E·XFL

NXP USA Inc. - MPC8560VTAQFB Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	1.0GHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DDR, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	-
Voltage - I/O	2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	783-BFBGA, FCBGA
Supplier Device Package	783-FCPBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8560vtaqfb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

- General-purpose parallel ports—16 parallel I/O lines with interrupt capability
- Supports inverse muxing of ATM cells (IMA)
- 256 Kbyte L2 cache/SRAM
 - Can be configured as follows
 - Full cache mode (256-Kbyte cache).
 - Full memory-mapped SRAM mode (256-Kbyte SRAM mapped as a single 256-Kbyte block or two 128-Kbyte blocks)
 - Half SRAM and half cache mode (128-Kbyte cache and 128-Kbyte memory-mapped SRAM)
 - Full ECC support on 64-bit boundary in both cache and SRAM modes
 - Cache mode supports instruction caching, data caching, or both
 - External masters can force data to be allocated into the cache through programmed memory ranges or special transaction types (stashing)
 - Eight-way set-associative cache organization (1024 sets of 32-byte cache lines)
 - Supports locking the entire cache or selected lines. Individual line locks are set and cleared through Book E instructions or by externally mastered transactions
 - Global locking and flash clearing done through writes to L2 configuration registers
 - Instruction and data locks can be flash cleared separately
 - Read and write buffering for internal bus accesses
 - SRAM features include the following:
 - I/O devices access SRAM regions by marking transactions as snoopable (global)
 - Regions can reside at any aligned location in the memory map
 - Byte accessible ECC is protected using read-modify-write transactions accesses for smaller than cache-line accesses.
- Address translation and mapping unit (ATMU)
 - Eight local access windows define mapping within local 32-bit address space
 - Inbound and outbound ATMUs map to larger external address spaces
 - Three inbound windows plus a configuration window on PCI/PCI-X
 - Four inbound windows plus a default and configuration window on RapidIO
 - Four outbound windows plus default translation for PCI
 - Eight outbound windows plus default translation for RapidIO
- DDR memory controller
 - Programmable timing supporting DDR-1 SDRAM
 - 64-bit data interface, up to 333-MHz data rate
 - Four banks of memory supported, each up to 1 Gbyte
 - DRAM chip configurations from 64 Mbits to 1 Gbit with x8/x16 data ports
 - Full ECC support
 - Page mode support (up to 16 simultaneous open pages)

4.2 TSEC Gigabit Reference Clock Timing

Table 7 provides the TSEC gigabit reference clock (EC_GTX_CLK125) AC timing specifications for the MPC8560.

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Notes
EC_GTX_CLK125 frequency	f _{G125}	_	125		MHz	
EC_GTX_CLK125 cycle time	t _{G125}	—	8		ns	
EC_GTX_CLK125 rise and fall time LV _{DD} =2.5 LV _{DD} =3.3	t _{G125R} , t _{G125F}	_	_	0.75 1	ns	2
EC_GTX_CLK125 duty cycle GMII, TBI RGMII, RTBI	t _{G125H} /t _{G125}	45 47	_	55 53	%	1, 3

Table 8. EC_GTX_	CLK125 AC Timing	Specifications
------------------	------------------	----------------

Notes:

1. Timing is guaranteed by design and characterization.

2. Rise and fall times for EC_GTX_CLK125 are measured from 0.5V and 2.0V for LV_{DD}=2.5V, and from 0.6 and 2.7V for LV_{DD}=3.3V.

3. EC_GTX_CLK125 is used to generate GTX clock for TSEC transmitter with 2% degradation EC_GTX_CLK125 duty cycle can be loosened from 47/53% as long as PHY device can tolerate the duty cycle generated by GTX_CLK of TSEC.

4.3 RapidIO Transmit Clock Input Timing

Table 9 provides the RapidIO transmit clock input (RIO_TX_CLK_IN) AC timing specifications for the MPC8560.

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Notes
RIO_TX_CLK_IN frequency	f _{RCLK}	125	_	_	MHz	—
RIO_TX_CLK_IN cycle time	t _{RCLK}	_	_	8	ns	—
RIO_TX_CLK_IN duty cycle	t _{RCLKH} /t _{RCLK}	48	—	52	%	1

Table 9. RIO_TX_CLK_IN AC Timing Specifications

Notes:

1. Requires ±100 ppm long term frequency stability. Timing is guaranteed by design and characterization.

6.2.2 DDR SDRAM Output AC Timing Specifications

For chip selects $\overline{\text{MCS1}}$ and $\overline{\text{MCS2}}$, there will always be at least 200 DDR memory clocks coming out of self-refresh after an $\overline{\text{HRESET}}$ before a precharge occurs. This will not necessarily be the case for chip selects $\overline{\text{MCS0}}$ and $\overline{\text{MCS3}}$.

6.2.2.1 DLL Enabled Mode

Table 16 and Table 17 provide the output AC timing specifications and measurement conditions for the DDR SDRAM interface with the DDR DLL enabled.

Table 16. DDR SDRAM Output AC Timing Specifications-DLL Mode

At recommended operating conditions with GV_{DD} of 2.5 V ± 5%.

Parameter	Symbol ¹	Min	Мах	Unit	Notes
MCK[n] cycle time, (MCK[n]/MCK[n] crossing)	t _{MCK}	6	10	ns	2
On chip Clock Skew	t _{MCKSKEW}	—	150	ps	3, 8
MCK[n] duty cycle	t _{MCKH} /t _{MCK}	45	55	%	8
ADDR/CMD output valid	t _{DDKHOV}	—	3	ns	4, 9
ADDR/CMD output invalid	t _{DDKHOX}	1	—	ns	4, 9
Write CMD to first MDQS capture edge	t _{DDSHMH}	t _{MCK} + 1.5	t _{MCK} + 4.0	ns	5
MDQ/MECC/MDM output setup with respect to MDQS 333 MHz 266 MHz 200 MHz	^t ddkhds, ^t ddklds	900 1100 1200	_	ps	6, 9
MDQ/MECC/MDM output hold with respect to MDQS 333 MHz 266 MHz 200 MHz	^t DDKHDX, ^t DDKLDX	900 1100 1200	_	ps	6, 9
MDQS preamble start	t _{DDSHMP}	$0.75 \times t_{MCK} + 1.5$	$0.75 imes t_{MCK} + 4.0$	ns	7, 8

Table 21. GMII Transmit AC Timing Specifications (continued)

At recommended operating conditions with LV_{DD} of 3.3 V ± 5%, or LV_{DD} =2.5V ± 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
GTX_CLK data clock rise and fall time	t _{GTXR} , t _{GTXF} 2,4		_	1.0	ns

Notes:

1. The symbols used for timing specifications herein follow the pattern t_{(first two letters of functional block)(signal)(state)}

(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{GTKHDV} symbolizes GMII transmit timing (GT) with respect to the t_{GTX} clock reference (K) going to the high state (H) relative to the time date input signals (D) reaching the valid state (V) to state or setup time. Also, t_{GTKHDX} symbolizes GMII transmit timing (GT) with respect to the t_{GTX} clock reference (K) going to the high state (H) relative to the time date input signals (D) reaching the valid state (V) to state or setup time. Also, t_{GTKHDX} symbolizes GMII transmit timing (GT) with respect to the t_{GTX} clock reference (K) going to the high state (H) relative to the time date input signals (D) going invalid (X) or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{GTX} represents the GMII(G) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2.Signal timings are measured at 0.7 V and 1.9 V voltage levels.

3.Guaranteed by characterization.

4.Guaranteed by design.

Figure 7 shows the GMII transmit AC timing diagram.

Figure 7. GMII Transmit AC Timing Diagram

7.2.1.2 GMII Receive AC Timing Specifications

Table 22 provides the GMII receive AC timing specifications.

Table 22. GMII Receive AC Timing Specifications

At recommended operating conditions with LV_{DD} of 3.3 V \pm 5%, or LV_{DD}=2.5V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
RX_CLK clock period	t _{GRX}	—	8.0	—	ns
RX_CLK duty cycle	t _{GRXH} /t _{GRX}	40	—	60	ns
RXD[7:0], RX_DV, RX_ER setup time to RX_CLK	t _{GRDVKH}	2.0	—	—	ns
RXD[7:0], RX_DV, RX_ER hold time to RX_CLK	t _{GRDXKH}	0.5	_	—	ns

7.2.4 RGMII and RTBI AC Timing Specifications

Table 27 presents the RGMII and RTBI AC timing specifications.

Table 27. RGMII and RTBI AC Timing Specifications

At recommended operating conditions with LV_{DD} of 2.5 V ± 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
Data to clock output skew (at transmitter)	t _{SKRGT} 5	-500	0	500	ps
Data to clock input skew (at receiver) ²	^t skrgt	1.0	_	2.8	ns
Clock period ³	t _{RGT} ⁶	7.2	8.0	8.8	ns
Duty cycle for 1000Base-T ⁴	t _{RGTH} /t _{RGT} 6	45	50	55	%
Duty cycle for 10BASE-T and 100BASE-TX 3	t _{RGTH} /t _{RGT} ⁶	40	50	60	%
Rise and fall time	t _{RGTR} , t _{RGTF} ^{6,7}	_	_	0.75	ns

Notes:

1.Note that, in general, the clock reference symbol representation for this section is based on the symbols RGT to represent RGMII and RTBI timing. For example, the subscript of t_{RGT} represents the TBI (T) receive (RX) clock. Note also that the notation for rise (R) and fall (F) times follows the clock symbol that is being represented. For symbols representing skews, the subscript is skew (SK) followed by the clock that is being skewed (RGT).

2. The RGMII specification requires that PC board designer add 1.5 ns or greater in trace delay to the RX_CLK in order to meet this specification. However, as stated above, this device will function with only 1.0 ns of delay.

3.For 10 and 100 Mbps, t_{RGT} scales to 400 ns ± 40 ns and 40 ns ± 4 ns, respectively.

4.Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domains as long as the minimum duty cycle is not violated and stretching occurs for no more than three t_{RGT} of the lowest speed transitioned between.

5.Guaranteed by characterization.

6.Guaranteed by design.

7.Signal timings are measured at 0.5 V and 2.0 V voltage levels.

Table 36 shows CPM I²C AC Timing.

Table	36.	СРМ	I ² C	AC	Timina
Iabio		v			g

Characteristic	Symbol	Min	Мах	Unit
SCL clock frequency (slave)	f _{SCL}	0	F _{MAX} ¹	Hz
SCL clock frequency (master)	f _{SCL}	BRGCLK/16512	BRGCLK/48	Hz
Bus free time between transmissions	t _{SDHDL}	1/(2.2 * f _{SCL})	_	S
Low period of SCL	t _{SCLCH}	1/(2.2 * f _{SCL})	_	S
High period of SCL	t _{SCHCL}	1/(2.2 * f _{SCL})	_	S
Start condition setup time ²	t _{SCHDL}	2/(divider * f _{SCL})	_	S
Start condition hold time ²	t _{SDLCL}	3/(divider * f _{SCL})	_	S
Data hold time ²	t _{SCLDX}	2/(divider * f _{SCL})	_	S
Data setup time ²	t _{SDVCH}	3/(divider * f _{SCL})	_	S
SDA/SCL rise time	t _{SRISE}	—	1/(10 * f _{SCL})	S
SDA/SCL fall time	t _{SFALL}	_	1/(33 * f _{SCL})	S
Stop condition setup time	t _{SCHDH}	2/(divider * f _{SCL})	—	S

Notes:

1.F_{MAX} = BRGCLK/(min_divider*prescaler). Where prescaler=25-I2MODE[PDIV]; and min_divider=12 if digital filter disabled and 18 if enabled.

Example #1: if I2MODE[PDIV]=11 (prescaler=4) and I2MODE[FLT]=0 (digital filter disabled) then FMAX=BRGCLK/48

Example #2: if I2MODE[PDIV]=00 (prescaler=32) and I2MODE[FLT]=1 (digital filter enabled) then FMAX=BRGCLK/576

2.divider = f_{SCL} /prescaler.

In master mode: divider = BRGCLK/(f_{SCL}*prescaler) = 2*(I2BRG[DIV]+3) In slave mode: divider = BRGCLK/(f_{SCL}*prescaler)

Figure 30 is a a diagram of CPM I²C Bus Timing.

Figure 30. CPM I²C Bus Timing Diagram

11.2 I²C AC Electrical Specifications

Table 41 provides the AC timing parameters for the I^2C interface of the MPC8560.

Table 41. I²C AC Electrical Specifications

All values refer to V_{IH} (min) and V_{IL} (max) levels (see Table 40).

Parameter	Symbol ¹	Min	Мах	Unit
SCL clock frequency	f _{I2C}	0	400	kHz
Low period of the SCL clock	t _{I2CL} ⁶	1.3	—	μs
High period of the SCL clock	t _{I2CH} ⁶	0.6	—	μs
Setup time for a repeated START condition	t _{I2SVKH} ⁶	0.6	—	μs
Hold time (repeated) START condition (after this period, the first clock pulse is generated)	t _{I2SXKL} 6	0.6		μs
Data setup time	t _{I2DVKH} ⁶	100	—	ns
Data hold time: CBUS compatible masters I ² C bus devices	t _{i2DXKL}	0 ²	0.9 ³	μs
Set-up time for STOP condition	t _{I2PVKH}	0.6	—	μs
Bus free time between a STOP and START condition	t _{I2KHDX}	1.3	_	μs
Noise margin at the LOW level for each connected device (including hysteresis)	V _{NL}	$0.1 \times OV_{DD}$		V
Noise margin at the HIGH level for each connected device (including hysteresis)	V _{NH}	$0.2 \times OV_{DD}$		V

Notes:

1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state)

(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{l2DVKH} symbolizes I²C timing (I2) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{l2C} clock reference (K) going to the high (H) state or setup time. Also, t_{l2SXKL} symbolizes I²C timing (I2) for the time that the data with respect to the start condition (S) went invalid (X) relative to the t_{l2C} clock reference (K) going to the low (L) state or hold time. Also, t_{l2PVKH} symbolizes I²C timing (I2) for the stop condition (P) reaching the valid state (V) relative to the t_{l2C} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2.MPC8560 provides a hold time of at least 300 ns for the SDA signal (referred to the V_{IHmin} of the SCL signal) to bridge the undefined region of the falling edge of SCL.

3. The maximum t_{I2DVKH} has only to be met if the device does not stretch the LOW period (t_{I2CL}) of the SCL signal.

 $4.C_B$ = capacitance of one bus line in pF.

6.Guaranteed by design.

Figure 16 provides the AC test load for the I^2C .

Figure 36. I²C AC Test Load

- The peak differential signal of the transmitter output or receiver input, is A B volts.
- The peak-to-peak differential signal of the transmitter output or receiver input, is $2 \times (A B)$ volts.

Figure 42. Differential Peak-to-Peak Voltage of Transmitter or Receiver

To illustrate these definitions using numerical values, consider the case where a LVDS transmitter has a common mode voltage of 1.2 V and each signal has a swing that goes between 1.4 and 1.0 V. Using these values, the peak-to-peak voltage swing of the signals TD, TD, RD, and RD is 400 mV. The differential signal ranges between 400 and -400 mV. The peak differential signal is 400 mV, and the peak-to-peak differential signal is 800 mV.

A timing edge is the zero-crossing of a differential signal. Each skew timing parameter on a parallel bus is synchronously measured on two signals relative to each other in the same cycle, such as data to data, data to clock, or clock to clock. A skew timing parameter may be relative to the edge of a signal or to the middle of two sequential edges.

Static skew represents the timing difference between signals that does not vary over time regardless of system activity or data pattern. Path length differences are a primary source of static skew.

Dynamic skew represents the amount of timing difference between signals that is dependent on the activity of other signals and varies over time. Crosstalk between signals is a source of dynamic skew.

Eye diagrams and compliance masks are a useful way to visualize and specify driver and receiver performance. This technique is used in several serial bus specifications. An example compliance mask is shown in Figure 43. The key difference in the application of this technique for a parallel bus is that the data is source synchronous to its bus clock while serial data is referenced to its embedded clock. Eye diagrams reveal the quality (cleanness, openness, goodness) of a driver output or receiver input. An advantage of using an eye diagram and a compliance mask is that it allows specifying the quality of a signal without requiring separate specifications for effects such as rise time, duty cycle distortion, data dependent dynamic skew, random dynamic skew, etc. This allows the individual semiconductor manufacturer maximum flexibility to trade off various performance criteria while keeping the system performance constant.

In using the eye pattern and compliance mask approach, the quality of the signal is specified by the compliance mask. The mask specifies the maximum permissible magnitude of the signal and the minimum permissible eye opening. The eye diagram for the signal under test is generated according to the specification. Compliance is determined by whether the compliance mask can be positioned over the eye diagram such that the eye pattern falls entirely within the unshaded portion of the mask.

Serial specifications have clock encoded with the data, but the LP-LVDS physical layer defined by RapidIO is a source synchronous parallel port so additional specifications to include effects that are not found in serial links are required. Specifications for the effect of bit to bit timing differences caused by static skew have been added and the eye diagrams specified are measured relative to the associated clock in order to include clock to data effects. With the transmit output (or receiver input) eye diagram, the user can determine if the transmitter output (or receiver input) is compliant with an oscilloscope with the appropriate software.

RapidIO

Figure 43. Example Compliance Mask

Y = minimum data valid amplitude

Z = maximum amplitude

1 UI = 1 unit interval = 1/baud rate

X1 = end of zero crossing region

X2 = beginning of data valid window

 $DV = data valid window = 1 - 2 \times X2$

The waveform of the signal under test must fall within the unshaded area of the mask to be compliant. Different masks are used for the driver output and the receiver input allowing each to be separately specified.

13.3.1 RapidIO Driver AC Timing Specifications

Driver AC timing specifications are provided in Table 48, Table 49, and Table 50. A driver shall comply with the specifications for each data rate/frequency for which operation of the driver is specified. Unless otherwise specified, these specifications are subject to the following conditions.

- The specifications apply over the supply voltage and ambient temperature ranges specified by the device vendor.
- The specifications apply for any combination of data patterns on the data signals.
- The output of a driver shall be connected to a 100 Ω , $\pm 1\%$, differential (bridged) resistive load.
- Clock specifications apply only to clock signals.
- Data specifications apply only to data signals (FRAME, D[0:7]).

Table 48. RapidIO Driver AC Timing Specifications—500 Mbps Data Rate

Characteristic	Symbol	Rai	Range		Notes
Unaracteristic	Symbol	Min	Мах	Onit	Notes
Differential output high voltage	V _{OHD}	200	540	mV	1
Differential output low voltage	V _{OLD}	-540	-200	mV	1

Table 48. RapidIO Driver AC Timing Specifications—500 Mbps Data Rate (continued)

Characteristic	Symbol	Rai	nge	Unit	Notos
Characteristic	Symbol	Min	Мах		NOLES
Duty cycle	DC	48	52	%	2, 6
V _{OD} rise time, 20%–80% of peak-to-peak differential signal swing	t _{FALL}	200	_	ps	3, 6
V _{OD} fall time, 20%–80% of peak-to-peak differential signal swing	t _{RISE}	200	_	ps	6
Data valid	DV	1260		ps	
Skew of any two data outputs	t _{DPAIR}	—	180	ps	4, 6
Skew of single data outputs to associated clock	t _{SKEW,PAIR}	-180	180	ps	5, 6

Notes:

1.See Figure 44.

2.Requires ±100 ppm long term frequency stability.

3.Measured at $V_{OD} = 0$ V.

4.Measured using the RapidIO transmit mask shown in Figure 44.

5.See Figure 49.

6.Guaranteed by design.

Table 49. RapidIO Driver AC Timing Specifications—750 Mbps Data Rate

Charactoristic	Symbol	Rai	nge	Unit	Notoo
Characteristic	Symbol	Min	Мах	Unit	Notes
Differential output high voltage	V _{OHD}	200	540	mV	1
Differential output low voltage	V _{OLD}	-540	-200	mV	1
Duty cycle	DC	48	52	%	2, 6
V _{OD} rise time, 20%–80% of peak-to-peak differential signal swing	t _{FALL}	133	—	ps	3, 6
V _{OD} fall time, 20%–80% of peak-to-peak differential signal swing	t _{RISE}	133	—	ps	6
Data valid	DV	800	—	ps	6
Skew of any two data outputs	t _{DPAIR}	—	133	ps	4, 6
Skew of single data outputs to associated clock	t _{SKEW,PAIR}	-133	133	ps	5, 6

Notes:

1.See Figure 44.

2.Requires ±100 ppm long term frequency stability.

3.Measured at $V_{OD} = 0$ V.

4.Measured using the RapidIO transmit mask shown in Figure 44.

5.See Figure 49.

6.Guaranteed by design.

RapidIO

enough that increasing the length of the sequence does not cause the resulting eye pattern to change from one that complies with the RapidIO receive mask to one that does not comply with the mask. The data carried by any given data signal in the interface may not be correlated with the data carried by any other data signal in the interface. The zero-crossings of the clock associated with a data signal shall be used as the timing reference for aligning the multiple recordings of the data signal when the recordings are overlaid.

While the method used to make the recordings and overlay them to form the eye pattern is not specified, the method used shall be demonstrably equivalent to the following method. The signal under test is repeatedly recorded with a digital oscilloscope in infinite persistence mode. Each recording is triggered by a zero-crossing of the clock associated with the data signal under test. Roughly half of the recordings are triggered by positive-going clock zero-crossings and roughly half are triggered by negative-going clock zero-crossings. Each recording is at least 1.9 UI in length (to ensure that at least one complete eye is formed) and begins 0.5 UI before the trigger point (0.5 UI before the associated clock zero-crossing). Depending on the length of the individual recordings used to generate the eye pattern, one or more complete eyes will be formed. Regardless of the number of eyes, the eye whose center is immediately to the right of the trigger point is the eye used for compliance testing.

An example of an eye pattern generated using the above method with recordings 3 UI in length is shown in Figure 47. In this example, there is no skew between the signal under test and the associated clock used to trigger the recordings. If skew was present, the eye pattern would be shifted to the left or right relative to the oscilloscope trigger point.

Figure 47. Example Receiver Input Eye Pattern

Package and Pin Listings

14 Package and Pin Listings

This section details package parameters, pin assignments, and dimensions.

14.1 Package Parameters for the MPC8560 FC-PBGA

The package parameters are as provided in the following list. The package type is $29 \text{ mm} \times 29 \text{ mm}$, 783 flip chip plastic ball grid array (FC-PBGA).

Die size	12.2 mm × 9.5 mm
Package outline	$29 \text{ mm} \times 29 \text{ mm}$
Interconnects	783
Pitch	1 mm
Minimum module height	3.07 mm
Maximum module height	3.75 mm
Solder Balls	62 Sn/36 Pb/2 Ag
Ball diameter (typical)	0.5 mm

- 3. Maximum solder ball diameter measured parallel to datum A.
- 4. Datum A, the seating plane, is defined by the spherical crowns of the solder balls.
- 5. Capacitors may not be present on all devices.
- 6. Caution must be taken not to short capacitors or exposed metal capacitor pads on package top.
- 7. The socket lid must always be oriented to A1.

14.3 Pinout Listings

Table 54 provides the pin-out listing for the MPC8560, 783 FC-PBGA package.

Table 54. MPC8560 Pinout Listing

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	PCI/PCI-X			
PCI_AD[63:0]	AA14, AB14, AC14, AD14, AE14, AF14, AG14, AH14, V15, W15, Y15, AA15, AB15, AC15, AD15, AG15, AH15, V16, W16, AB16, AC16, AD16, AE16, AF16, V17, W17, Y17, AA17, AB17, AE17, AF17, AF18, AH6, AD7, AE7, AH7, AB8, AC8, AF8, AG8, AD9, AE9, AF9, AG9, AH9, W10, Y10, AA10, AE11, AF11, AG11, AH11, V12, W12, Y12, AB12, AD12, AE12, AG12, AH12, V13, Y13, AB13, AC13	I/O	OV _{DD}	17
PCI_C_BE[7:0]	AG13, AH13, V14, W14, AH8, AB10, AD11, AC12	I/O	OV_{DD}	17
PCI_PAR	AA11	I/O	OV_DD	_
PCI_PAR64	Y14	I/O	OV_DD	_
PCI_FRAME	AC10	I/O	OV_DD	2
PCI_TRDY	AG10	I/O	OV_DD	2
PCI_IRDY	AD10	I/O	OV_DD	2
PCI_STOP	V11	I/O	OV_DD	2
PCI_DEVSEL	AH10	I/O	OV_DD	2
PCI_IDSEL	AA9	I	OV_DD	_
PCI_REQ64	AE13	I/O	OV_DD	5, 10
PCI_ACK64	AD13	I/O	OV_DD	2
PCI_PERR	W11	I/O	OV_{DD}	2
PCI_SERR	Y11	I/O	OV_DD	2, 4
PCI_REQ0	AF5	I/O	OV_{DD}	-
PCI_REQ[1:4]	AF3, AE4, AG4, AE5	I	OV _{DD}	_
PCI_GNT[0]	AE6	I/O	OV _{DD}	—
PCI_GNT[1:4]	AG5, AH5, AF6, AG6	0	OV _{DD}	5, 9

15 Clocking

This section describes the PLL configuration of the MPC8560. Note that the platform clock is identical to the CCB clock.

15.1 Clock Ranges

Table 55 provides the clocking specifications for the processor core and Table 56 provides the clocking specifications for the memory bus.

	Maximum Processor Core Frequency							
Characteristic	667	MHz	833 MHz		1 0	1 GHz		Notes
	Min	Мах	Min	Max	Min	Мах		
e500 core processor frequency	400	667	400	833	400	1000	MHz	1, 2, 3

Table 55. Processor Core Clocking Specifications

Notes:

1.Caution: The CCB to SYSCLK ratio and e500 core to CCB ratio settings must be chosen such that the resulting SYSCLK frequency, e500 (core) frequency, and CCB frequency do not exceed their respective maximum or minimum operating frequencies. Refer to Section 15.2, "Platform/System PLL Ratio," and Section 15.3, "e500 Core PLL Ratio," for ratio settings.

2.) The minimum e500 core frequency is based on the minimum platform frequency of 200 MHz.

3.)The 1.0 GHz core frequency is based on a 1.3 V VDD supply voltage.

Table 56. Memory Bus Clocking Specifications

	Maximum Processor Core Frequency							
Characteristic	667	MHz	833 MHz		1 GHz		Unit	Notes
	Min	Max	Min	Max	Min	Max		
Memory bus frequency	100	166	100	166	100	166	MHz	1, 2, 3

Notes:

Caution: The CCB to SYSCLK ratio and e500 core to CCB ratio settings must be chosen such that the resulting SYSCLK frequency, e500 (core) frequency, and CCB frequency do not exceed their respective maximum or minimum operating frequencies. Refer to Section 15.2, "Platform/System PLL Ratio," and Section 15.3, "e500 Core PLL Ratio," for ratio settings.

2. The memory bus speed is half of the DDR data rate, hence, half of the platform clock frequency.

3.) The 1.0 GHz core frequency is based on a 1.3 V VDD supply voltage.

Thermal

888-246-9050

Thermagon Inc. 4707 Detroit Ave. Cleveland, OH 44102 Internet: www.thermagon.com

16.2.4 Heat Sink Selection Examples

The following section provides a heat sink selection example using one of the commercially available heat sinks.

16.2.4.1 Case 1

For preliminary heat sink sizing, the die-junction temperature can be expressed as follows:

$$T_{J} = T_{I} + T_{R} + (\theta_{JC} + \theta_{INT} + \theta_{SA}) \times P_{D}$$

where

 T_J is the die-junction temperature

T_I is the inlet cabinet ambient temperature

 T_R is the air temperature rise within the computer cabinet

 θ_{IC} is the junction-to-case thermal resistance

 θ_{INT} is the adhesive or interface material thermal resistance

 θ_{SA} is the heat sink base-to-ambient thermal resistance

P_D is the power dissipated by the device

During operation the die-junction temperatures (T_J) should be maintained within the range specified in Table 2. The temperature of air cooling the component greatly depends on the ambient inlet air temperature and the air temperature rise within the electronic cabinet. An electronic cabinet inlet-air temperature (T_A) may range from 30° to 40°C. The air temperature rise within a cabinet (T_R) may be in the range of 5° to 10°C. The thermal resistance of some thermal interface material (θ_{INT}) may be about 1°C/W. Assuming a T_I of 30°C, a T_R of 5°C, a FC-PBGA package $\theta_{JC} = 0.8$, and a power consumption (P_D) of 7.0 W, the following expression for T_J is obtained:

Die-junction temperature: $T_J = 30^{\circ}C + 5^{\circ}C + (0.8^{\circ}C/W + 1.0^{\circ}C/W + \theta_{SA}) \times 7.0 W$

The heat sink-to-ambient thermal resistance (θ_{SA}) versus airflow velocity for a Thermalloy heat sink #2328B is shown in Figure 55.

Assuming an air velocity of 2 m/s, we have an effective θ_{SA+} of about 3.3°C/W, thus

 $T_{I} = 30^{\circ}C + 5^{\circ}C + (0.8^{\circ}C/W + 1.0^{\circ}C/W + 3.3^{\circ}C/W) \times 7.0 W,$

resulting in a die-junction temperature of approximately 71°C which is well within the maximum operating temperature of the component.

Thermal

ltem No	QTY	MEI PN	Description
1	1	MFRAME-2000	HEATSINK FRAME
2	1	MSNK-1120	EXTRUDED HEATSINK
3	1	MCLIP-1013	CLIP
4	4	MPPINS-1000	FRAME ATTACHMENT PINS

Illustrative source provided by Millennium Electronics (MEI)

Figure 57. Exploded Views (2) of a Heat Sink Attachment using a Plastic Fence

The die junction-to-ambient and the heat sink-to-ambient thermal resistances are common figure-of-merits used for comparing the thermal performance of various microelectronic packaging technologies, one should exercise caution when only using this metric in determining thermal management because no single parameter can adequately describe three-dimensional heat flow. The final die-junction operating temperature is not only a function of the component-level thermal resistance, but the system level design and its operating conditions. In addition to the component's power consumption, a number of factors affect the final operating die-junction temperature: airflow, board population (local heat flux of adjacent components), system air temperature rise, altitude, etc.

Due to the complexity and the many variations of system-level boundary conditions for today's microelectronic equipment, the combined effects of the heat transfer mechanisms (radiation convection and conduction) may vary widely. For these reasons, we recommend using conjugate heat transfer models for the boards, as well as, system-level designs.

17.6 Configuration Pin Muxing

The MPC8560 provides the user with power-on configuration options which can be set through the use of external pull-up or pull-down resistors of 4.7 k Ω on certain output pins (see customer visible configuration pins). These pins are generally used as output only pins in normal operation.

While $\overline{\text{HRESET}}$ is asserted however, these pins are treated as inputs. The value presented on these pins while $\overline{\text{HRESET}}$ is asserted, is latched when $\overline{\text{HRESET}}$ deasserts, at which time the input receiver is disabled and the I/O circuit takes on its normal function. Most of these sampled configuration pins are equipped with an on-chip gated resistor of approximately 20 k Ω . This value should permit the 4.7-k Ω resistor to pull the configuration pin to a valid logic low level. The pull-up resistor is enabled only during $\overline{\text{HRESET}}$ (and for platform/system clocks after $\overline{\text{HRESET}}$ deassertion to ensure capture of the reset value). When the input receiver is disabled the pull-up is also, thus allowing functional operation of the pin as an output with minimal signal quality or delay disruption. The default value for all configuration bits treated this way has been encoded such that a high voltage level puts the device into the default state and external resistors are needed only when non-default settings are required by the user.

Careful board layout with stubless connections to these pull-down resistors coupled with the large value of the pull-down resistor should minimize the disruption of signal quality or speed for output pins thus configured.

The platform PLL ratio and e500 PLL ratio configuration pins are not equipped with these default pull-up devices.

17.7 Pull-Up Resistor Requirements

The MPC8560 requires high resistance pull-up resistors (10 k Ω is recommended) on open drain type pins including EPIC interrupt pins. I²C open drain type pins should be pulled up with ~1 k Ω resistors.

Correct operation of the JTAG interface requires configuration of a group of system control pins as demonstrated in Figure 61. Care must be taken to ensure that these pins are maintained at a valid deasserted state under normal operating conditions as most have asynchronous behavior and spurious assertion will give unpredictable results.

TSEC1_TXD[3:0] must not be pulled low during reset. Some PHY chips have internal pulldowns that could cause this to happen. If such PHY chips are used, then a pullup must be placed on these signals strong enough to restore these signals to a logical 1 during reset.

Three test pins also require pull-up resistors (100 Ω - 1 k Ω). These pins are L1_TSTCLK, L2_TSTCLK, and <u>LSSD_MODE</u>. These signals are for factory use only and must be pulled up to OVDD for normal machine operation.

Refer to the PCI 2.2 specification for all pull-ups required for PCI.

18 Document Revision History

Table 62 provides a revision history for this hardware specification.

Rev. No.	Substantive Change(s)
4.2	Added "Note: Rise/Fall Time on CPM Input Pins" and following note text to Section 9.2, "CPM AC Timing Specifications."
4.1	Inserted Figure 3 and paragraph above it.
	Added PCI/PCI-X row to Input Voltage characteristic and added footnote 6 to Table 1.
4	Updated Section 2.1.2, "Power Sequencing."
	Updated back page information.
3.5	Updated Section 2.1.2, "Power Sequencing."
3.4	Updated MV _{REF} Max Value in Table 1.
	Updated MV _{REF} Max Value in Table 2.
	Added new revision level information to Table 63
3.3	Updated MV _{REF} Max Value in Table 1.
	Removed Figure 3.
	In Table 4, replaced TBD with power numbers and added footnote.
	Updated specs and footnotes in Table 8.
	Corrected max number for MV _{REF} in Table 13.
	Changed parameter "Clock cycle duration" to "Clock period" in Table 27.
	Added note 4 to $t_{LBKHOV1}$ and removed LALE reference from $t_{LBKHOV3}$ in Table 31 and Table 32.
	Updated LALE signal in Figure 17 and Figure 18.
	Modified Figure 21.
	Modified Figure 61.

Rev. No.	Substantive Change(s)
3.0	Table 1—Corrected MII management voltage reference
	Section 2.1.3—New
	Table 2—Corrected MII management voltage reference
	Table 5—Removed 'minimum' column
	Table 5—Added AV _{DD} power table
	Table 8—New
	Table 9—New
	Table 9—New
	Table 13—Added overshoot/undershoot note.
	Figure 4—New
	Table 16—Restated t _{MCKSKEW1} as t _{MCKSKEW} , removed t _{MCKSKEW2} ; added speed-specific minimumvalues for 333, 266, and 200 MHz; updated t _{DDSHME} values.
	Updated chapter to reflect that GMII, MII and TBI can be run with 2.5V signalling.
	Table 29—Added MDIO output valid timing
	Table 31—Updated t _{LBIVKH1} , t _{LBIXKH1} , and t _{LBOTOT} .
	Table 32—New
	Figure 20, Figure 22—Updated clock reference
	Table 34—Updated t _{TDIVKH}
	Table 35—Updated t _{TDKHOX}
	Added tables and figures for CPM I ² C
	Table 45—Updated t _{PCIVKH}
	Section 14.1— Changed minimum height from 2.22 to 3.07 and maximum from 2.76 to 3.75
	Table 54.—Updated MII management voltage reference and added note 20.
	Section 16.2.4.1—Changed θ_{JC} from 0.3 to 0.8; changed die-junction temperature from 67° to 71°
	Section 17.7—Added paragraph that begins "TSEC1_TXD[3:0]"
2.1	Section 2.1.3—New
	Table 16—Added speed-specific minimum values for 333, 266, and 200 MHz
	Table 31—Replaced all references to TSEC1_TXD[6:5] to TSEC2_TXD[6:5]
	Table 31—Added t _{LBSKEW} and note 3
	Table 31—Added comment about rev. 2.x devices to note 5
	Section 14.1— Changed minimum height from 2.22 to 3.07 and maximum from 2.76 to 3.75
	Section 16.2.4.1—Changed θ_{JC} from 0.3 to 0.8; changed die-junction temperature from 67° to 71°
	Section 17.7—Added paragraph that begins "TSEC1_TXD[3:0]"

Table 62. Document Revision History (continued)

THIS PAGE INTENTIONALLY LEFT BLANK