E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z650
Core Size	32-Bit Single-Core
Speed	116MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	155
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 64x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	208-BGA
Supplier Device Package	208-BGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5668ek0vmg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MPC5668x Block Diagrams

2 MPC5668x Block Diagrams

Figure 1 shows a top-level block diagram of the MPC5668G device.

Figure 1. MPC5668G Block Diagram

MPC5668x Block Diagrams

Figure 2 shows a top level block diagram for the MPC5668E device.

Figure 2. MPC5668E Block Diagram

3 Pin Assignments

3.1 208-ball MAPBGA Pin Assignments

Figure 3 shows the 208-ball MAPBGA pin assignments.

Figure 3. MPC5668x 208-ball MAPBGA (full diagram)

3.2 256-ball MAPBGA Pin Assignments

Figure 4 shows the 256-ball MAPBGA pin assignments.

					(20	256	MAF	PBG/	A Bal		p			256 MAPBGA Ball Map (as viewed from top through the package) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16												
	1	2	3	4	5	6	7	8	9	10	11 11	12	13	14	15	16										
A	V _{SS}	PD0	PG1	PC12	PC9	PC7	PC2	PB13	PB10	PB8	RESET	V _{DDSYN}	XTAL	EXTAL	V _{SSSYN}	V _{SS}	А									
В	PD2	PD1	PG0	PC11	PC10	PC8	PC3	PB14	PB11	V _{RC}	V _{RCCTL}	PB9	PB2	PB0	V _{DDA}	V _{RH}	В									
С	PD3	PD4	PD14	PC14	PC13	PC5	PC6	PC1	PB15	PB12	PB6	PB4	PB3	PB1	V _{SSA}	V _{RL}	С									
D	PD5	PD6	PD15	V _{DD}	PC15	V _{DDE1}	V _{SS}	PC4	PC0	V _{DD}	PB7	PB5	PA10	PA12	PA0	PA14	D									
E	PD7	PD8	PE0	PE1	MDO0	V _{DDENEX}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	PA11	PA9	PA1	PA15	Е									
F	PD9	PD10	PE3	PE2	MDO1	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	PA13	PA8	PA3	PA2	F									
G	PD11	PD12	PE4	V _{SS}	MDO2	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{DD}	PA7	PA5	PA4	G									
Н	PD13	PF0	PE5	V _{DD}	MDO3	MDO4	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{RCSEL}	PG2	PG6	PA6	н									
J	PF1	PF2	TDI	PE8	MDO6	MDO5	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{DDE3}	PG3	PG7	PG11	J									
K	PK1	PK2	JCOMP	V _{DDEMLB}	MDO7	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{DDENEX}	V _{SS}	V _{DD}	PG4	PG8	PG12	К									
L	PK0	PE7	TMS	V _{DDE2}	MDO8	V _{SS}	V _{DDENEX}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{DD33}	PG5	PG9	PG13	L									
М	PF4	PE6	TDO	PE9	MDO9	MDO10	MDO11	MSEO1	MSEO0	МСКО	EVTI	EVTO	TEST	PF13	PG10	PG14	М									
Ν	PF6	PF3	PE10	PE11	V _{DD}	PE15	PE14	PH9	PH11	V _{DDE4}	PH15	PJ10	V _{SS}	PF12	PH3	PG15	Ν									
Ρ	PF8	PF5	тск	PE12	PE13	PK10	PH8	PH10	PH12	PH13	PH14	PJ11	PF15	PF14	PH4	PH1	Ρ									
R	PF10	PF7	PF11	PK4	PK6	PK8	PJ0	PJ2	PJ4	PJ6	PJ9	PJ12	PJ14	PH5	PH6	PH2	R									
т	V _{SS}	PF9	PK3	PK5	PK7	PK9	PJ1	PJ3	PJ5	PJ7	PJ8	PJ13	PJ15	PH0	PH7	V _{SS}	т									
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16										

Figure 4. MPC5668x 256-ball MAPBGA (full diagram)

Pin	Supported	GPIO (PCR)		Description	I/O	Volt-	Pad	St	atus		ge Pin tions
Name ¹	Functions ²	Num ³	FA	Description	Туре	age	Type ⁵	During Reset ⁶	After Reset ⁷		256 BGA
PE14	PE[14] SCL_A PCS_D[2]	78	00 01 10 11	Port E GPIO I ² C_A Serial Clock DSPI_D Peripheral Chip Select —	1/0 1/0 0	V _{DDE2}	SH	_		N7	N7
PE15	PE[15] SDA_A PCS_D[5]	79	00 01 10 11	Port E GPIO I ² C_A Serial Data DSPI_D Peripheral Chip Select —	1/0 1/0 0	V _{DDE2}	SH	_		N6	N6
				Port F (16)							
PF0	PF[0] SCK_A	80	00 01 10 11	Port F GPIO DSPI_A Serial Clock — —	I/O I/O —	V _{DDE2}	MH	_		H2	H2
PF1	PF[1] SOUT_A	81	00 01 10 11	Port F GPIO DSPI_A Serial Data Out —	I/O O —	V _{DDE2}	MH	_		J1	J1
PF2	PF[2] SIN_A	82	00 01 10 11	Port F GPIO DSPI_A Serial Data In — —	I/O I —	V _{DDE2}	SH	_		J2	J2
PF3	PF[3] PCS_A[0] PCS_B[5] PCS_C[4]	83	00 01 10 11	Port F GPIO DSPI_A Peripheral Chip Select DSPI_B Peripheral Chip Select DSPI_C Peripheral Chip Select	1/0 1/0 0	V _{DDE2}	SH	_		N2	N2
PF4	PF[4] SCK_B PCS_A[1] PCS_C[2]	84	00 01 10 11	Port F GPIO DSPI_B Serial Clock DSPI_A Peripheral Chip Select DSPI_C Peripheral Chip Select	1/0 1/0 0	V _{DDE2}	MH	_		M1	M1
PF5	PF[5] SOUT_B PCS_A[2] PCS_C[3]	85	01	Port F GPIO DSPI_B Serial Data Out DSPI_A Peripheral Chip Select DSPI_C Peripheral Chip Select	1/0 0 0	V _{DDE2}	MH	_		P2	P2
PF6	PF[6] SIN_B PCS_A[3] PCS_C[5]	86	00 01 10 11	Port F GPIO DSPI_B Serial Data In DSPI_A Peripheral Chip Select DSPI_C Peripheral Chip Select	I/O I O O	V _{DDE2}	SH	_	_	N1	N1
PF7	PF[7] PCS_B[0] PCS_C[5] PCS_D[4]	87	00 01 10 11	Port F GPIO DSPI_B Peripheral Chip Select DSPI_C Peripheral Chip Select DSPI_D Peripheral Chip Select	I/O I/O O	V _{DDE2}	SH			R2	R2

Table 2. MPC5668x Signal Properties (continued)

Pin	Supported	GPIO (PCR)		Description	I/O	Volt-	Pad		atus	Packa Loca	ge Pin tions
Name ¹	Functions ²	Num ³	FA	Description	Туре	age	Type ⁵	During Reset ⁶	After Reset ⁷	208 BGA	256 BGA
PF8	PF[8] SCK_C	88	00 01 10 11	Port F GPIO DSPI_C Serial Clock — —	I/O I/O —	V _{DDE2}	MH			P1	P1
PF9	PF[9] SOUT_C	89	00 01 10 11	Port F GPIO DSPI_C Serial Data Out — —	I/O O —	V _{DDE2}	MH	_	_	T2	T2
PF10	PF[10] SIN_C	90	00 01 10 11	Port F GPIO DSPI_C Serial Data In — —	I/O I —	V _{DDE2}	SH	_		R1	R1
PF11	PF[11] PCS_C[0] PCS_D[5] PCS_A[4]	91	00 01 10 11	Port F GPIO DSPI_C Peripheral Chip Select DSPI_D Peripheral Chip Select DSPI_A Peripheral Chip Select	I/O I/O O	V _{DDE2}	SH	_		R3	R3
PF12	PF[12] SCK_D	92	00 01 10 11	Port F GPIO DSPI_D Serial Clock — —	I/O I/O —	V _{DDE3}	MH			N14	N14
PF13	PF[13] SOUT_D	93	00 01 10 11	Port F GPIO DSPI_D Serial Data Out — —	I/O O —	V _{DDE3}	MH		_	M14	M14
PF14	PF[14] SIN_D	94	00 01 10 11	Port F GPIO DSPI_D Serial Data In — —	I/O I —	V _{DDE3}	SH	_	_	P14	P14
PF15	PF[15] PCS_D[0] PCS_A[5] PCS_B[4]	95		Port F GPIO DSPI_D Peripheral Chip Select DSPI_A Peripheral Chip Select DSPI_B Peripheral Chip Select	I/O I/O O	V _{DDE3}	SH	_		P13	P13
				Port G (16)			•				
PG0	PG[0] PCS_A[4] PCS_B[3] AN[48]	96	00 01 10 11	Port G GPIO DSPI_A Peripheral Chip Select DSPI_B Peripheral Chip Select ADC Analog Input	I/O O O I	V _{DDE2}	SHA	_		B3	B3
PG1	PG[1] PCS_A[5] PCS_B[4] AN[49]	97	00 01 10 11	Port G GPIO DSPI_A Peripheral Chip Select DSPI_B Peripheral Chip Select ADC Analog Input	I/O O O I	V _{DDE2}	SHA	—		A3	A3

Table 2. MPC5668x Signal Properties (continued)

Pin	Supported	GPIO (PCR)	D44	Description	I/O	Volt-	Pad	St	atus		ge Pin tions
Name ¹	Functions ²	Num ³	PA	Description	Туре	age	Type ⁵	During Reset ⁶	After Reset ⁷	208 BGA	256 BGA
PG13	PG[13] eMIOS[2] FEC_TXD[1] AN[61]	109	00 01 10 11	Port G GPIO eMIOS Channel Ethernet Transmit Data ADC Analog Input	I/O I/O O I	V _{DDE3}	MHA			L16	L16
PG14	PG[14] eMIOS[1] FEC_TXD[2] AN[62]	110	00 01 10 11	Port G GPIO eMIOS Channel Ethernet Transmit Data ADC Analog Input	I/O I/O O I	V _{DDE3}	MHA	_		M16	M16
PG15	PG[15] eMIOS[0] FEC_TXD[3] AN[63]	111	00 01 10 11	Port G GPIO eMIOS Channel Ethernet Transmit Data ADC Analog Input	I/O I/O O I	V _{DDE3}	MHA			N16	N16
				Port H (16))		•	•		•	
PH0	PH[0] eMIOS[31] FEC_COL	112	00 01 10 11	Port H GPIO eMIOS Channel Ethernet Collision —	I/O I/O I —	V _{DDE3}	SH	_		T14	T14
PH1	PH[1] eMIOS[30] FEC_RX_DV	113	00 01 10 11	Port H GPIO eMIOS Channel Ethernet Receive Data Valid —	I/O I/O I —	V _{DDE3}	SH			P16	P16
PH2	PH[2] eMIOS[29] FEC_TX_EN	114	00 01 10 11	Port H GPIO eMIOS Channel Ethernet Transmit Enable —	I/O I/O O —	V _{DDE3}	MH	_	_	R16	R16
PH3	PH[3] eMIOS[28] FEC_RX_ER	115	00 01 10 11	Port H GPIO eMIOS Channel Ethernet Receive Error —	I/O I/O I —	V _{DDE3}	SH	_		N15	N15
PH4	PH[4] eMIOS[27] FEC_RXD[0]	116	00 01 10 11	Port H GPIO eMIOS Channel Ethernet Receive Data —	/O /O 	V _{DDE3}	SH	_		P15	P15
PH5	PH[5] eMIOS[26] FEC_RXD[1]	117	00 01 10 11	Port H GPIO eMIOS Channel Ethernet Receive Data —	I/O I/O I —	V _{DDE3}	SH	_		R14	R14
PH6	PH[6] eMIOS[25] FEC_RXD[2]	118	00 01 10 11	Port H GPIO eMIOS Channel Ethernet Receive Data —	I/O I/O I —	V _{DDE3}	SH	_	_	R15	R15

Table 2. MPC5668x Signal Properties (continued)

 $\mathbf{T}_{\mathbf{J}} = \mathbf{T}_{\mathbf{A}} + (\mathbf{R}_{\theta \mathbf{J} \mathbf{A}} \times \mathbf{P}_{\mathbf{D}})$

where:

 T_A = ambient temperature for the package (^oC)

 $R_{\theta JA}$ = junction to ambient thermal resistance (°C/W)

 P_D = power dissipation in the package (W)

The supplied thermal resistances are provided based on JEDEC JESD51 series of standards to provide consistent values for estimations and comparisons. The difference between the values determined on the single-layer (1s) board and on the four-layer board with two signal layers and a power and a ground plane (2s2p) clearly demonstrate that the effective thermal resistance of the component is not a constant. It depends on the construction of the application board (number of planes), the effective size of the board which cools the component, how well the component is thermally and electrically connected to the planes, and the power being dissipated by adjacent components.

Connect all the ground and power balls to the respective planes with one via per ball. Using fewer vias to connect the package to the planes reduces the thermal performance. Thinner planes also reduce the thermal performance. When the clearance between through vias leave the planes virtually disconnected, the thermal performance is also greatly reduced.

As a general rule, the value obtained on a single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the application board has one oz. (35 micron nominal thickness) internal planes, the components are well separated, and the overall power dissipation on the board is less than 0.02 W/cm^2 .

The thermal performance of any component depends strongly on the power dissipation of surrounding components. In addition, the ambient temperature varies widely within the application. For many natural convection and especially closed box applications, the board temperature at the perimeter (edge) of the package is approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device.

At a known board temperature, the junction temperature is estimated using the following equation:

$$T_{J} = T_{B} + (R_{\theta JB} \times P_{D})$$
 Eqn. 2

where:

 $T_J =$ junction temperature (°C)

 T_B = board temperature at the package perimeter (^oC/W)

 $R_{\theta IB}$ = junction to board thermal resistance (°C/W) per JESD51-8

 P_D = power dissipation in the package (W)

When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. The application board should be similar to the thermal test condition, with the component soldered to a board with internal planes.

Historically, the thermal resistance has frequently been expressed as the sum of a junction to case thermal resistance and a case to ambient thermal resistance:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA} \qquad \qquad Eqn. 3$$

where:

 $R_{\theta JA}$ = junction to ambient thermal resistance (°C/W)

 $R_{\theta JC}$ = junction to case thermal resistance (°C/W)

 $R_{\theta CA}$ = case to ambient thermal resistance (^oC/W)

Eqn. 1

 $R_{\theta JC}$ is device related and cannot be influenced by the user. The user controls the thermal environment to change the case to ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the air flow around the device, add a heat sink, change the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. This description is most useful for packages with heat sinks where some 90% of the heat flow is through the case to the heat sink to ambient. For most packages, a better model is required.

A more accurate two-resistor thermal model can be constructed from the junction to board thermal resistance and the junction to case thermal resistance. The junction to case covers the situation where a heat sink will be used or where a substantial amount of heat is dissipated from the top of the package. The junction to board thermal resistance describes the thermal performance when most of the heat is conducted to the printed circuit board. This model can be used for either hand estimations or for a computational fluid dynamics (CFD) thermal model.

To determine the junction temperature of the device in the application after prototypes are available, the Thermal Characterization Parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

$$T_{J} = T_{T} + (\Psi_{JT} \times P_{D})$$
 Eqn. 4

where:

 T_T = thermocouple temperature on top of the package (^oC)

 $\Psi_{\rm JT}$ = thermal characterization parameter (^oC/W)

 P_D = power dissipation in the package (W)

The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

References:

Semiconductor Equipment and Materials International 3081 Zanker Road San Jose, CA 95134 (408) 943-6900

MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or 303-397-7956.

JEDEC specifications are available on the WEB at http://www.jedec.org.

- 1. C.E. Triplett and B. Joiner, "An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module," Proceedings of SemiTherm, San Diego, 1998, pp. 47–54.
- 2. G. Kromann, S. Shidore, and S. Addison, "Thermal Modeling of a PBGA for Air-Cooled Applications," Electronic Packaging and Production, pp. 53–58, March 1998.
- 3. B. Joiner and V. Adams, "Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling," Proceedings of SemiTherm, San Diego, 1999, pp. 212–220.

4.3 ESD Characteristics

Characteristic	Symbol	Value	Unit
ESD for Human Body Model (HBM)		2000	V
HBM Circuit Description	R1	1500	Ohm
	С	100	pF
ESD for Field Induced Charge Model (FDCM)		750 (corner pins)	
		250 (all other pins)	V
Number of Pulses per pin: Positive Pulses (HBM) Negative Pulses (HBM)		1 1	
Interval of Pulses	—	1	second

Table 6. ESD Ratings^{1, 2}

¹ All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

² A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

4.4 VRC Electrical Specifications

Table 7. VRC Electrical Specifications

Spec	Characteristic	Symbol	Min	Max	Units
1	Current which can be sourced by V _{RCCTL}	I_V _{RCCTL}	6.25 µA	20 mA	_
2	Minimum Required Gain from external circuit: $I_{DD} / I_V_{RCCTL} (@V_{DD} = 1.32 V)^1$ $-40^{\circ}C$ $25^{\circ}C$ $150^{\circ}C$	BETA	50 50 50	500	

¹ Assumes "typical usage" currents which will vary with application.

4.5 DC Electrical Specifications

Table 8. DC Electrical Specifications

Spec	Characteristic	Symbol	Min	Max	Unit
1	Maximum Operating Temperature Range — Die Junction Temperature	Τ _J	-40.0	150.0	°C
2	3.3 V Clock Synthesizer Voltage ¹	V _{DDSYN}	3.0	3.6	V
3	3.3 V I/O Buffer Voltage ¹	V _{DD33}	3.0	3.6	V
4	3.3–5.0 V Voltage Regulator Reference Voltage ¹ $V_{RCSEL} = V_{SSA}$ $V_{RCSEL} = V_{DDA}$	V _{VRC}	3.0 4.5	3.6 5.5	V
5	3.3–5.0 V Analog Supply Voltage	V _{DDA}	maximum of 3.0 V or V _{VRC} - 0.1	5.5	V

Spec	Characteristic	Symbol	Typ ¹ 25 °C Ambient	Max ¹ −40–150 °C Junction	Unit
5	V _{DDSYN} Current V _{DD33} @ 3.0 V – 3.6 V Run mode Sleep mode – Optional ⁴ 4–40 MHz osc enabled w/ no clock – Optional ⁴ 4–40 MHz osc enabled w/ clock	IDDSYN	5 1 +150 +300	10 20 +350 +400	mA μA μA
6	V_{RC} Current (excluding I _{DD} , I _{DD33} , I _{DDSYN}) ⁵ V_{RC} @ 3.135 V – 5.5 V Run mode Sleep mode – Optional ⁴ 16MIRC enabled	I _{RC}	1 0 +40	10 10 +60	mA μA μA
7	V _{DD} Current V _{DD} @ 1.08 V – 1.32 V Run mode (Maximum @ 116 MHz) ⁶ Sleep mode – Optional ⁴ 128KIRC enabled – Optional ⁴ 16MIRC enabled – Optional ⁴ 32 kHz osc enabled – Optional ⁴ 4–40 MHz osc enabled w/ no clock – Optional ⁴ 4–40 MHz osc enabled w/ clock – Optional ⁴ 4–40 MHz osc enabled w/ clock – Optional ⁴ 32 KB RAM – Optional ⁴ 64 KB RAM – Optional ⁴ 128 KB RAM	I _{DD}	200 100 +5 +200 +5 +5 +150 +10 +20 +40	340 900 +10 +220 +20 +20 +150 +300 +600	mΑ μΑ μΑ μΑ μΑ μΑ μΑ

Table 9. Operating Currents (continued)

¹ Typ – Nominal voltage levels and functional activity. Max – Maximum voltage levels and functional activity.

² Static state of pins is when input pins are disabled or not being toggled and driven to a valid input level, output pins are not toggling or driving against any current loads, and internal pull devices are disabled or not pulling against any current loads.

³ Dynamic current from pins is application-specific and depends on active pull devices, switching outputs, output capacitive and current loads, and switching inputs. Refer to Table 10 for more information.

⁴ Optional currents are values that should be added to their respective current specifications to obtain the actual value for that specification when the optional function is active. The plus sign (+) in the Typ and Max columns indicates these optional currents. For example, V_{DDSYN} in Sleep mode draws 1 .μA (typ). With the optional 4–40 MHz osc enabled w/ no clock, add 150 .μA for a total of 151 .μA (typ).

 5 V_{RC} Current excluding the current supply to V_{DD33}, V_{DDSYN} and V_{DD} from V_{RC}.

⁶ Maximum supply current transition: 50mA per 20μS observation window.

4.8 Low Voltage Characteristics

Table 13. Low Voltage Monitors

Spec	Characteristic	Symbol	Min	Typical	Мах	Unit
1	Power-on-Reset Assert Level ¹	V _{POR}	1.5	—	2.8	V
2	Low Voltage Monitor 3.3 V ² Assert Level De-assert Level	V _{LVI33A} V _{LVI33D}	3.00 3.04	3.05 3.12	3.10 3.19	V
3	Low Voltage Monitor Synthesizer ³ Assert Level De-assert Level	V _{LVISYNA} V _{LVISYND}	3.00 3.04	3.05 3.12	3.10 3.19	V
4	Low Voltage Monitor 3.0 V Low Threshold ¹ VRCSEL = V_{SSA} Assert Level De-assert Level VRCSEL = V_{DDA} Assert Level De-assert Level	VLVI_VDDA_LOA VLVI_VDDA_LOD VLVI_VDDA_LOA VLVI_VDDA_LOD	3.00 3.04 3.25 3.35	3.05 3.12 3.35 3.45	3.10 3.19 3.48 3.55	V
5	Low Voltage Monitor 5.0 V ^{1, 4} Assert Level De-assert Level	V _{lvi_vdda_a} V _{lvi_vdda_d}	4.35 4.45	4.475 4.575	4.55 4.65	V
6	Low Voltage Monitor 5.0 V High Threshold ^{1, 5} Assert Level De-assert Level	V _{LVI_VDDA_HA} V _{LVI_VDDA_HD}	4.50 4.50	4.675 4.675	4.80 4.80	V

¹ Monitors V_{DDA}.

 2 Monitors $V_{DD33.}$

³ Monitors V_{DDSYN}.

 $^4\,$ Disabled when V_{RCSEL} = V_{SSA}.

4.9 Oscillators Electrical Characteristics

Table 14. 3.3 V High Frequency External Oscillator

Spec	Characteristic	Symbol	Min	Мах	Unit
1	Frequency Range	f _{ref}	4 ¹	40	MHz
2	Duty Cycle of reference	t _{DC}	40	60	%
3	EXTAL Input High Voltage External crystal mode ² External clock mode	V _{IHEXT}	V _{XTAL} + 0.4 0.65 × V _{DDSYN}	V _{DDSYN} + 0.3 V _{DDSYN} + 0.3	V
4	EXTAL Input Low Voltage External crystal mode ³ External clock mode	V _{ILEXT}	V _{DDSYN} – 0.3 V _{DDSYN} – 0.3	$V_{XTAL} - 0.4$ $0.35 \times V_{DDSYN}$	V
5	XTAL Current ⁴	I _{XTAL}	1	3	mA
6	Total On-chip stray capacitance on XTAL	C _{S_XTAL}	—	3	pF
7	Total On-chip stray capacitance on EXTAL	C _{S_EXTAL}	_	3	pF

Spec	Characteristic	Symbol	Range	Min	Тур	Max	Unit
1	Frequency before trim ¹	F _{ut128}	35%	83.2	128	172.8	kHz
2	Frequency after loading factory trim ²	F _{t128}	7%	119.0	128	137.0	kHz
3	Application trim resolution ³	T _{s128}	—	_	_	±2	%
4	Application frequency trim step ³	F _{s128}	—	_	4	_	kHz
5	Startup Time	S _{t128}	—			100	μs

Table 17. 5V Low Frequency (128 kHz) Internal RC Oscillator

¹ Across process, voltage, and temperature.

² Across voltage and temperature.

³ Fixed voltage and temperature.

4.10 FMPLL Electrical Characteristics

Table 18. FMPLL Electrical Specifications¹

Spec	Characteristic	Symbol	Min	Мах	Unit
1	System Frequency ²	f _{SYS}	_	116	MHz
2	PLL Reference Frequency Range	f _{REF}	4	40	MHz
3	PLL Frequency	f _{PLL}	$\frac{f_{vco(min)}}{(ERFD+1)}$		MHz
4	Loss of Reference Frequency ³	f _{LOR}	100	2000	kHz
5	Self Clocked Mode Frequency	f _{SCM}	16	64	MHz
6	PLL Lock Time ⁴	t _{LPLL}	_	400	μs
7	Duty Cycle of Reference	t _{DC}	40	60	%
8	Frequency un-LOCK Range	f _{UL}	-4.0	4.0	% f _{SYS}
9	Frequency LOCK Range	f _{LCK}	-2.0	2.0	% f _{SYS}
10	CLKOUT Period Jitter, ⁵ Measured at f _{SYS} Max Cycle-to-cycle Jitter	C _{Jitter}	-5	5	%f _{SYS}
11	CLKOUT Jitter at \ge 50 µs period	C _{Jitter}	-250	250	ns
12	Peak-to-Peak Frequency Modulation Range Limit ^{6,7} (f _{SYS} Max must not be exceeded)	C _{mod}	0	4	%f _{SYS}
13	FM Depth Tolerance ⁸	C _{mod_err}	-0.50	0.50	%f _{SYS}
14	VCO Frequency ⁹	f _{VCO}	192	600	MHz
15	Modulation Rate Limits ¹⁰	f _{MOD}	0.400	1	MHz

¹ V_{DDSYN} = 3.0 V to 3.6 V, V_{SS} = V_{SSSYN} = 0 V, T_{A} = T_{L} to T_{H} .

4.14.6 Deserial Serial Peripheral Interface (DSPI)

Table	29.	DSPI	Timing
-------	-----	------	--------

Crace	Characteristic	Sumhal	116	Unit	
Spec	Characteristic	Symbol	Min. Value	Max. Value	Unit
1	DSPI Cycle Time t _{SCK} Master (MTFE = 0) Slave (MTFE = 0) Master (MTFE = 1) Slave (MTFE = 1)		100 100 50 50	 	ns ns ns ns
2	PCS to SCK Delay ²	tcsc	7	—	ns
3	After SCK Delay ³	t _{ASC}	14	—	ns
4	SCK Duty Cycle	t _{SDC}	$0.4 imes t_{SCK}$	$0.6 imes t_{SCK}$	ns
5	Slave Access Time (SS active to SOUT valid)	t _A	—	25	ns
6	Slave SOUT Disable Time (SS inactive to SOUT High-Z or invalid)	t _{DIS}	—	25	ns
7	PCSx to PCSS time	t _{PCSC}	0	—	ns
8	PCSS to PCSx time	t _{PASC}	0	_	ns
9	Data Setup Time for Inputs Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0) ⁴ Master (MTFE = 1, CPHA = 1)	t _{SUI}	25 5 10 25	 	ns ns ns ns
10	Data Hold Time for Inputs Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0) ⁴ Master (MTFE = 1, CPHA = 1)	t _{HI}	-4 7 12 -4	 	ns ns ns ns
11	Data Valid (after SCK edge) Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0) Master (MTFE = 1, CPHA = 1)	tsuo	 	8 28 15 8	ns ns ns ns
12	Data Hold Time for Outputs Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0) Master (MTFE = 1, CPHA = 1)	t _{HO}	D -7 -7 2 1 -7		ns ns ns ns

¹ 116 MHz timing specified at CL = 50 pF with SRC = 0b11.

² The maximum value is programmable in DSPI_CTAR*n*[PSSCK] and DSPI_CTAR*n*[CSSCK].

³ The maximum value is programmable in DSPI_CTAR*n*[PASC] and DSPI_CTAR*n*[ASC].

⁴ This number is calculated assuming the SMPL_PT bit field in DSPI_MCR is set to 0b10.

- ¹ The Controller can shut off MLBCLK to place MLB in a low-power state.
- ² Pulse width variation is measured at 1.25 V by triggering on one edge of MLBCLK and measuring the spread on the other edge, measured in ns peak-to-peak (ns p-p).
- ³ The board must be designed to insure that the high-impedance bus does not leave the logic state of the final driven bit for this time period. Therefore, coupling must be minimized while meeting the maximum capacitive load listed.

Figure 25. Media Local Bus (MLB) Timing

4.14.8 Fast Ethernet Interface

MII signals use CMOS signal levels compatible with devices operating at either 5.0 V or 3.3 V. Signals are not TTL compatible. They follow the CMOS electrical characteristics.

4.14.8.1 MII Receive Signal Timing (RXD[3:0], RX_DV, RX_ER, and RX_CLK)

The receiver functions correctly up to a RX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. In addition, the system clock frequency must exceed four times the RX_CLK frequency.

Spec	Characteristic	Min	Max	Unit
M1	RXD[3:0], RX_DV, RX_ER to RX_CLK setup	5	_	ns
M2	RX_CLK to RXD[3:0], RX_DV, RX_ER hold	5	_	ns
M3	RX_CLK pulse width high	35%	65%	RX_CLK period
M4	RX_CLK pulse width low	35%	65%	RX_CLK period

Table 33. MII Receive Signal Timing

4.14.8.3 MII Async Inputs Signal Timing (CRS and COL)

Table 35. MII Async Inputs Signal Timing¹

Spec	Characteristic	Min	Max	Unit
M9	CRS, COL minimum pulse width	, COL minimum pulse width 1.5 — TX_CLK pe		

¹ Output pads configured with SRC = 0b11.

Figure 28. MII Async Inputs Timing Diagram

4.14.8.4 MII Serial Management Channel Timing (MDIO and MDC)

The FEC functions correctly with a maximum MDC frequency of 2.5 MHz.

Table 36. MII Serial Management Channel Timing¹

Spec	Characteristic	Min	Max	Unit
M10	MDC falling edge to MDIO output invalid (minimum propagation delay)		_	ns
M11	1 MDC falling edge to MDIO output valid (max prop delay)		25	ns
M12	2 MDIO (input) to MDC rising edge setup		_	ns
M13	MDIO (input) to MDC rising edge hold	0		ns
M14	MDC pulse width high	40%	60%	MDC period
M15	MDC pulse width low	40%	60%	MDC period

¹ Output pads configured with SRC = 0b11.

Figure 29. MII Serial Management Channel Timing Diagram

Package Characteristics

Figure 33. 256 MAPBGA Package Detail

MPC5668x Microcontroller Data Sheet, Rev. 6

6 Revision History

Table 37 describes the changes made to this document between revisions.

Table 37. Revision History

Revision	Date	Description
0	April 2008	Preliminary release.
1	June 2008	Initial release: Advance Information.
2	Jan 2009	Release: Advance Information.
3	September 2009	Release: Advance Information, interim updates.
4	January 2011	Release: Technical Data, interim updates.
5	January 2011	Release: Technical Data, interim updates.
6	March 2011	Release: Technical Data, interim updates.

How to Reach Us:

Home Page: www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2010, 2011. All rights reserved.

Document Number: MPC5668X Rev. 6 2010, 2011

