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— General-purpose parallel ports—16 parallel I/O lines with interrupt capability 

— Supports inverse muxing of ATM cells (IMA)

• 256 Kbyte L2 cache/SRAM

— Can be configured as follows

– Full cache mode (256-Kbyte cache). 

– Full memory-mapped SRAM mode (256-Kbyte SRAM mapped as a single 256-Kbyte 
block or two 128-Kbyte blocks)

– Half SRAM and half cache mode (128-Kbyte cache and 128-Kbyte memory-mapped 
SRAM)

— Full ECC support on 64-bit boundary in both cache and SRAM modes

— Cache mode supports instruction caching, data caching, or both

— External masters can force data to be allocated into the cache through programmed memory 
ranges or special transaction types (stashing)

— Eight-way set-associative cache organization (1024 sets of 32-byte cache lines)

— Supports locking the entire cache or selected lines. Individual line locks are set and cleared 
through Book E instructions or by externally mastered transactions

— Global locking and flash clearing done through writes to L2 configuration registers

— Instruction and data locks can be flash cleared separately

— Read and write buffering for internal bus accesses

— SRAM features include the following:

– I/O devices access SRAM regions by marking transactions as snoopable (global) 

– Regions can reside at any aligned location in the memory map 

– Byte accessible ECC is protected using read-modify-write transactions accesses for smaller 
than cache-line accesses. 

• Address translation and mapping unit (ATMU)

— Eight local access windows define mapping within local 32-bit address space

— Inbound and outbound ATMUs map to larger external address spaces

– Three inbound windows plus a configuration window on PCI/PCI-X 

– Four inbound windows plus a default and configuration window on RapidIO

– Four outbound windows plus default translation for PCI

– Eight outbound windows plus default translation for RapidIO

• DDR memory controller

— Programmable timing supporting DDR-1 SDRAM

— 64-bit data interface, up to 333-MHz data rate

— Four banks of memory supported, each up to 1 Gbyte

— DRAM chip configurations from 64 Mbits to 1 Gbit with x8/x16 data ports

— Full ECC support

— Page mode support (up to 16 simultaneous open pages)
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4.2 TSEC Gigabit Reference Clock Timing
Table 7 provides the TSEC gigabit reference clock (EC_GTX_CLK125) AC timing specifications for the 
MPC8560.

4.3 RapidIO Transmit Clock Input Timing
Table 9 provides the RapidIO transmit clock input (RIO_TX_CLK_IN) AC timing specifications for the 
MPC8560.

Table 8. EC_GTX_CLK125 AC Timing Specifications

Parameter/Condition Symbol Min Typical Max Unit Notes

EC_GTX_CLK125 frequency fG125 — 125 — MHz —

EC_GTX_CLK125 cycle time tG125 — 8 — ns —

EC_GTX_CLK125 rise and fall time

LVDD=2.5
LVDD=3.3

tG125R, tG125F — —
0.75

1

ns 2

EC_GTX_CLK125 duty cycle

GMII, TBI

RGMII, RTBI

tG125H/tG125
45
47

—
55
53

% 1, 3

Notes:
1. Timing is guaranteed by design and characterization.

2. Rise and fall times for EC_GTX_CLK125 are measured from 0.5V and 2.0V for LVDD=2.5V, and from 0.6 and 2.7V for 
LVDD=3.3V.

3. EC_GTX_CLK125 is used to generate GTX clock for TSEC transmitter with 2% degradation EC_GTX_CLK125 duty cycle 
can be loosened from 47/53% as long as PHY device can tolerate the duty cycle generated by GTX_CLK of TSEC.

Table 9. RIO_TX_CLK_IN AC Timing Specifications

Parameter/Condition Symbol Min Typical Max Unit Notes

RIO_TX_CLK_IN frequency fRCLK 125 — — MHz —

RIO_TX_CLK_IN cycle time tRCLK — — 8 ns —

RIO_TX_CLK_IN duty cycle tRCLKH/tRCLK 48 — 52 % 1

Notes:
1. Requires ±100 ppm long term frequency stability. Timing is guaranteed by design and characterization.
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DDR SDRAM

6.2.2 DDR SDRAM Output AC Timing Specifications
For chip selects MCS1 and MCS2, there will always be at least 200 DDR memory clocks coming out of 
self-refresh after an HRESET before a precharge occurs. This will not necessarily be the case for chip 
selects MCS0 and MCS3.

6.2.2.1 DLL Enabled Mode

Table 16 and Table 17 provide the output AC timing specifications and measurement conditions for the 
DDR SDRAM interface with the DDR DLL enabled.

Table 16. DDR SDRAM Output AC Timing Specifications–DLL Mode

At recommended operating conditions with GVDD of 2.5 V ± 5%.

Parameter Symbol 1 Min Max Unit Notes

MCK[n] cycle time, (MCK[n]/MCK[n] crossing) tMCK 6 10 ns 2

On chip Clock Skew tMCKSKEW — 150 ps 3, 8

MCK[n] duty cycle tMCKH/tMCK 45 55 % 8

ADDR/CMD output valid tDDKHOV — 3 ns 4, 9

ADDR/CMD output invalid tDDKHOX 1 — ns 4, 9

Write CMD to first MDQS capture edge tDDSHMH tMCK + 1.5 tMCK + 4.0 ns 5

MDQ/MECC/MDM output setup with respect to 
MDQS

333 MHz
266 MHz
200 MHz

tDDKHDS,
tDDKLDS

900
1100
1200

— ps 6, 9

MDQ/MECC/MDM output hold with respect to 
MDQS

333 MHz
266 MHz
200 MHz

tDDKHDX,
tDDKLDX

900
1100
1200

— ps 6, 9

MDQS preamble start tDDSHMP 0.75 × tMCK + 1.5 0.75 × tMCK + 4.0 ns 7, 8
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Ethernet: Three-Speed, MII Management

Figure 7 shows the GMII transmit AC timing diagram.

Figure 7. GMII Transmit AC Timing Diagram

7.2.1.2 GMII Receive AC Timing Specifications

Table 22 provides the GMII receive AC timing specifications.

GTX_CLK data clock rise and fall time tGTXR, tGTXF
 2,4 — — 1.0 ns

Notes:
1. The symbols used for timing specifications herein follow the pattern t(first two letters of functional block)(signal)(state) 

(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tGTKHDV 
symbolizes GMII transmit timing (GT) with respect to the tGTX clock reference (K) going to the high state (H) relative 
to the time date input signals (D) reaching the valid state (V) to state or setup time. Also, tGTKHDX symbolizes GMII 
transmit timing (GT) with respect to the tGTX clock reference (K) going to the high state (H) relative to the time date 
input signals (D) going invalid (X) or hold time. Note that, in general, the clock reference symbol representation is 
based on three letters representing the clock of a particular functional. For example, the subscript of tGTX represents 
the GMII(G) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R 
(rise) or F (fall).

2.Signal timings are measured at 0.7 V and 1.9 V voltage levels.

3.Guaranteed by characterization.

4.Guaranteed by design.

Table 22. GMII Receive AC Timing Specifications

At recommended operating conditions with LVDD of 3.3 V ± 5%, or LVDD=2.5V ± 5%.

Parameter/Condition Symbol 1 Min Typ Max Unit

RX_CLK clock period tGRX — 8.0 — ns

RX_CLK duty cycle tGRXH/tGRX 40 — 60 ns

RXD[7:0], RX_DV, RX_ER setup time to RX_CLK tGRDVKH 2.0 — — ns

RXD[7:0], RX_DV, RX_ER hold time to RX_CLK tGRDXKH 0.5 — — ns

Table 21. GMII Transmit AC Timing Specifications (continued)

At recommended operating conditions with LVDD of 3.3 V ± 5%, or LVDD=2.5V ± 5%.

Parameter/Condition Symbol 1 Min Typ Max Unit

GTX_CLK

TXD[7:0]

tGTKHDX

tGTX

tGTXH

tGTXR

tGTXF

tGTKHDV

TX_EN
TX_ER
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7.2.4 RGMII and RTBI AC Timing Specifications

Table 27 presents the RGMII and RTBI AC timing specifications.

Table 27. RGMII and RTBI AC Timing Specifications

At recommended operating conditions with LVDD of 2.5 V ± 5%.

Parameter/Condition Symbol 1 Min Typ Max Unit

Data to clock output skew (at transmitter) tSKRGT
 5 –500 0 500 ps

Data to clock input skew (at receiver) 2 tSKRGT 1.0 — 2.8 ns

Clock period3 tRGT
 6 7.2 8.0 8.8 ns

Duty cycle for 1000Base-T 4 tRGTH/tRGT
 6 45 50 55 %

Duty cycle for 10BASE-T and 100BASE-TX 3 tRGTH/tRGT
 6 40 50 60 %

Rise and fall time tRGTR, tRGTF 
6,7 — — 0.75 ns

Notes:
1.Note that, in general, the clock reference symbol representation for this section is based on the symbols RGT to 

represent RGMII and RTBI timing. For example, the subscript of tRGT represents the TBI (T) receive (RX) clock. Note 
also that the notation for rise (R) and fall (F) times follows the clock symbol that is being represented. For symbols 
representing skews, the subscript is skew (SK) followed by the clock that is being skewed (RGT).

2.The RGMII specification requires that PC board designer add 1.5 ns or greater in trace delay to the RX_CLK in order to 
meet this specification. However, as stated above, this device will function with only 1.0 ns of delay.

3.For 10 and 100 Mbps, tRGT scales to 400 ns ± 40 ns and 40 ns ± 4 ns, respectively.

4.Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domains 
as long as the minimum duty cycle is not violated and stretching occurs for no more than three tRGT of the lowest 
speed transitioned between.

5.Guaranteed by characterization.

6.Guaranteed by design.

7.Signal timings are measured at 0.5 V and 2.0 V voltage levels.
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Table 36 shows CPM I2C AC Timing.

Figure 30 is a a diagram of CPM I2C Bus Timing.

Figure 30. CPM I2C Bus Timing Diagram

Table 36. CPM I2C AC Timing

Characteristic Symbol Min Max Unit

SCL clock frequency (slave) fSCL 0 FMAX
1 Hz

SCL clock frequency (master) fSCL BRGCLK/16512 BRGCLK/48 Hz

Bus free time between transmissions tSDHDL 1/(2.2 * fSCL) — s

Low period of SCL tSCLCH 1/(2.2 * fSCL) — s

High period of SCL tSCHCL 1/(2.2 * fSCL) — s

Start condition setup time 2 tSCHDL 2/(divider * fSCL) — s

Start condition hold time 2 tSDLCL 3/(divider * fSCL) — s

Data hold time 2 tSCLDX 2/(divider * fSCL) — s

Data setup time 2 tSDVCH 3/(divider * fSCL) — s

SDA/SCL rise time tSRISE — 1/(10 * fSCL) s

SDA/SCL fall time tSFALL — 1/(33 * fSCL) s

Stop condition setup time tSCHDH 2/(divider * fSCL) — s

Notes:

1.FMAX = BRGCLK/(min_divider*prescaler). Where prescaler=25-I2MODE[PDIV]; and min_divider=12 if digital filter 
disabled and 18 if enabled.

      Example #1: if I2MODE[PDIV]=11 (prescaler=4) and I2MODE[FLT]=0 (digital filter disabled) then 
FMAX=BRGCLK/48

      Example #2: if I2MODE[PDIV]=00 (prescaler=32) and I2MODE[FLT]=1 (digital filter enabled) then 
FMAX=BRGCLK/576

2.divider = fSCL/prescaler. 

      In master mode: divider = BRGCLK/(fSCL*prescaler) = 2*(I2BRG[DIV]+3)

      In slave mode: divider = BRGCLK/(fSCL*prescaler)

SCL

SDA

tSDHDL tSCLCH tSCHCL

tSCHDL

tSDLCL

tSCLDX tSDVCH

tSRISE tSFALL tSCHDH
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11.2 I2C AC Electrical Specifications
Table 41 provides the AC timing parameters for the I2C interface of the MPC8560. 

Figure 16 provides the AC test load for the I2C.

Figure 36. I2C AC Test Load

Table 41. I2C AC Electrical Specifications

All values refer to VIH (min) and VIL (max) levels (see Table 40).

Parameter Symbol 1 Min Max Unit

SCL clock frequency fI2C 0 400 kHz

Low period of the SCL clock tI2CL
 6 1.3 — μs

High period of the SCL clock tI2CH
 6 0.6 — μs

Setup time for a repeated START condition tI2SVKH
 6 0.6 — μs

Hold time (repeated) START condition (after this period, the 
first clock pulse is generated)

tI2SXKL
 6 0.6 — μs

Data setup time tI2DVKH
 6 100 — ns

Data hold time:

CBUS compatible masters
I2C bus devices

tI2DXKL
—
0 2

—
0.9 3

μs

Set-up time for STOP condition tI2PVKH 0.6 — μs

Bus free time between a STOP and START condition tI2KHDX 1.3 — μs

Noise margin at the LOW level for each connected device 
(including hysteresis)

VNL 0.1 × OVDD — V

Noise margin at the HIGH level for each connected device 
(including hysteresis)

VNH 0.2 × OVDD — V

Notes:
1.The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state) 

(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tI2DVKH 
symbolizes I2C timing (I2) with respect to the time data input signals (D) reach the valid state (V) relative to the tI2C 
clock reference (K) going to the high (H) state or setup time. Also, tI2SXKL symbolizes I2C timing (I2) for the time that 
the data with respect to the start condition (S) went invalid (X) relative to the tI2C clock reference (K) going to the low 
(L) state or hold time. Also, tI2PVKH symbolizes I2C timing (I2) for the time that the data with respect to the stop 
condition (P) reaching the valid state (V) relative to the tI2C clock reference (K) going to the high (H) state or setup 
time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2.MPC8560 provides a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge 
the undefined region of the falling edge of SCL.

3.The maximum tI2DVKH has only to be met if the device does not stretch the LOW period (tI2CL) of the SCL signal.

4.CB = capacitance of one bus line in pF.

6.Guaranteed by design.

Output OVDD/2
RL = 50 Ω

Z0 = 50 Ω
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• The peak differential signal of the transmitter output or receiver input, is A – B volts.

• The peak-to-peak differential signal of the transmitter output or receiver input, is 2 × (A – B) volts.

Figure 42. Differential Peak-to-Peak Voltage of Transmitter or Receiver

To illustrate these definitions using numerical values, consider the case where a LVDS transmitter has a 
common mode voltage of 1.2 V and each signal has a swing that goes between 1.4 and 1.0 V. Using these 
values, the peak-to-peak voltage swing of the signals TD, TD, RD, and RD is 400 mV. The differential 
signal ranges between 400 and –400 mV. The peak differential signal is 400 mV, and the peak-to-peak 
differential signal is 800 mV.

A timing edge is the zero-crossing of a differential signal. Each skew timing parameter on a parallel bus 
is synchronously measured on two signals relative to each other in the same cycle, such as data to data, 
data to clock, or clock to clock. A skew timing parameter may be relative to the edge of a signal or to the 
middle of two sequential edges.

Static skew represents the timing difference between signals that does not vary over time regardless of 
system activity or data pattern. Path length differences are a primary source of static skew.

Dynamic skew represents the amount of timing difference between signals that is dependent on the activity 
of other signals and varies over time. Crosstalk between signals is a source of dynamic skew.

Eye diagrams and compliance masks are a useful way to visualize and specify driver and receiver 
performance. This technique is used in several serial bus specifications. An example compliance mask is 
shown in Figure 43. The key difference in the application of this technique for a parallel bus is that the data 
is source synchronous to its bus clock while serial data is referenced to its embedded clock. Eye diagrams 
reveal the quality (cleanness, openness, goodness) of a driver output or receiver input. An advantage of 
using an eye diagram and a compliance mask is that it allows specifying the quality of a signal without 
requiring separate specifications for effects such as rise time, duty cycle distortion, data dependent 
dynamic skew, random dynamic skew, etc. This allows the individual semiconductor manufacturer 
maximum flexibility to trade off various performance criteria while keeping the system performance 
constant. 

In using the eye pattern and compliance mask approach, the quality of the signal is specified by the 
compliance mask. The mask specifies the maximum permissible magnitude of the signal and the minimum 
permissible eye opening. The eye diagram for the signal under test is generated according to the 
specification. Compliance is determined by whether the compliance mask can be positioned over the eye 
diagram such that the eye pattern falls entirely within the unshaded portion of the mask.

Serial specifications have clock encoded with the data, but the LP-LVDS physical layer defined by 
RapidIO is a source synchronous parallel port so additional specifications to include effects that are not 
found in serial links are required. Specifications for the effect of bit to bit timing differences caused by 
static skew have been added and the eye diagrams specified are measured relative to the associated clock 
in order to include clock to data effects. With the transmit output (or receiver input) eye diagram, the user 
can determine if the transmitter output (or receiver input) is compliant with an oscilloscope with the 
appropriate software. 

A V

B V

TD or RD

TD or RD
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Figure 43. Example Compliance Mask

Y = minimum data valid amplitude

Z = maximum amplitude

1 UI = 1 unit interval = 1/baud rate

X1 = end of zero crossing region

X2 = beginning of data valid window

DV = data valid window = 1 – 2 × X2

The waveform of the signal under test must fall within the unshaded area of the mask to be compliant. 
Different masks are used for the driver output and the receiver input allowing each to be separately 
specified.

13.3.1 RapidIO Driver AC Timing Specifications
Driver AC timing specifications are provided in Table 48, Table 49, and Table 50. A driver shall comply 
with the specifications for each data rate/frequency for which operation of the driver is specified. Unless 
otherwise specified, these specifications are subject to the following conditions.

• The specifications apply over the supply voltage and ambient temperature ranges specified by the 
device vendor. 

• The specifications apply for any combination of data patterns on the data signals.

• The output of a driver shall be connected to a 100 Ω, ±1%, differential (bridged) resistive load.

• Clock specifications apply only to clock signals.

• Data specifications apply only to data signals (FRAME, D[0:7]).

Table 48. RapidIO Driver AC Timing Specifications—500 Mbps Data Rate

Characteristic Symbol
Range

Unit Notes
Min Max

Differential output high voltage VOHD 200 540 mV 1

Differential output low voltage VOLD –540 –200 mV 1

X2

Z

0

Y

–Y

–Z

1–X2

DV

D
iff

er
en

tia
l (

V
)

Time (UI)
0 1X1 1–X1
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Duty cycle DC 48 52 % 2, 6

VOD rise time, 20%–80% of peak-to-peak 
differential signal swing

tFALL 200 — ps 3, 6

VOD fall time, 20%–80% of peak-to-peak 
differential signal swing

tRISE 200 — ps 6

Data valid DV 1260 — ps

Skew of any two data outputs tDPAIR — 180 ps 4, 6

Skew of single data outputs to associated clock tSKEW,PAIR –180 180 ps 5, 6

Notes:
1.See Figure 44.

2.Requires ±100 ppm long term frequency stability.

3.Measured at VOD = 0 V.

4.Measured using the RapidIO transmit mask shown in Figure 44.

5.See Figure 49.

6.Guaranteed by design.

Table 49. RapidIO Driver AC Timing Specifications—750 Mbps Data Rate

Characteristic Symbol
Range

Unit Notes
Min Max

Differential output high voltage VOHD 200 540 mV 1

Differential output low voltage VOLD –540 –200 mV 1

Duty cycle DC 48 52 % 2, 6

VOD rise time, 20%–80% of peak-to-peak 
differential signal swing

tFALL 133 — ps 3, 6

VOD fall time, 20%–80% of peak-to-peak 
differential signal swing

tRISE 133 — ps 6

Data valid DV 800 — ps 6

Skew of any two data outputs tDPAIR — 133 ps 4, 6

Skew of single data outputs to associated clock tSKEW,PAIR –133 133 ps 5, 6

Notes:
1.See Figure 44.

2.Requires ±100 ppm long term frequency stability.

3.Measured at VOD = 0 V.

4.Measured using the RapidIO transmit mask shown in Figure 44.

5.See Figure 49.

6.Guaranteed by design.

Table 48. RapidIO Driver AC Timing Specifications—500 Mbps Data Rate (continued)

Characteristic Symbol
Range

Unit Notes
Min Max
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enough that increasing the length of the sequence does not cause the resulting eye pattern to change from 
one that complies with the RapidIO receive mask to one that does not comply with the mask. The data 
carried by any given data signal in the interface may not be correlated with the data carried by any other 
data signal in the interface. The zero-crossings of the clock associated with a data signal shall be used as 
the timing reference for aligning the multiple recordings of the data signal when the recordings are 
overlaid.

While the method used to make the recordings and overlay them to form the eye pattern is not specified, 
the method used shall be demonstrably equivalent to the following method. The signal under test is 
repeatedly recorded with a digital oscilloscope in infinite persistence mode. Each recording is triggered by 
a zero-crossing of the clock associated with the data signal under test. Roughly half of the recordings are 
triggered by positive-going clock zero-crossings and roughly half are triggered by negative-going clock 
zero-crossings. Each recording is at least 1.9 UI in length (to ensure that at least one complete eye is 
formed) and begins 0.5 UI before the trigger point (0.5 UI before the associated clock zero-crossing). 
Depending on the length of the individual recordings used to generate the eye pattern, one or more 
complete eyes will be formed. Regardless of the number of eyes, the eye whose center is immediately to 
the right of the trigger point is the eye used for compliance testing. 

An example of an eye pattern generated using the above method with recordings 3 UI in length is shown 
in Figure 47. In this example, there is no skew between the signal under test and the associated clock used 
to trigger the recordings. If skew was present, the eye pattern would be shifted to the left or right relative 
to the oscilloscope trigger point.

 

Figure 47. Example Receiver Input Eye Pattern

0

+

–

V
ID

0.5 UI 1.0 UI 1.0 UI
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(Recording)

Trigger Point
Eye Pattern

Eye Used for
Compliance
Testing
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14  Package and Pin Listings
This section details package parameters, pin assignments, and dimensions.

14.1 Package Parameters for the MPC8560 FC-PBGA
The package parameters are as provided in the following list. The package type is 29 mm × 29 mm, 783 
flip chip plastic ball grid array (FC-PBGA).

Die size 12.2 mm × 9.5 mm 

Package outline 29 mm × 29 mm

Interconnects 783 

Pitch 1 mm

Minimum module height 3.07 mm

Maximum module height 3.75 mm

Solder Balls 62 Sn/36 Pb/2 Ag 

Ball diameter (typical) 0.5 mm
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3. Maximum solder ball diameter measured parallel to datum A.

4. Datum A, the seating plane, is defined by the spherical crowns of the solder balls.

5. Capacitors may not be present on all devices.

6. Caution must be taken not to short capacitors or exposed metal capacitor pads on package top.

7. The socket lid must always be oriented to A1.

14.3 Pinout Listings
Table 54 provides the pin-out listing for the MPC8560, 783 FC-PBGA package.

Table 54. MPC8560 Pinout Listing

Signal Package Pin Number Pin Type
Power
Supply

Notes

PCI/PCI-X

PCI_AD[63:0] AA14, AB14, AC14, AD14, AE14, AF14, AG14, AH14, 
V15, W15, Y15, AA15, AB15, AC15, AD15, AG15, 

AH15, V16, W16, AB16, AC16, AD16, AE16, AF16, 
V17, W17, Y17, AA17, AB17, AE17, AF17, AF18, AH6, 
AD7, AE7, AH7, AB8, AC8, AF8, AG8, AD9, AE9, AF9, 

AG9, AH9, W10, Y10, AA10, AE11, AF11, AG11, 
AH11, V12, W12, Y12, AB12, AD12, AE12, AG12, 

AH12, V13, Y13, AB13, AC13

I/O OVDD 17

PCI_C_BE[7:0] AG13, AH13, V14, W14, AH8, AB10, AD11, AC12 I/O OVDD 17

PCI_PAR AA11 I/O OVDD —

PCI_PAR64 Y14 I/O OVDD —

PCI_FRAME AC10 I/O OVDD 2

PCI_TRDY AG10 I/O OVDD 2

PCI_IRDY AD10 I/O OVDD 2

PCI_STOP V11 I/O OVDD 2

PCI_DEVSEL AH10 I/O OVDD 2

PCI_IDSEL AA9 I OVDD —

PCI_REQ64 AE13 I/O OVDD 5, 10

PCI_ACK64 AD13 I/O OVDD 2

PCI_PERR W11 I/O OVDD 2

PCI_SERR Y11 I/O OVDD 2, 4

PCI_REQ0 AF5 I/O OVDD —

PCI_REQ[1:4] AF3, AE4, AG4, AE5 I OVDD —

PCI_GNT[0] AE6 I/O OVDD —

PCI_GNT[1:4] AG5, AH5, AF6, AG6 O OVDD 5, 9
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15  Clocking
This section describes the PLL configuration of the MPC8560. Note that the platform clock is identical to 
the CCB clock.

15.1 Clock Ranges
Table 55 provides the clocking specifications for the processor core and Table 56 provides the clocking 
specifications for the memory bus.

Table 55. Processor Core Clocking Specifications

Characteristic

Maximum Processor Core Frequency

Unit Notes667 MHz 833 MHz 1 GHz

Min Max Min Max Min Max

e500 core processor frequency 400 667 400 833 400 1000 MHz 1, 2, 3

Notes:

1.Caution: The CCB to SYSCLK ratio and e500 core to CCB ratio settings must be chosen such that the resulting SYSCLK 
frequency, e500 (core) frequency, and CCB frequency do not exceed their respective maximum or minimum operating 
frequencies. Refer to Section 15.2, “Platform/System PLL Ratio,” and Section 15.3, “e500 Core PLL Ratio,” for ratio 
settings.

2.)The minimum e500 core frequency is based on the minimum platform frequency of 200 MHz.

3.)The 1.0 GHz core frequency is based on a 1.3 V VDD supply voltage.

Table 56. Memory Bus Clocking Specifications

Characteristic

Maximum Processor Core Frequency

Unit Notes667 MHz 833 MHz 1 GHz

Min Max Min Max Min Max

Memory bus frequency 100 166 100 166 100 166 MHz 1, 2, 3

Notes:
1.Caution: The CCB to SYSCLK ratio and e500 core to CCB ratio settings must be chosen such that the resulting SYSCLK 

frequency, e500 (core) frequency, and CCB frequency do not exceed their respective maximum or minimum operating 
frequencies. Refer to Section 15.2, “Platform/System PLL Ratio,” and Section 15.3, “e500 Core PLL Ratio,” for ratio 
settings.

2.The memory bus speed is half of the DDR data rate, hence, half of the platform clock frequency.

3.)The 1.0 GHz core frequency is based on a 1.3 V VDD supply voltage.
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Thermagon Inc. 888-246-9050
4707 Detroit Ave.
Cleveland, OH 44102
Internet: www.thermagon.com

16.2.4 Heat Sink Selection Examples
The following section provides a heat sink selection example using one of the commercially available heat 
sinks.

16.2.4.1 Case 1 

For preliminary heat sink sizing, the die-junction temperature can be expressed as follows:

TJ = TI + TR + (θJC + θINT + θSA) × PD

where

TJ is the die-junction temperature

TI is the inlet cabinet ambient temperature

TR is the air temperature rise within the computer cabinet

θJC is the junction-to-case thermal resistance

θINT is the adhesive or interface material thermal resistance

θSA is the heat sink base-to-ambient thermal resistance

PD is the power dissipated by the device

During operation the die-junction temperatures (TJ) should be maintained within the range specified in 
Table 2. The temperature of air cooling the component greatly depends on the ambient inlet air temperature 
and the air temperature rise within the electronic cabinet. An electronic cabinet inlet-air temperature (TA) 
may range from 30° to 40°C. The air temperature rise within a cabinet (TR) may be in the range of 5° to 
10°C. The thermal resistance of some thermal interface material (θINT) may be about 1°C/W. Assuming a 
TI of 30°C, a TR of 5°C, a FC-PBGA package θJC = 0.8, and a power consumption (PD) of 7.0 W, the 
following expression for TJ is obtained:

Die-junction temperature: TJ = 30°C + 5°C + (0.8°C/W + 1.0°C/W + θSA) × 7.0 W

The heat sink-to-ambient thermal resistance (θSA) versus airflow velocity for a Thermalloy heat sink 
#2328B is shown in Figure 55.

Assuming an air velocity of 2 m/s, we have an effective θSA+ of about 3.3°C/W, thus 

TJ = 30°C + 5°C + (0.8°C/W +1.0°C/W + 3.3°C/W) × 7.0 W,

resulting in a die-junction temperature of approximately 71°C which is well within the maximum 
operating temperature of the component.
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Figure 57. Exploded Views (2) of a Heat Sink Attachment using a Plastic Fence

The die junction-to-ambient and the heat sink-to-ambient thermal resistances are common figure-of-merits 
used for comparing the thermal performance of various microelectronic packaging technologies, one 
should exercise caution when only using this metric in determining thermal management because no single 
parameter can adequately describe three-dimensional heat flow. The final die-junction operating 
temperature is not only a function of the component-level thermal resistance, but the system level design 
and its operating conditions. In addition to the component’s power consumption, a number of factors affect 
the final operating die-junction temperature: airflow, board population (local heat flux of adjacent 
components), system air temperature rise, altitude, etc.

Due to the complexity and the many variations of system-level boundary conditions for today’s 
microelectronic equipment, the combined effects of the heat transfer mechanisms (radiation convection 
and conduction) may vary widely. For these reasons, we recommend using conjugate heat transfer models 
for the boards, as well as, system-level designs.
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17.6 Configuration Pin Muxing
The MPC8560 provides the user with power-on configuration options which can be set through the use of 
external pull-up or pull-down resistors of 4.7 kΩ on certain output pins (see customer visible configuration 
pins). These pins are generally used as output only pins in normal operation. 

While HRESET is asserted however, these pins are treated as inputs. The value presented on these pins 
while HRESET is asserted, is latched when HRESET deasserts, at which time the input receiver is disabled 
and the I/O circuit takes on its normal function. Most of these sampled configuration pins are equipped 
with an on-chip gated resistor of approximately 20 kΩ. This value should permit the 4.7-kΩ resistor to pull 
the configuration pin to a valid logic low level. The pull-up resistor is enabled only during HRESET (and 
for platform/system clocks after HRESET deassertion to ensure capture of the reset value). When the input 
receiver is disabled the pull-up is also, thus allowing functional operation of the pin as an output with 
minimal signal quality or delay disruption. The default value for all configuration bits treated this way has 
been encoded such that a high voltage level puts the device into the default state and external resistors are 
needed only when non-default settings are required by the user.

Careful board layout with stubless connections to these pull-down resistors coupled with the large value 
of the pull-down resistor should minimize the disruption of signal quality or speed for output pins thus 
configured.

The platform PLL ratio and e500 PLL ratio configuration pins are not equipped with these default pull-up 
devices.

17.7 Pull-Up Resistor Requirements
The MPC8560 requires high resistance pull-up resistors (10 kΩ is recommended) on open drain type pins 
including EPIC interrupt pins. I2C open drain type pins should be pulled up with ~1 kΩ resistors.

Correct operation of the JTAG interface requires configuration of a group of system control pins as 
demonstrated in Figure 61. Care must be taken to ensure that these pins are maintained at a valid deasserted 
state under normal operating conditions as most have asynchronous behavior and spurious assertion will 
give unpredictable results.

TSEC1_TXD[3:0] must not be pulled low during reset. Some PHY chips have internal pulldowns that 
could cause this to happen. If such PHY chips are used, then a pullup must be placed on these signals strong 
enough to restore these signals to a logical 1 during reset.

Three test pins also require pull-up resistors (100 Ω - 1 kΩ). These pins are L1_TSTCLK, L2_TSTCLK, 
and LSSD_MODE. These signals are for factory use only and must be pulled up to OVDD for normal 
machine operation.

Refer to the PCI 2.2 specification for all pull-ups required for PCI.
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18  Document Revision History
Table 62 provides a revision history for this hardware specification.

Table 62. Document Revision History

Rev. No. Substantive Change(s)

4.2 Added “Note: Rise/Fall Time on CPM Input Pins” and following note text to Section 9.2, “CPM AC Timing 
Specifications.”

4.1 Inserted Figure 3 and paragraph above it.

Added PCI/PCI-X row to Input Voltage characteristic and added footnote 6 to Table 1.

4 Updated Section 2.1.2, “Power Sequencing.”

Updated back page information.

3.5 Updated Section 2.1.2, “Power Sequencing.”

3.4 Updated MVREF Max Value in Table 1.

Updated MVREF Max Value in Table 2.

Added new revision level information to Table 63

3.3 Updated MVREF Max Value in Table 1.

Removed Figure 3.

In Table 4, replaced TBD with power numbers and added footnote.

Updated specs and footnotes in Table 8.

Corrected max number for MVREF in Table 13.

Changed parameter “Clock cycle duration” to “Clock period” in Table 27.

Added note 4 to tLBKHOV1 and removed LALE reference from tLBKHOV3 in Table 31 and Table 32.

Updated LALE signal in Figure 17 and Figure 18.

Modified Figure 21.

Modified Figure 61.
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3.0 Table 1—Corrected MII management voltage reference

Section 2.1.3—New

Table 2—Corrected MII management voltage reference

Table 5—Removed ‘minimum’ column

Table 5—Added AVDD power table

Table 8—New

Table 9—New

Table 9—New

Table 13—Added overshoot/undershoot note.

Figure 4—New

Table 16—Restated tMCKSKEW1 as tMCKSKEW, removed tMCKSKEW2; added speed-specific minimum 
values for 333, 266, and 200 MHz; updated tDDSHME values.

Updated chapter to reflect that GMII, MII and TBI can be run with 2.5V signalling.

Table 29—Added MDIO output valid timing

Table 31—Updated tLBIVKH1, tLBIXKH1, and tLBOTOT.

Table 32—New

Figure 20, Figure 22—Updated clock reference

Table 34—Updated tTDIVKH

Table 35—Updated tTDKHOX

Added tables and figures for CPM I2C

Table 45—Updated tPCIVKH

Section 14.1— Changed minimum height from 2.22 to 3.07 and maximum from 2.76 to 3.75

Table 54.—Updated MII management voltage reference and added note 20.

Section 16.2.4.1—Changed θJC from 0.3 to 0.8; changed die-junction temperature from 67° to 71°
Section 17.7—Added paragraph that begins “TSEC1_TXD[3:0]...”

2.1 Section 2.1.3—New

Table 16—Added speed-specific minimum values for 333, 266, and 200 MHz

Table 31—Replaced all references to TSEC1_TXD[6:5] to TSEC2_TXD[6:5]

Table 31—Added tLBSKEW and note 3

Table 31—Added comment about rev. 2.x devices to note 5

Section 14.1— Changed minimum height from 2.22 to 3.07 and maximum from 2.76 to 3.75

Section 16.2.4.1—Changed θJC from 0.3 to 0.8; changed die-junction temperature from 67° to 71°
Section 17.7—Added paragraph that begins “TSEC1_TXD[3:0]...”

Table 62. Document Revision History (continued)

Rev. No. Substantive Change(s)
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