

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	HCS12
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	1.72V ~ 5.5V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TFQFN Exposed Pad
Supplier Device Package	48-QFN-EP (7x7)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=s9s12p128j0mft

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.7.4.6 VSSPLL — Ground Pin for PLL

This pin provides ground for the oscillator and the phased-locked loop. The voltage supply of nominally 1.8V is derived from the internal voltage regulator.

1.7.4.7 Power and Ground Connection Summary

Mnemonic	Nominal Voltage	Description
VDDR	5.0 V	External power supply to internal voltage regulator
VDDX[2:1]	5.0 V	External power and ground, supply to pin
VSSX[2:1]	0 V	drivers
VDDA	5.0 V	Operating voltage and ground for the
VSSA	0 V	analog-to-digital converters and the reference for the internal voltage regulator, allows the supply voltage to the A/D to be bypassed independently.
VRL	0 V	Reference voltages for the analog-to-digital
VRH	5.0 V	converter.
VSS3	0V	Internal power and ground generated by internal regulator for the internal core.
VSSPLL	0V	Provides operating voltage and ground for the phased-locked loop. This allows the supply voltage to the PLL to be bypassed independently. Internal power and ground generated by internal regulator.

Table 1-9. Power and Ground Connection Summary

1.8 System Clock Description

For the system clock description please refer to chapter Chapter 7, "S12 Clock, Reset and Power Management Unit (S12CPMU).

1.9 Modes of Operation

The MCU can operate in different modes. These are described in 1.9.1 Chip Configuration Summary.

The MCU can operate in different power modes to facilitate power saving when full system performance is not required. These are described in 1.9.2 Low Power Operation.

Some modules feature a software programmable option to freeze the module status whilst the background debug module is active to facilitate debugging.

Port	Offset or Address	Register	Access	Reset Value	Section/Page
	0x0004	PIM Reserved	R	0x00	2.3.7/2-65
	: 0x0007				
E	0x0008	PORTE—Port E Data Register	R/W ⁽¹⁾	0x00	2.3.8/2-65
	0x0009	DDRE—Port E Data Direction Register	R/W ¹	0x00	2.3.9/2-66
	0x000A	Non-PIM address range ⁽²⁾	-	-	-
	: 0x000B				
A	0x000C	PUCR—Pull-up Up Control Register	R/W ¹	0x50	2.3.10/2-67
E	0x000D	RDRIV—Reduced Drive Register	R/W ¹	0x00	2.3.11/2-68
	0x000E :	Non-PIM address range ²	-	-	-
	0x001B		D 44/1	0.00(0.00(3)	0.0.40/0.00
E	0x001C	ECLKCTL—ECLK Control Register	R/W	0xC0/0x80 ⁽⁰⁾	2.3.12/2-69
	0x001D	PIM Reserved	R	0x00	2.3.13/2-69
	0x001E	IRQCR—IRQ Control Register	R/W ¹	0x40	2.3.14/2-70
	0x001F	PIM Reserved	R	0x00	2.3.15/2-70
	0x0020	Non-PIM address range ²	-	-	-
	: 0x023F				
Т	0x0240	PTT—Port T Data Register	R/W	0x00	2.3.16/2-71
	0x0241	PTIT—Port T Input Register	R	(4)	2.3.17/2-72
	0x0242	DDRT—Port T Data Direction Register	R/W	0x00	2.3.18/2-73
	0x0243	RDRT—Port T Reduced Drive Register	R/W	0x00	2.3.19/2-74
	0x0244	PERT—Port T Pull Device Enable Register	R/W	0x00	2.3.20/2-74
	0x0245	PPST—Port T Polarity Select Register	R/W	0x00	2.3.21/2-75
	0x0246	PIM Reserved	R	0x00	2.3.22/2-75
	0x0247	Port T Routing Register	R/W	0x00	2.3.23/2-76

Table 2-2. Block Memory Map (continued)

2.3.12 ECLK Control Register (ECLKCTL)

Address 0x001C

Access: User read/write⁽¹⁾

_	7	6	5	4	3	2	1	0
R W	NECLK	NCLKX2	DIV16	EDIV4	EDIV3	EDIV2	EDIV1	EDIV0
Reset:	Mode Depen- dent	1	0	0	0	0	0	0
Special single-chip	0	1	0	0	0	0	0	0
Normal single-chip	1	1	0	0	0	0	0	0
		= Unimplemented or Reserved						

Figure 2-10. ECLK Control Register (ECLKCTL)

1. Read: Anytime Write: Anytime

Table 2-12. ECLKCTL	Register Field	Descriptions
---------------------	-----------------------	--------------

Field	Description
7 NECLK	No ECLK —Disable ECLK output This bit controls the availability of a free-running clock on the ECLK pin. This clock has a fixed rate of equivalent to the internal bus clock.
	1 ECLK disabled 0 ECLK enabled
6 NCLKX2	No ECLKX2 —Disable ECLKX2 output This bit controls the availability of a free-running clock on the ECLKX2 pin. This clock has a fixed rate of twice the internal bus clock.
	1 ECLKX2 disabled 0 ECLKX2 enabled
5 DIV16	Free-running ECLK pre-divider —Divide by 16 This bit enables a divide-by-16 stage on the selected EDIV rate.
	1 Divider enabled: ECLK rate = EDIV rate divided by 16 0 Divider disabled: ECLK rate = EDIV rate
4-0 EDIV	Free-running ECLK Divider —Configure ECLK rate These bits determine the rate of the free-running clock on the ECLK pin.
	00000 ECLK rate = bus clock rate 00001 ECLK rate = bus clock rate divided by 2 00010 ECLK rate = bus clock rate divided by 3, 11111 ECLK rate = bus clock rate divided by 32

2.3.13 PIM Reserved Register

2.3.64 Port AD Pull Up Enable Register (PER1AD)

Write: Anytime

Table 2-58. PER1AD Register Field Descriptions

Field	Description
7-0 PER1AD	 Port AD pull-up enable—Enable pull-up device on input pin This bit controls whether a pull device on the associated port input pin is active. If a pin is used as output this bit has no effect. 1 Pull device enabled 0 Pull device disabled

2.3.65 PIM Reserved Registers

1. Read: Always reads 0x00 Write: Unimplemented

2.4 Functional Description

2.4.1 General

Each pin except PE0, PE1, and BKGD can act as general purpose I/O. In addition each pin can act as an output or input of a peripheral module.

2.4.2 Registers

A set of configuration registers is common to all ports with exception of the ATD port (Table 2-59). All registers can be written at any time, however a specific configuration might not become active.

S12P-Family Reference Manual, Rev. 1.13

Figure 3-10. Local to Global Address Mapping

S12P-Family Reference Manual, Rev. 1.13

ound Debug Module (S12SBDMV1)

For hardware data read commands, the external host must wait at least 150 bus clock cycles after sending the address before attempting to obtain the read data. This is to be certain that valid data is available in the BDM shift register, ready to be shifted out. For hardware write commands, the external host must wait 150 bus clock cycles after sending the data to be written before attempting to send a new command. This is to avoid disturbing the BDM shift register before the write has been completed. The 150 bus clock cycle delay in both cases includes the maximum 128 cycle delay that can be incurred as the BDM waits for a free cycle before stealing a cycle.

For BDM firmware read commands, the external host should wait at least 48 bus clock cycles after sending the command opcode and before attempting to obtain the read data. The 48 cycle wait allows enough time for the requested data to be made available in the BDM shift register, ready to be shifted out.

For BDM firmware write commands, the external host must wait 36 bus clock cycles after sending the data to be written before attempting to send a new command. This is to avoid disturbing the BDM shift register before the write has been completed.

The external host should wait for at least for 76 bus clock cycles after a TRACE1 or GO command before starting any new serial command. This is to allow the CPU to exit gracefully from the standard BDM firmware lookup table and resume execution of the user code. Disturbing the BDM shift register prematurely may adversely affect the exit from the standard BDM firmware lookup table.

NOTE

If the bus rate of the target processor is unknown or could be changing, it is recommended that the ACK (acknowledge function) is used to indicate when an operation is complete. When using ACK, the delay times are automated.

Figure 5-6 represents the BDM command structure. The command blocks illustrate a series of eight bit times starting with a falling edge. The bar across the top of the blocks indicates that the BKGD line idles in the high state. The time for an 8-bit command is 8×16 target clock cycles.¹

Target clock cycles are cycles measured using the target MCU's serial clock rate. See Section 5.4.6, "BDM Serial Interface" and Section 5.3.2.1, "BDM Status Register (BDMSTS)" for information on how serial clock rate is selected.

Priority	Source	Action	
Highest	TRIG Enter Final State		
	Channel pointing to Final State	Transition to next state as defined by state control registers	
	Match0 (force or tag hit) Transition to next state as defined by state control regist		
	Match1 (force or tag hit)	Transition to next state as defined by state control registers	
Lowest	Match2 (force or tag hit)	Transition to next state as defined by state control registers	

Table 6-36. Channel Priorities

6.4.4 State Sequence Control

Figure 6-24. State Sequencer Diagram

The state sequencer allows a defined sequence of events to provide a trigger point for tracing of data in the trace buffer. Once the DBG module has been armed by setting the ARM bit in the DBGC1 register, then state1 of the state sequencer is entered. Further transitions between the states are then controlled by the state control registers and channel matches. From Final State the only permitted transition is back to the disarmed state0. Transition between any of the states 1 to 3 is not restricted. Each transition updates the SSF[2:0] flags in DBGSR accordingly to indicate the current state.

Alternatively writing to the TRIG bit in DBGSC1, provides an immediate trigger independent of comparator matches.

Independent of the state sequencer, each comparator channel can be individually configured to generate an immediate breakpoint when a match occurs through the use of the BRK bits in the DBGxCTL registers. Thus it is possible to generate an immediate breakpoint on selected channels, whilst a state sequencer transition can be initiated by a match on other channels. If a debug session is ended by a match on a channel the state sequencer transitions through Final State for a clock cycle to state0. This is independent of tracing and breakpoint activity, thus with tracing and breakpoints disabled, the state sequencer enters state0 and the debug module is disarmed.

6.4.4.1 Final State

On entering Final State a trigger may be issued to the trace buffer according to the trace alignment control as defined by the TALIGN bit (see 6.3.2.3"). If the TSOURCE bit in DBGTCR is clear then the trace buffer

Table 9-8.	ATDCTL3	Field	Descriptions
------------	---------	-------	--------------

Field	Description
7 DJM	 Result Register Data Justification — Result data format is always unsigned. This bit controls justification of conversion data in the result registers. 0 Left justified data in the result registers. 1 Right justified data in the result registers. Table 9-9 gives examples ATD results for an input signal range between 0 and 5.12 Volts.
6–3 S8C, S4C, S2C, S1C	Conversion Sequence Length — These bits control the number of conversions per sequence. Table 9-10 shows all combinations. At reset, S4C is set to 1 (sequence length is 4). This is to maintain software continuity to HC12 family.
2 FIFO	Result Register FIFO Mode — If this bit is zero (non-FIFO mode), the A/D conversion results map into the result registers based on the conversion sequence; the result of the first conversion appears in the first result register (ATDDR0), the second result in the second result register (ATDDR1), and so on.
	If this bit is one (FIFO mode) the conversion counter is not reset at the beginning or ending of a conversion sequence; sequential conversion results are placed in consecutive result registers. In a continuously scanning conversion sequence, the result register counter will wrap around when it reaches the end of the result register file. The conversion counter value (CC3-0 in ATDSTAT0) can be used to determine where in the result register file, the current conversion result will be placed.
	Aborting a conversion or starting a new conversion clears the conversion counter even if FIFO=1. So the first result of a new conversion sequence, started by writing to ATDCTL5, will always be place in the first result register (ATDDDR0). Intended usage of FIFO mode is continuos conversion (SCAN=1) or triggered conversion (ETRIG=1).
	Which result registers hold valid data can be tracked using the conversion complete flags. Fast flag clear mode may or may not be useful in a particular application to track valid data.
	 If this bit is one, automatic compare of result registers is always disabled, that is ADC12B10C will behave as if ACMPIE and all CPME[<i>n</i>] were zero. 0 Conversion results are placed in the corresponding result register up to the selected sequence length. 1 Conversion results are placed in consecutive result registers (wrap around at end).
1–0 FRZ[1:0]	Background Debug Freeze Enable — When debugging an application, it is useful in many cases to have the ATD pause when a breakpoint (Freeze Mode) is encountered. These 2 bits determine how the ATD will respond to a breakpoint as shown in Table 9-11. Leakage onto the storage node and comparator reference capacitors may compromise the accuracy of an immediately frozen conversion depending on the length of the freeze period.

9.3.2.11 ATD Compare Higher Than Register (ATDCMPHT)

Writes to this register will abort current conversion sequence.

Read: Anytime

Write: Anytime

Module Base + 0x000E

Figure 9-13. ATD Compare Higher Than Register (ATDCMPHT)

Table 9-20. ATDCMPHT Field Descriptions

Field	Description
9–0 CMPHT[9:0]	 Compare Operation Higher Than Enable for conversion number n (n= 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) of a Sequence (n conversion number, NOT channel number!) — This bit selects the operator for comparison of conversion results. 0 If result of conversion n is lower or same than compare value in ATDDRn, this is flagged in ATDSTAT2 1 If result of conversion n is higher than compare value in ATDDRn, this is flagged in ATDSTAT2

9.3.2.12 ATD Conversion Result Registers (ATDDR*n*)

The A/D conversion results are stored in 10 result registers. Results are always in unsigned data representation. Left and right justification is selected using the DJM control bit in ATDCTL3.

If automatic compare of conversions results is enabled (CMPE[n]=1 in ATDCMPE), these registers must be written with the compare values in left or right justified format depending on the actual value of the DJM bit. In this case, as the ATDDRn register is used to hold the compare value, the result will not be stored there at the end of the conversion but is lost.

Attention, n is the conversion number, NOT the channel number!

Read: Anytime

Write: Anytime

NOTE

For conversions not using automatic compare, results are stored in the result registers after each conversion. In this case avoid writing to ATDDRn except for initial values, because an A/D result might be overwritten.

between the PWM counter and the period register behaves differently depending on what output mode is selected as shown in Figure 10-35 and described in Section 10.4.2.5, "Left Aligned Outputs," and Section 10.4.2.6, "Center Aligned Outputs."

Each channel counter can be read at anytime without affecting the count or the operation of the PWM channel.

Any value written to the counter causes the counter to reset to 0x0000, the counter direction to be set to up, the immediate load of both duty and period registers with values from the buffers, and the output to change according to the polarity bit. When the channel is disabled (PWMEx = 0), the counter stops. When a channel becomes enabled (PWMEx = 1), the associated PWM counter continues from the count in the PWMCNTx register. This allows the waveform to resume when the channel is re-enabled. When the channel is disabled, writing 0 to the period register will cause the counter to reset on the next selected clock.

NOTE

If the user wants to start a new "clean" PWM waveform without any "history" from the old waveform, the user must write to channel counter (PWMCNTx) prior to enabling the PWM channel (PWMEx = 1).

Generally, writes to the counter are done prior to enabling a channel to start from a known state. However, writing a counter can also be done while the PWM channel is enabled (counting). The effect is similar to writing the counter when the channel is disabled except that the new period is started immediately with the output set according to the polarity bit.

NOTE

Writing to the counter while the channel is enabled can cause an irregular PWM cycle to occur.

The counter is cleared at the end of the effective period (see Section 10.4.2.5, "Left Aligned Outputs," and Section 10.4.2.6, "Center Aligned Outputs," for more details).

Counter Clears (0x0000)	Counter Counts	Counter Stops
When PWMCNTx register written to any value	When PWM channel is enabled (PWMEx = 1). Counts	When PWM channel is disabled (PWMEx = 0)
Effective period ends	I from last value in PWMCNTX.	

Table 10-11	. PWM	Timer	Counter	Conditions
Table 10-11	. PWM	Timer	Counter	Condition

10.4.2.5 Left Aligned Outputs

The PWM timer provides the choice of two types of outputs, left aligned or center aligned outputs. They are selected with the CAEx bits in the PWMCAE register. If the CAEx bit is cleared (CAEx = 0), the corresponding PWM output will be left aligned.

In left aligned output mode, the 8-bit counter is configured as an up counter only. It compares to two registers, a duty register and a period register as shown in the block diagram in Figure 10-35. When the

11.3.2.7 SCI Status Register 1 (SCISR1)

The SCISR1 and SCISR2 registers provides inputs to the MCU for generation of SCI interrupts. Also, these registers can be polled by the MCU to check the status of these bits. The flag-clearing procedures require that the status register be read followed by a read or write to the SCI data register. It is permissible to execute other instructions between the two steps as long as it does not compromise the handling of I/O, but the order of operations is important for flag clearing.

Figure 11-10. SCI Status Register 1 (SCISR1)

Read: Anytime

Write: Has no meaning or effect

Table 11-11. SCISR1	Field Descriptions
---------------------	---------------------------

Field	Description
7 TDRE	 Transmit Data Register Empty Flag — TDRE is set when the transmit shift register receives a byte from the SCI data register. When TDRE is 1, the transmit data register (SCIDRH/L) is empty and can receive a new value to transmit.Clear TDRE by reading SCI status register 1 (SCISR1), with TDRE set and then writing to SCI data register low (SCIDRL). 0 No byte transferred to transmit shift register 1 Byte transferred to transmit shift register; transmit data register empty
6 TC	Transmit Complete Flag — TC is set low when there is a transmission in progress or when a preamble or break character is loaded. TC is set high when the TDRE flag is set and no data, preamble, or break character is being transmitted.When TC is set, the TXD pin becomes idle (logic 1). Clear TC by reading SCI status register 1 (SCISR1) with TC set and then writing to SCI data register low (SCIDRL). TC is cleared automatically when data, preamble, or break is queued and ready to be sent. TC is cleared in the event of a simultaneous set and clear of the TC flag (transmission not complete).0Transmission in progress1No transmission in progress
5 RDRF	 Receive Data Register Full Flag — RDRF is set when the data in the receive shift register transfers to the SCI data register. Clear RDRF by reading SCI status register 1 (SCISR1) with RDRF set and then reading SCI data register low (SCIDRL). 0 Data not available in SCI data register 1 Received data available in SCI data register
4 IDLE	 Idle Line Flag — IDLE is set when 10 consecutive logic 1s (if M = 0) or 11 consecutive logic 1s (if M = 1) appear on the receiver input. Once the IDLE flag is cleared, a valid frame must again set the RDRF flag before an idle condition can set the IDLE flag.Clear IDLE by reading SCI status register 1 (SCISR1) with IDLE set and then reading SCI data register low (SCIDRL). 0 Receiver input is either active now or has never become active since the IDLE flag was last cleared 1 Receiver input has become idle Note: When the receiver wakeup bit (RWU) is set, an idle line condition does not set the IDLE flag.

11.4.6 Receiver

Figure 11-20. SCI Receiver Block Diagram

11.4.6.1 Receiver Character Length

The SCI receiver can accommodate either 8-bit or 9-bit data characters. The state of the M bit in SCI control register 1 (SCICR1) determines the length of data characters. When receiving 9-bit data, bit R8 in SCI data register high (SCIDRH) is the ninth bit (bit 8).

11.4.6.2 Character Reception

During an SCI reception, the receive shift register shifts a frame in from the RXD pin. The SCI data register is the read-only buffer between the internal data bus and the receive shift register.

After a complete frame shifts into the receive shift register, the data portion of the frame transfers to the SCI data register. The receive data register full flag, RDRF, in SCI status register 1 (SCISR1) becomes set,

SPPR2	SPPR1	SPPR0	SPR2	SPR1	SPR0	Baud Rate Divisor	Baud Rate
0	0	1	1	0	0	64	390.63 kbit/s
0	0	1	1	0	1	128	195.31 kbit/s
0	0	1	1	1	0	256	97.66 kbit/s
0	0	1	1	1	1	512	48.83 kbit/s
0	1	0	0	0	0	6	4.16667 Mbit/s
0	1	0	0	0	1	12	2.08333 Mbit/s
0	1	0	0	1	0	24	1.04167 Mbit/s
0	1	0	0	1	1	48	520.83 kbit/s
0	1	0	1	0	0	96	260.42 kbit/s
0	1	0	1	0	1	192	130.21 kbit/s
0	1	0	1	1	0	384	65.10 kbit/s
0	1	0	1	1	1	768	32.55 kbit/s
0	1	1	0	0	0	8	3.125 Mbit/s
0	1	1	0	0	1	16	1.5625 Mbit/s
0	1	1	0	1	0	32	781.25 kbit/s
0	1	1	0	1	1	64	390.63 kbit/s
0	1	1	1	0	0	128	195.31 kbit/s
0	1	1	1	0	1	256	97.66 kbit/s
0	1	1	1	1	0	512	48.83 kbit/s
0	1	1	1	1	1	1024	24.41 kbit/s
1	0	0	0	0	0	10	2.5 Mbit/s
1	0	0	0	0	1	20	1.25 Mbit/s
1	0	0	0	1	0	40	625 kbit/s
1	0	0	0	1	1	80	312.5 kbit/s
1	0	0	1	0	0	160	156.25 kbit/s
1	0	0	1	0	1	320	78.13 kbit/s
1	0	0	1	1	0	640	39.06 kbit/s
1	0	0	1	1	1	1280	19.53 kbit/s
1	0	1	0	0	0	12	2.08333 Mbit/s
1	0	1	0	0	1	24	1.04167 Mbit/s
1	0	1	0	1	0	48	520.83 kbit/s
1	0	1	0	1	1	96	260.42 kbit/s
1	0	1	1	0	0	192	130.21 kbit/s
1	0	1	1	0	1	384	65.10 kbit/s
1	0	1	1	1	0	768	32.55 kbit/s
1	0	1	1	1	1	1536	16.28 kbit/s
1	1	0	0	0	0	14	1.78571 Mbit/s
1	1	0	0	0	1	28	892.86 kbit/s
1	1	0	0	1	0	56	446.43 kbit/s
1	1	0	0	1	1	112	223.21 kbit/s
1	1	0	1	0	0	224	111.61 kbit/s
1	1	0	1	0	1	448	55.80 kbit/s

Table 12-7. Example SPI Baud Rate Selection (25 MHz Bus Clock) (Sheet 2 of 3)

S12P-Family Reference Manual, Rev. 1.13

Register	Error Bit	Error Condition
	Set if CCOBIX[2:0] != 000 at command launch	
	ACCERK	Set if command not available in current mode (see Table 13-27)
FSTAT	FPVIOL	Set if any area of the P-Flash or D-Flash memory is protected
-	MGSTAT1	Set if any errors have been encountered during the verify operation
	MGSTAT0	Set if any non-correctable errors have been encountered during the verify operation

Table 13-44. Erase All Blocks Command Error Handling

13.4.5.8 Erase Flash Block Command

The Erase Flash Block operation will erase all addresses in a P-Flash or D-Flash block.

 Table 13-45. Erase Flash Block Command FCCOB Requirements

CCOBIX[2:0]	FCCOB Parameters		
000	0x09	Global address [17:16] to identify Flash block	
001	Global address [15:0] in Flash block to be erased		

Upon clearing CCIF to launch the Erase Flash Block command, the Memory Controller will erase the selected Flash block and verify that it is erased. The CCIF flag will set after the Erase Flash Block operation has completed.

Table 13-46	. Erase Flash	Block Command	Error Handling
-------------	---------------	---------------	----------------

Register	Error Bit	Error Condition
		Set if CCOBIX[2:0] != 001 at command launch
		Set if command not available in current mode (see Table 13-27)
	ACCERR	Set if an invalid global address [17:16] is supplied
FSTAT	FSTAT	Set if the supplied P-Flash address is not phrase-aligned or if the D-Flash address is not word-aligned
	FPVIOL	Set if an area of the selected Flash block is protected
	MGSTAT1	Set if any errors have been encountered during the verify operation
	MGSTAT0	Set if any non-correctable errors have been encountered during the verify operation

13.4.5.9 Erase P-Flash Sector Command

The Erase P-Flash Sector operation will erase all addresses in a P-Flash sector.

Register	Error Bit	Error Condition
		Set if CCOBIX[2:0] != 100 at command launch
		Set if an incorrect backdoor key is supplied
	ACCERR	Set if backdoor key access has not been enabled (KEYEN[1:0] != 10, see Section 13.3.2.2)
FSTAT		Set if the backdoor key has mismatched since the last reset
	FPVIOL	None
	MGSTAT1	None
	MGSTAT0	None

Table 13-52. Verify Backdoor Access Key Command Error Handling

13.4.5.12 Set User Margin Level Command

The Set User Margin Level command causes the Memory Controller to set the margin level for future read operations of the P-Flash or D-Flash block.

Table 13-53. Set User Margin Level Command FCCOB Requirements

CCOBIX[2:0]	FCCOB Parameters	
000	0x0D	Global address [17:16] to identify the Flash block
001	Margin level setting	

Upon clearing CCIF to launch the Set User Margin Level command, the Memory Controller will set the user margin level for the targeted block and then set the CCIF flag.

NOTE

When the D-Flash block is targeted, the D-Flash user margin levels are applied only to the D-Flash reads. However, when the P-Flash block is targeted, the P-Flash user margin levels are applied to both P-Flash and D-Flash reads. It is not possible to apply user margin levels to the P-Flash block only.

Valid margin level settings for the Set User Margin Level command are defined in Table 13-54.

Table 13-54. Valid Set User Margin Level Settings

CCOB (CCOBIX=001)	Level Description
0x0000	Return to Normal Level
0x0001	User Margin-1 Level ⁽¹⁾
0x0002	User Margin-0 Level ⁽²⁾

1. Read margin to the erased state

2. Read margin to the programmed state

A.1.10 Supply Currents

This section describes the current consumption characteristics of the device as well as the conditions for the measurements.

A.1.10.1 Measurement Conditions

Run current is measured on VDDR pin. It does not include the current to drive external loads. Unless otherwise noted the currents are measured in special single chip mode and the CPU code is executed from RAM. For Run and Wait current measurements PLL is on and the reference clock is the IRC1M trimmed to 1MHz. The bus frequency is 32MHz and the CPU frequency is 64MHz. Table A-8., Table A-9. and Table A-10. show the configuration of the CPMU module and the peripherals for Run, Wait and Stop current measurement.

CPMU REGISTER	Bit settings/Conditions
CPMUCLKS	PLLSEL=0, PSTP=1, PRE=PCE=RTIOSCSEL=COPOSCSEL=1
CPMUOSC	OSCE=1, External Square wave on EXTAL f_{EXTAL} =16MHz, V_{IH} = 1.8V, V_{IL} =0V
CPMURTI	RTDEC=0, RTR[6:4]=111, RTR[3:0]=1111;
CPMUCOP	WCOP=1, CR[2:0]=111

 Table A-8. CPMU Configuration for Pseudo Stop Current Measurement

CPMU REGISTER	Bit settings/Conditions					
CPMUSYNR	VCOFRQ[1:0]=01,SYNDIV[5:0] = 32					
CPMUPOSTDIV	POSTDIV[4:0]=0,					
CPMUCLKS	PLLSEL=1					
CPMUOSC	OSCE=0, Reference clock for PLL is $f_{ref}=f_{irc1m}$ trimmed to 1MHz					
API settings for STOP current measurement						
CPMUAPICTL	APIEA=0, APIFE=1, APIE=0					
CPMUAPITR	trimmed to 10Khz					
CPMUAPIRH/RL	set to \$FFFF					

A.2.3.1 ATD Accuracy Definitions

For the following definitions see also Figure A-1. Differential non-linearity (DNL) is defined as the difference between two adjacent switching steps.

$$DNL(i) = \frac{V_i - V_{i-1}}{1LSB} - 1$$

The integral non-linearity (INL) is defined as the sum of all DNLs:

$$INL(n) = \sum_{i=1}^{n} DNL(i) = \frac{V_n - V_0}{1LSB} - n$$

A.4.2 Electrical Characteristics for the PLL

Table A-20. PLL Characteristics

Conditions are shown in Table A-4 unless otherwise noted								
Num	С	Rating	Min	Тур	Max	Unit		
1	D	VCO frequency during system reset	f _{VCORST}	8		32	MHz	
2	С	VCO locking range	f _{VCO}	32		64	MHz	
3	С	Reference Clock	f _{REF}	1			MHz	
4	D	Lock Detection	$ \Delta_{Lock} $	0		1.5	% ⁽¹⁾	
6	D	Un-Lock Detection	$ \Delta_{unl} $	0.5		2.5	% ¹	
7	С	Time to lock	t _{lock}			150 + 256/f _{REF}	μs	
8	С	Jitter fit parameter 1 ⁽²⁾	j ₁			1.4	%	
1. % de	1. % deviation from target frequency							

2. f_{REF} = 4MHz oscillator, f_{BUS} = 32MHz equivalent f_{PLL} = 64MHz, CPMUREFDIV=\$40, CPMUSYNR=\$47, CPMUPOSTDIV=\$00

A.5 Electrical Characteristics for the IRC1M

Table A-21. IRC1M Characteristics

Conditions are shown in Table A-4 unless otherwise noted								
Num	С	Rating	Symbol	Min	Тур	Мах	Unit	
1	Р	Junction Temperature -40°C to 150°C Internal Reference Frequency, factory trimmed	fIRC1M_TRIM	0.985	1	1.015	MHz	

0x0240 -0x027F Port Integration Module (PIM) Map 4 of 4

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0x0260	Reserved	R	0	0	0	0	0	0	0	0		
		W										
0x0261	Reserved	R	0	00	0	0	0	0	0	0		
		W		0					0			
0x0262	Reserved	R W	0	0	0	0	0	0	0	0		
			0	0	0	0	0	0	0	0		
0x0263	Reserved	Reserved	Reserved	W	0	0	0	0	0	0	0	0
0x0264	Reserved	R	0	0	0	0	0	0	0	0		
		W	-	-	-	-		-	-	-		
0.0000	Reserved	R	0	0	0	0	0	0	0	0		
0x0265		W										
0x0266	Reserved	R	0	0	0	0	0	0	0	0		
0X0200	Reserved	W										
0x0267	Reserved	R	0	0	0	0	0	0	0	0		
		W			0							
0x0268	PTJ	R W	PTJ7	PTJ6	0	0	0	PTJ2	PTJ1	PTJ0		
0x0269	PTIJ	R	PTIJ7	PTIJ6	0	0	0	PTIJ12	PTIJ1	PTIJ0		
		W										
0,0000	DDRJ	A DDRJ F	R	דו חחח		0	0	0				
0x026A			W	DDRJ7	DDRJ6				DDRJZ		DDRJU	
0x026B	RDRJ PERJ	B RDRJ R W C PERJ W	RDRJ	R	RDRJ7	RDRJ6	0	0	0	RDRJ2	RDRJ1	RDRJ0
			W									
0x026C			R W	PERJ7	PERJ6	0	0	0	PERJ2	PERJ1	PERJ0	
	PPSJ) PPSJ	R			0	0	0				
0x026D			Ŵ	PPSJ7	PPSJ6		0	Ū	PPSJ2	PPSJ1	PPSJ0	
0.0005	PIEJ		R	ר וד		0	0	0				
0X026E		W	PIEJ/	PIEJO				PIEJZ	PIEJT	PIEJU		
0x026f	PIFJ	R	PIF.I7	PIF.I6	0	0	0	PIF.12	PIF.J1	PIF.I0		
		W										
0x0270	PT0AD0	R	PT0AD0	PTOADO	PTOAD0	PIOADO	PIOADO	PTOADO	PTOADO	PTOADO		
0x0271	PT1AD0											
		W	PTIADU 7	6	5	4		2	1			
0x0272	DDR0AD0		R	DDR0AD0	DDR0AD0							
		W	7	6	5	4	3	2	1	0		
0x0273	DDR1AD0		R	DDR1AD0	DDR1AD0							
		W	7	6	5	4	3	2	1	0		
0x0274	RDR0AD0	RDR0AD0	R	RDR0AD0	RDR0AD0							
		W	7	6	5	4	3	2		0		
0x0275	RDR1AD0	RDR1AD0	K		RUR1AD0							
			V	٧V	/	U	5		3	<u> </u>	I	U