYSCLK rise and fall time	t _{KH} , t _{KL}	0.6	1.0	1.2	ns	2
SYSCLK duty cycle	t _{KHKL} /t _{SYSCLK}	40	—	60	%	3
SYSCLK jitter	—	—	—	+/- 150	ps	4, 5

Table 7. SYSCLK AC Timing Specifications

Notes:

Caution: The CCB to SYSCLK ratio and e500 core to CCB ratio settings must be chosen such that the resulting SYSCLK frequency, e500 (core) frequency, and CCB frequency do not exceed their respective maximum or minimum operating frequencies. Refer to Section 15.2, "Platform/System PLL Ratio," and Section 15.3, "e500 Core PLL Ratio," for ratio settings.

- 2. Rise and fall times for SYSCLK are measured at 0.6 V and 2.7 V.
- 3. Timing is guaranteed by design and characterization.
- 4. This represents the total input jitter—short term and long term—and is guaranteed by design.
- 5. For spread spectrum clocking, guidelines are +/-1% of the input frequency with a maximum of 60 kHz of modulation regardless of the input frequency.

DDR SDRAM

Figure 6 shows the DDR SDRAM output timing diagram.

Figure 6. DDR SDRAM Output Timing Diagram

6.2.2.2 Load Effects on Address/Command Bus

Table 18 provides approximate delay information that can be expected for the address and command signals of the DDR controller for various loadings. These numbers are the result of simulations for one topology. The delay numbers will strongly depend on the topology used. These delay numbers show the total delay for the address and command to arrive at the DRAM devices. The actual delay could be different than the delays seen in simulation, depending on the system topology. If a heavily loaded system is used, the DLL loop may need to be adjusted to meet setup requirements at the DRAM.

Load	Delay	Unit
4 devices (12 pF)	3.0	ns
9 devices (27 pF)	3.6	ns
36 devices (108 pF) + 40 pF compensation capacitor	5.0	ns
36 devices (108 pF) + 80 pF compensation capacitor	5.2	ns

Table 16. Expected Delays for Address/Command	Table 18.	Expected	Delays f	or Address	/Command
---	-----------	----------	----------	------------	----------

Parameters	Symbol	Min	Мах	Unit
Supply voltage 2.5 V	LV _{DD}	2.37	2.63	V
Output high voltage (LV _{DD} = Min, $I_{OH} = -1.0$ mA)	V _{OH}	2.00	LV _{DD} + 0.3	V
Output low voltage (LV _{DD} = Min, I_{OL} = 1.0 mA)	V _{OL}	GND – 0.3	0.40	V
Input high voltage	V _{IH}	1.70	LV _{DD} + 0.3	V
Input low voltage	V _{IL}	-0.3	0.70	V
Input high current (V_{IN} ¹ = LV_{DD})	Ι _Η	—	10	μA
Input low current (V _{IN} ¹ = GND)	IIL	-15	—	μA

Table 20. GMII, MII, RGMII, RTBI, and TBI DC Electrical Characteristics

Note:

1.Note that the symbol V_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

7.2 GMII, MII, TBI, RGMII, and RTBI AC Timing Specifications

The AC timing specifications for GMII, MII, TBI, RGMII, and RTBI are presented in this section.

7.2.1 GMII AC Timing Specifications

This section describes the GMII transmit and receive AC timing specifications.

7.2.1.1 GMII Transmit AC Timing Specifications

Table 21 provides the GMII transmit AC timing specifications.

Table 21. GMII Transmit AC Timing Specifications

At recommended operating conditions with LV_{DD} of 3.3 V \pm 5%, or LV_{DD}=2.5V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
GTX_CLK clock period	t _{GTX}	—	8.0	—	ns
GTX_CLK duty cycle	t _{GTXH} /t _{GTX}	40	—	60	%
GMII data TXD[7:0], TX_ER, TX_EN setup time	t _{GTKHDV}	2.5	—	—	ns
GTX_CLK to GMII data TXD[7:0], TX_ER, TX_EN delay	t _{GTKHDX} ³	0.5	_	5.0	ns

Figure 20. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 2 (DLL Bypass Mode)

Figure 22. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 or 8 (DLL Bypass Mode)

9 CPM

This section describes the DC and AC electrical specifications for the CPM of the MPC8560.

9.1 CPM DC Electrical Characteristics

Table 33 provides the DC electrical characteristics for the MPC8560 CPM.

Table 33. CPM DC Electrical Characteristics

Characteristic	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	2.0	3.465	V	1
Input low voltage	V _{IL}	GND	0.8	V	1, 2
Output high voltage (I _{OH} = -8.0 mA)	V _{OH}	2.4	_	V	1
Output low voltage (I _{OL} = 8.0 mA)	V _{OL}	—	0.5	V	1

MPC8560 Integrated Processor Hardware Specifications, Rev. 4.2

СРМ

Characteristic	Symbol	Min	Max	Unit	Notes
Output high voltage (I _{OH} = -2.0 mA)	V _{OH}	2.4	-	V	1
Output low voltage (I _{OL} = 3.2 mA)	V _{OL}	_	0.4	V	1

Table 33. CPM DC Electrical Characteristics (continued)

Note:

1. This specification applies to the following pins: PA[0-31], PB[4-31], PC[0-31], and PD[4-31].

2. VIL (max) for the IIC interface is 0.8 V rather than the 1.5 V specified in the IIC standard

9.2 CPM AC Timing Specifications

Table 34 and Table 35 provide the CPM input and output AC timing specifications, respectively.

NOTE: Rise/Fall Time on CPM Input Pins

It is recommended that the rise/fall time on CPM input pins should not exceed 5 ns. This should be enforced especially on clock signals. Rise time refers to signal transitions from 10% to 90% of VCC; fall time refers to transitions from 90% to 10% of VCC.

Characteristic	Symbol ²	Min ³	Unit
FCC inputs—internal clock (NMSI) input setup time	t _{FIIVKH}	6	ns
FCC inputs—internal clock (NMSI) hold time	t _{FIIXKH}	0	ns
FCC inputs—external clock (NMSI) input setup time	t _{FEIVKH}	2.5	ns
FCC inputs—external clock (NMSI) hold time	t _{FEIXKH} b	2	ns
SCC/SPI inputs—internal clock (NMSI) input setup time	t _{NIIVKH}	6	ns
SCC/SPI inputs—internal clock (NMSI) input hold time	t _{NIIXKH}	0	ns
SCC/SPI inputs—external clock (NMSI) input setup time	t _{NEIVKH}	4	ns
SCC/SPI inputs—external clock (NMSI) input hold time	t _{NEIXKH}	2	ns
TDM inputs/SI—input setup time	t _{TDIVKH}	4	ns
TDM inputs/SI—hold time	t _{TDIXKH}	3	ns

Table 34. CPM Input AC Timing Specifications ¹

10 JTAG

JTAG

This section describes the AC electrical specifications for the IEEE 1149.1 (JTAG) interface of the MPC8560.

Table 39 provides the JTAG AC timing specifications as defined in Figure 32 through Figure 35.

Table 39. JTAG AC Timing Specifications (Independent of SYSCLK)¹

At recommended operating conditions (see Table 2).

Parameter	Symbol ²	Min	Мах	Unit	Notes
JTAG external clock frequency of operation	f _{JTG}	0	33.3	MHz	_
JTAG external clock cycle time	t _{JTG}	30	—	ns	_
JTAG external clock pulse width measured at 1.4 V	t _{JTKHKL}	15	—	ns	_
JTAG external clock rise and fall times	t _{JTGR} & t _{JTGF}	0	2	ns	6
TRST assert time	t _{TRST}	25	_	ns	3
Input setup times: Boundary-scan data TMS, TDI	t _{JTDVKH} t _{JTIVKH}	4 0		ns	4
Input hold times: Boundary-scan data TMS, TDI	t _{JTDXKH} t _{JTIXKH}	20 25	—	ns	4
Valid times: Boundary-scan data TDO	^t jtkldv ^t jtklov	4 4	20 25	ns	5
Output hold times: Boundary-scan data TDO	^t jtkldx ^t jtklox		—	ns	5
JTAG external clock to output high impedance: Boundary-scan data TDO	t _{jtkldz} t _{jtkloz}	3 3	19 9	ns	5, 6

Notes:

2. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)}

(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{JTDVKH} symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{JTG} clock reference (K) going to the high (H) state or setup time. Also, t_{JTDXKH} symbolizes JTAG timing (JT) with respect to the time data input signals (D) went invalid (X) relative to the t_{JTG} clock reference (K) going to the high (H) state or setup time. Also, t_{JTDXKH} symbolizes JTAG timing (JT) with respect to the time data input signals (D) went invalid (X) relative to the t_{JTG} clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.

4.Non-JTAG signal input timing with respect to t_{TCLK}.

5.Non-JTAG signal output timing with respect to t_{TCLK} .

6.Guaranteed by design.

^{1.}All outputs are measured from the midpoint voltage of the falling/rising edge of t_{TCLK} to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50- Ω load (see Figure 31). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

Table 48. RapidIO Driver AC Timing Specifications—500 Mbps Data Rate (continued)

Characteristic	Symbol	Rai	nge	Unit	Notes
Characteristic		Min	Мах		
Duty cycle	DC	48	52	%	2, 6
V _{OD} rise time, 20%–80% of peak-to-peak differential signal swing	t _{FALL}	200	_	ps	3, 6
V _{OD} fall time, 20%–80% of peak-to-peak differential signal swing	t _{RISE}	200	_	ps	6
Data valid	DV	1260		ps	
Skew of any two data outputs	t _{DPAIR}	—	180	ps	4, 6
Skew of single data outputs to associated clock	t _{SKEW,PAIR}	-180	180	ps	5, 6

Notes:

1.See Figure 44.

2.Requires ±100 ppm long term frequency stability.

3.Measured at $V_{OD} = 0$ V.

4.Measured using the RapidIO transmit mask shown in Figure 44.

5.See Figure 49.

6.Guaranteed by design.

Table 49. RapidIO Driver AC Timing Specifications—750 Mbps Data Rate

Charactoristic	Symbol	Rai	nge	Unit	Notoo
Characteristic	Symbol	Min	Мах	Unit	Notes
Differential output high voltage	V _{OHD}	200	540	mV	1
Differential output low voltage	V _{OLD}	-540	-200	mV	1
Duty cycle	DC	48	52	%	2, 6
V _{OD} rise time, 20%–80% of peak-to-peak differential signal swing	t _{FALL}	133	—	ps	3, 6
V _{OD} fall time, 20%–80% of peak-to-peak differential signal swing	t _{RISE}	133	—	ps	6
Data valid	DV	800	—	ps	6
Skew of any two data outputs	t _{DPAIR}	—	133	ps	4, 6
Skew of single data outputs to associated clock	t _{SKEW,PAIR}	-133	133	ps	5, 6

Notes:

1.See Figure 44.

2.Requires ±100 ppm long term frequency stability.

3.Measured at $V_{OD} = 0$ V.

4.Measured using the RapidIO transmit mask shown in Figure 44.

5.See Figure 49.

6.Guaranteed by design.

MPC8560 Integrated Processor Hardware Specifications, Rev. 4.2

Package and Pin Listings

Table 54.	MPC8560	Pinout	Listing	(continued)
-----------	---------	--------	---------	-------------

Signal	Package Pin Number	Pin Type	Power Supply	Notes		
	Gigabit Reference Clock					
EC_GTX_CLK125	E2	I	LV _{DD}	_		
	Three-Speed Ethernet Controller (Gigabit Ethern	et 1)				
TSEC1_TXD[7:4]	A6, F7, D7, C7	0	LV _{DD}	5, 9		
TSEC1_TXD[3:0]	B7, A7, G8, E8	0	LV _{DD}	9, 19		
TSEC1_TX_EN	C8	0	LV _{DD}	11		
TSEC1_TX_ER	B8	0	LV _{DD}	—		
TSEC1_TX_CLK	C6	I	LV _{DD}	—		
TSEC1_GTX_CLK	B6	0	LV _{DD}	18		
TSEC1_CRS	C3	I	LV _{DD}			
TSEC1_COL	G7	I	LV _{DD}			
TSEC1_RXD[7:0]	D4, B4, D3, D5, B5, A5, F6, E6	I	LV _{DD}	_		
TSEC1_RX_DV	D2	I	LV _{DD}			
TSEC1_RX_ER	E5	I	LV _{DD}			
TSEC1_RX_CLK	D6	I	LV _{DD}	_		
	Three-Speed Ethernet Controller (Gigabit Ethern	et 2)				
TSEC2_TXD[7:2]	B10, A10, J10, K11,J11, H11	0	LV _{DD}	5, 9		
TSEC2_TXD[1:0]	G11, E11	0	LV _{DD}	—		
TSEC2_TX_EN	B11	0	LV _{DD}	11		
TSEC2_TX_ER	D11	0	LV _{DD}			
TSEC2_TX_CLK	D10	I	LV _{DD}			
TSEC2_GTX_CLK	C10	0	LV _{DD}	18		
TSEC2_CRS	D9	I	LV _{DD}			
TSEC2_COL	F8	I	LV _{DD}			
TSEC2_RXD[7:0]	F9, E9, C9, B9, A9, H9, G10, F10	I	LV _{DD}			
TSEC2_RX_DV	H8	I	LV _{DD}	—		
TSEC2_RX_ER	A8	I	LV _{DD}	_		
TSEC2_RX_CLK	E10	I	LV _{DD}			
RapidIO Interface						
RIO_RCLK	Y25	I	OV _{DD}	—		
RIO_RCLK	Y24		OV _{DD}	—		

MPC8560 Integrated Processor Hardware Specifications, Rev. 4.2

Thermal

Alpha Novatech	408-749-7601
473 Sapena Ct #15	+00-7+7-7001
Santa Clara, CA 95054	
Internet: www.alphanovatech.com	
International Electronic Research Corporation (IERC) 413 North Moss St. Burbank, CA 91502	818-842-7277
Internet: www.ctscorp.com	
Millennium Electronics (MEI)	408-436-8770
Loroco Sites	
671 East Brokaw Road	
San Jose, CA 95112	
Internet: www.mei-millennium.com	
Tyco Electronics	800-522-6752
Chip Coolers TM	
P.O. Box 3668	
Harrisburg, PA 17105-3668	
Internet: www.chipcoolers.com	
Wakefield Engineering	603-635-5102
33 Bridge St.	
Pelham, NH 03076	
Internet: www.wakefield.com	

Ultimately, the final selection of an appropriate heat sink depends on many factors, such as thermal performance at a given air velocity, spatial volume, mass, attachment method, assembly, and cost. Several heat sinks offered by Aavid Thermalloy, Alpha Novatech, IERC, Chip Coolers, Millennium Electronics, and Wakefield Engineering offer different heat sink-to-ambient thermal resistances, that will allow the MPC8560 to function in various environments.

16.2.1 Recommended Thermal Model

For system thermal modeling, the MPC8560 thermal model is shown in Figure 52. Five cuboids are used to represent this device. To simplify the model, the solder balls and substrate are modeled as a single block 29x29x1.47 mm with the conductivity adjusted accordingly. For modeling, the planar dimensions of the die are rounded to the nearest mm, so the die is modeled as 10x12 mm at a thickness of 0.76 mm. The bump/underfill layer is modeled as a collapsed resistance between the die and substrate assuming a conductivity of 0.6 in-plane and 1.9 W/m•K in the thickness dimension of 0.76 mm. The lid attach adhesive is also modeled as a collapsed resistance with dimensions of 10x12x0.050 mm and the conductivity of 1 W/m•K. The nickel plated copper lid is modeled as 12x14x1 mm. Note that the die and lid are not centered on the substrate; there is a 1.5 mm offset documented in the case outline drawing in Figure 50.

Figure 52. MPC8560 Thermal Model

16.2.2 Internal Package Conduction Resistance

For the packaging technology, shown in Table 60, the intrinsic internal conduction thermal resistance paths are as follows:

- The die junction-to-case thermal resistance
- The die junction-to-board thermal resistance

Figure 55. Thermalloy #2328B Heat Sink-to-Ambient Thermal Resistance Versus Airflow Velocity

16.2.4.2 Case 2

Every system application has different conditions that the thermal management solution must solve. As an alternate example, assume that the air reaching the component is 85 °C with an approach velocity of 1 m/sec. For a maximum junction temperature of 105 °C at 7 W, the total thermal resistance of junction to case thermal resistance plus thermal interface material plus heat sink thermal resistance must be less than 2.8 °C/W. The value of the junction to case thermal resistance in Table 60 includes the thermal interface resistance of a thin layer of thermal grease as documented in footnote 4 of the table. Assuming that the heat sink is flat enough to allow a thin layer of grease or phase change material, then the heat sink must be less than 2 °C/W.

Millennium Electronics (MEI) has tooled a heat sink MTHERM-1051 for this requirement assuming a compactPCI environment at 1 m/sec and a heat sink height of 12 mm. The MEI solution is illustrated in Figure 56 and Figure 57. This design has several significant advantages:

- The heat sink is clipped to a plastic frame attached to the application board with screws or plastic inserts at the corners away from the primary signal routing areas.
- The heat sink clip is designed to apply the force holding the heat sink in place directly above the die at a maximum force of less than 10 lbs.
- For applications with significant vibration requirements, silicone damping material can be applied between the heat sink and plastic frame.

Thermal

The spring mounting should be designed to apply the force only directly above the die. By localizing the force, rocking of the heat sink is minimized. One suggested mounting method attaches a plastic fence to the board to provide the structure on which the heat sink spring clips. The plastic fence also provides the opportunity to minimize the holes in the printed-circuit board and to locate them at the corners of the package. Figure 56 and Figure 57 provide exploded views of the plastic fence, heat sink, and spring clip.

Figure 56. Exploded Views (1) of a Heat Sink Attachment using a Plastic Force

MPC8560 Integrated Processor Hardware Specifications, Rev. 4.2

17 System Design Information

This section provides electrical and thermal design recommendations for successful application of the MPC8560.

17.1 System Clocking

The MPC8560 includes three PLLs.

- 1. The platform PLL generates the platform clock from the externally supplied SYSCLK input. The frequency ratio between the platform and SYSCLK is selected using the platform PLL ratio configuration bits as described in Section 15.2, "Platform/System PLL Ratio."
- 2. The e500 Core PLL generates the core clock as a slave to the platform clock. The frequency ratio between the e500 core clock and the platform clock is selected using the e500 PLL ratio configuration bits as described in Section 15.3, "e500 Core PLL Ratio."
- 3. The CPM PLL is slaved to the platform clock and is used to generate clocks used internally by the CPM block. The ratio between the CPM PLL and the platform clock is fixed and not under user control.

17.2 PLL Power Supply Filtering

Each of the PLLs listed above is provided with power through independent power supply pins (AV_{DD}1, AV_{DD}2, and AV_{DD}3, respectively). The AV_{DD} level should always be equivalent to V_{DD}, and preferably these voltages will be derived directly from V_{DD} through a low frequency filter scheme such as the following.

There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to provide three independent filter circuits as illustrated in Figure 58, one to each of the three AV_{DD} pins. By providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the other is reduced.

This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz range. It should be built with surface mount capacitors with minimum Effective Series Inductance (ESL). Consistent with the recommendations of Dr. Howard Johnson in *High Speed Digital Design: A Handbook of Black Magic* (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a single large value capacitor.

Each circuit should be placed as close as possible to the specific AV_{DD} pin being supplied to minimize noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AV_{DD} pin, which is on the periphery of the 783 FC-PBGA footprint, without the inductance of vias.

Figure 58 shows the PLL power supply filter circuit.

Figure 58. PLL Power Supply Filter Circuit

17.3 Decoupling Recommendations

Due to large address and data buses, and high operating frequencies, the MPC8560 can generate transient power surges and high frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from reaching other components in the MPC8560 system, and the MPC8560 itself requires a clean, tightly regulated source of power. Therefore, it is recommended that the system designer place at least one decoupling capacitor at each V_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} pins of the MPC8560. These decoupling capacitors should receive their power from separate V_{DD} , OV_{DD} , GV_{DD} , LV_{DD} , and GND power planes in the PCB, utilizing short traces to minimize inductance. Capacitors may be placed directly under the device using a standard escape pattern. Others may surround the part.

These capacitors should have a value of 0.01 or 0.1 μ F. Only ceramic SMT (surface mount technology) capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.

In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB, feeding the V_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} planes, to enable quick recharging of the smaller chip capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the quick response time necessary. They should also be connected to the power and ground planes through two vias to minimize inductance. Suggested bulk capacitors—100–330 μ F (AVX TPS tantalum or Sanyo OSCON).

17.4 Connection Recommendations

To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal level. Unused active low inputs should be tied to OV_{DD} , GV_{DD} , or LV_{DD} as required. Unused active high inputs should be connected to GND. All NC (no-connect) signals must remain unconnected.

Power and ground connections must be made to all external V_{DD} , GV_{DD} , LV_{DD} , OV_{DD} , and GND pins of the MPC8560.

17.5 Output Buffer DC Impedance

The MPC8560 drivers are characterized over process, voltage, and temperature. There are two driver types: a push-pull single-ended driver (open drain for I^2C) for all buses except RapidIO, and a current-steering differential driver for the RapidIO port.

To measure Z_0 for the single-ended drivers, an external resistor is connected from the chip pad to OV_{DD} or GND. Then, the value of each resistor is varied until the pad voltage is $OV_{DD}/2$ (see Figure 59). The output impedance is the average of two components, the resistances of the pull-up and pull-down devices.

System Design Information

When data is held high, SW1 is closed (SW2 is open) and R_P is trimmed until the voltage at the pad equals $OV_{DD}/2$. R_P then becomes the resistance of the pull-up devices. R_P and R_N are designed to be close to each other in value. Then, $Z_0 = (R_P + R_N)/2$.

Figure 59. Driver Impedance Measurement

The output impedance of the RapidIO port drivers targets 200- Ω differential resistance. The value of this resistance and the strength of the driver's current source can be found by making two measurements. First, the output voltage is measured while driving logic 1 without an external differential termination resistor. The measured voltage is $V_1 = R_{source} \times I_{source}$. Second, the output voltage is measured while driving logic 1 with an external precision differential termination resistor of value R_{term} . The measured voltage is $V_2 = 1/(1/R_1 + 1/R_2)) \times I_{source}$. Solving for the output impedance gives $R_{source} = R_{term} \times (V_1/V_2 - 1)$. The drive current is then $I_{source} = V_1/R_{source}$.

Table 61 summarizes the signal impedance targets. The driver impedance are targeted at minimum V_{DD} , nominal OV_{DD} , 105°C.

Impedance	Local Bus, Ethernet, DUART, Control, Configuration, Power Management	PCI/PCI-X	DDR DRAM	RapidIO	Symbol	Unit
R _N	43 Target	25 Target	20 Target	NA	Z ₀	W
R _P	43 Target	25 Target	20 Target	NA	Z ₀	W
Differential	NA	NA	NA	200 Target	Z _{DIFF}	W

Table 61. Impedance Characteristics

Note: Nominal supply voltages. See Table 1, $T_i = 105^{\circ}C$.

Figure 60. COP Connector Physical Pinout

17.8.1 Termination of Unused Signals

If the JTAG interface and COP header will not be used, Freescale recommends the following connections:

- TRST should be tied to HRESET through a 0 k Ω isolation resistor so that it is asserted when the system reset signal (HRESET) is asserted, ensuring that the JTAG scan chain is initialized during the power-on reset flow. Freescale recommends that the COP header be designed into the system as shown in Figure 61. If this is not possible, the isolation resistor will allow future access to TRST in case a JTAG interface may need to be wired onto the system in future debug situations.
- Tie TCK to OV_{DD} through a 10 k Ω resistor. This will prevent TCK from changing state and reading incorrect data into the device.
- No connection is required for TDI, TMS, or TDO.

Rev. No.	Substantive Change(s)
3.2	Updated Table 1 and Table 2 with 1.0 GHz device parameter requirements. Added Section 2.1.2, "Power Sequencing". Added CPM port signal drive strength to Table 3. Updated Table 4 with Maximum power data. Updated Table 4 and Table 5 with 1 GHz speed grade information. Updated Table 6 with corrected typical I/O power numbers. Updated Table 7 Note 2 lower voltage measurement point. Replaced Table 7 Note 5 with spread spectrum clocking guidelines. Added to Table 8 rise and fall time information.
	Added Section 4.4, "Real Time Clock Timing". Added precharge information to Section 6.2.2, "DDR SDRAM Output AC Timing Specifications". Removed V_{IL} and V_{IH} references from Table 21, Table 22, Table 23, and Table 24. Added reference level note to Table 21, Table 22, Table 23, Table 24, Table 25, Table 26, and Table 27. Updated TXD references to TCG in Section 7.2.3.1, "TBI Transmit AC Timing Specifications". Updated t _{TTKHDX} value in Table 25. Updated PMA_RX_CLK references to RX_CLK in Section 7.2.3.2, "TBI Receive AC Timing Specifications". Updated RXD references to RCG in Section 7.2.3.2, "TBI Receive AC Timing Specifications". Updated Table 27 Note 2. Corrected Table 29 f _{MDC} and t _{MDC} to reflect the correct minimum operating frequency. Updated Table 29 t _{MDKHDV} and t _{MDKHDX} values for clarification. Added t _{LBKHKT} and updated Note 2 in Table 32. Corrected LGTA timing references in Figure 17. Updated Figure 18, Figure 20, and Figure 22. Corrected FCC output timing reference labels in Figure 24 and Figure 25. Updated Figure 50. Clarified Table 54 Note 5. Updated Table 55 and Table 56 with 1 GHz information.
	Added heat sink removal discussion to Section 16.2.3, "Thermal Interface Materials". Corrected and added 1 GHz part number to Table 63.
3.1	Updated Table 4 and Table 5. Added Table 6. Added MCK duty cycle to Table 16. Updated f_{MDC} , t_{MDC} , t_{MDKHDV} , and t_{MDKHDX} parameters in Table 29. Added LALE to $t_{LBKHOV3}$ parameter in Table 31 and Table 32, and updated Figure 17. Corrected active level designations of some of the pins in Table 54. Updated Table 63.

Table 62. Document Revision History (continued)

Device Nomenclature

THIS PAGE INTENTIONALLY LEFT BLANK