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Figure 3-11. Implemented Global Address Mapping
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clock please make sure that the communication rate is adapted accordingly and a communication time-out
(BDM soft reset) has occurred.

5.3 Memory Map and Register Definition

5.3.1 Module Memory Map

Table 5-1 shows the BDM memory map when BDM is active.

5.3.2 Register Descriptions

A summary of the registers associated with the BDM is shown in Figure 5-2. Registers are accessed by
host-driven communications to the BDM hardware using READ_BD and WRITE_BD commands.

Table 5-1. BDM Memory Map

Global Address Module
Size

(Bytes)

0x3_FF00–0x3_FF0B BDM registers 12

0x3_FF0C–0x3_FF0E BDM firmware ROM 3

0x3_FF0F Family ID (part of BDM firmware ROM) 1

0x3_FF10–0x3_FFFF BDM firmware ROM 240

Global
Address

Register
Name

Bit 7 6 5 4 3 2 1 Bit 0

0x3_FF00 Reserved R X X X X X X 0 0

W

0x3_FF01 BDMSTS R
ENBDM

BDMACT 0 SDV TRACE 0 UNSEC 0

W

0x3_FF02 Reserved R X X X X X X X X

W

0x3_FF03 Reserved R X X X X X X X X

W

0x3_FF04 Reserved R X X X X X X X X

W

 = Unimplemented, Reserved  = Implemented (do not alter)

X  = Indeterminate 0  = Always read zero

Figure 5-2. BDM Register Summary
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5.3.3 Family ID Assignment

The family ID is an 8-bit value located in the BDM ROM in active BDM (at global address: 0x3_FF0F).
The read-only value is a unique family ID which is 0xC2 for devices with an HCS12S core.

5.4 Functional Description
The BDM receives and executes commands from a host via a single wire serial interface. There are two
types of BDM commands: hardware and firmware commands.

Hardware commands are used to read and write target system memory locations and to enter active
background debug mode, see Section 5.4.3, “BDM Hardware Commands”. Target system memory
includes all memory that is accessible by the CPU.

Firmware commands are used to read and write CPU resources and to exit from active background debug
mode, see Section 5.4.4, “Standard BDM Firmware Commands”. The CPU resources referred to are the
accumulator (D), X index register (X), Y index register (Y), stack pointer (SP), and program counter (PC).

Hardware commands can be executed at any time and in any mode excluding a few exceptions as
highlighted (see Section 5.4.3, “BDM Hardware Commands”) and in secure mode (see Section 5.4.1,
“Security”). BDM firmware commands can only be executed when the system is not secure and is in active
background debug mode (BDM).

5.4.1 Security

If the user resets into special single chip mode with the system secured, a secured mode BDM firmware
lookup table is brought into the map overlapping a portion of the standard BDM firmware lookup table.
The secure BDM firmware verifies that the on-chip Flash EEPROM are erased. This being the case, the
UNSEC and ENBDM bit will get set. The BDM program jumps to the start of the standard BDM firmware
and the secured mode BDM firmware is turned off and all BDM commands are allowed. If the Flash does
not verify as erased, the BDM firmware sets the ENBDM bit, without asserting UNSEC, and the firmware
enters a loop. This causes the BDM hardware commands to become enabled, but does not enable the
firmware commands. This allows the BDM hardware to be used to erase the Flash.

BDM operation is not possible in any other mode than special single chip mode when the device is secured.
The device can only be unsecured via BDM serial interface in special single chip mode. For more
information regarding security, please see the S12S_9SEC Block Guide.

5.4.2 Enabling and Activating BDM

The system must be in active BDM to execute standard BDM firmware commands. BDM can be activated
only after being enabled. BDM is enabled by setting the ENBDM bit in the BDM status (BDMSTS)
register. The ENBDM bit is set by writing to the BDM status (BDMSTS) register, via the single-wire
interface, using a hardware command such as WRITE_BD_BYTE.

After being enabled, BDM is activated by one of the following1:

• Hardware BACKGROUND command
1. BDM is enabled and active immediately out of special single-chip reset.
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• CPU BGND instruction

• Breakpoint force or tag mechanism1

When BDM is activated, the CPU finishes executing the current instruction and then begins executing the
firmware in the standard BDM firmware lookup table. When BDM is activated by a breakpoint, the type
of breakpoint used determines if BDM becomes active before or after execution of the next instruction.

NOTE
If an attempt is made to activate BDM before being enabled, the CPU
resumes normal instruction execution after a brief delay. If BDM is not
enabled, any hardware BACKGROUND commands issued are ignored by
the BDM and the CPU is not delayed.

In active BDM, the BDM registers and standard BDM firmware lookup table are mapped to addresses
0x3_FF00 to 0x3_FFFF. BDM registers are mapped to addresses 0x3_FF00 to 0x3_FF0B. The BDM uses
these registers which are readable anytime by the BDM. However, these registers are not readable by user
programs.

When BDM is activated while CPU executes code overlapping with BDM firmware space the saved
program counter (PC) will be auto incremented by one from the BDM firmware, no matter what caused
the entry into BDM active mode (BGND instruction, BACKGROUND command or breakpoints). In such
a case the PC must be set to the next valid address via a WRITE_PC command before executing the GO
command.

5.4.3 BDM Hardware Commands

Hardware commands are used to read and write target system memory locations and to enter active
background debug mode. Target system memory includes all memory that is accessible by the CPU such
as on-chip RAM, Flash, I/O and control registers.

Hardware commands are executed with minimal or no CPU intervention and do not require the system to
be in active BDM for execution, although, they can still be executed in this mode. When executing a
hardware command, the BDM sub-block waits for a free bus cycle so that the background access does not
disturb the running application program. If a free cycle is not found within 128 clock cycles, the CPU is
momentarily frozen so that the BDM can steal a cycle. When the BDM finds a free cycle, the operation
does not intrude on normal CPU operation provided that it can be completed in a single cycle. However,
if an operation requires multiple cycles the CPU is frozen until the operation is complete, even though the
BDM found a free cycle.

The BDM hardware commands are listed in Table 5-4.

The READ_BD and WRITE_BD commands allow access to the BDM register locations. These locations
are not normally in the system memory map but share addresses with the application in memory. To
distinguish between physical memory locations that share the same address, BDM memory resources are

1. This method is provided by the S12S_DBG module.
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enabled just for the READ_BD and WRITE_BD access cycle. This allows the BDM to access BDM
locations unobtrusively, even if the addresses conflict with the application memory map.

5.4.4 Standard BDM Firmware Commands

BDM firmware commands are used to access and manipulate CPU resources. The system must be in active
BDM to execute standard BDM firmware commands, see Section 5.4.2, “Enabling and Activating BDM”.
Normal instruction execution is suspended while the CPU executes the firmware located in the standard
BDM firmware lookup table. The hardware command BACKGROUND is the usual way to activate BDM.

As the system enters active BDM, the standard BDM firmware lookup table and BDM registers become
visible in the on-chip memory map at 0x3_FF00–0x3_FFFF, and the CPU begins executing the standard
BDM firmware. The standard BDM firmware watches for serial commands and executes them as they are
received.

The firmware commands are shown in Table 5-5.

Table 5-4. Hardware Commands

Command
Opcode
 (hex)

Data Description

BACKGROUND 90 None Enter background mode if BDM is enabled. If enabled, an ACK will be issued
when the part enters active background mode.

ACK_ENABLE D5 None Enable Handshake. Issues an ACK pulse after the command is executed.

ACK_DISABLE D6 None Disable Handshake. This command does not issue an ACK pulse.

READ_BD_BYTE E4 16-bit address
16-bit data out

Read from memory with standard BDM firmware lookup table in map.
Odd address data on low byte; even address data on high byte.

READ_BD_WORD EC 16-bit address
16-bit data out

Read from memory with standard BDM firmware lookup table in map.
Must be aligned access.

READ_BYTE E0 16-bit address
16-bit data out

Read from memory with standard BDM firmware lookup table out of map.
Odd address data on low byte; even address data on high byte.

READ_WORD E8 16-bit address
16-bit data out

Read from memory with standard BDM firmware lookup table out of map.
Must be aligned access.

WRITE_BD_BYTE C4 16-bit address
16-bit data in

Write to memory with standard BDM firmware lookup table in map.
Odd address data on low byte; even address data on high byte.

WRITE_BD_WORD CC 16-bit address
16-bit data in

Write to memory with standard BDM firmware lookup table in map.
Must be aligned access.

WRITE_BYTE C0 16-bit address
16-bit data in

Write to memory with standard BDM firmware lookup table out of map.
Odd address data on low byte; even address data on high byte.

WRITE_WORD C8 16-bit address
16-bit data in

Write to memory with standard BDM firmware lookup table out of map.
Must be aligned access.

NOTE:
If enabled, ACK will occur when data is ready for transmission for all BDM READ commands and will occur after the write is
complete for all BDM WRITE commands.



S12P-Family Reference Manual, Rev. 1.13

Freescale Semiconductor 155

Chapter 6
S12S Debug Module (S12SDBGV2)

Table 6-1. Revision History

6.1 Introduction
The S12SDBG module provides an on-chip trace buffer with flexible triggering capability to allow non-
intrusive debug of application software. The S12SDBG module is optimized for S12SCPU debugging.

Typically the S12SDBG module is used in conjunction with the S12SBDM module, whereby the user
configures the S12SDBG module for a debugging session over the BDM interface. Once configured the
S12SDBG module is armed and the device leaves BDM returning control to the user program, which is
then monitored by the S12SDBG module. Alternatively the S12SDBG module can be configured over a
serial interface using SWI routines.

6.1.1 Glossary Of Terms

COF: Change Of Flow. Change in the program flow due to a conditional branch, indexed jump or interrupt.

BDM: Background Debug Mode

S12SBDM: Background Debug Module

DUG: Device User Guide, describing the features of the device into which the DBG is integrated.

WORD: 16 bit data entity

Data Line: 20 bit data entity

CPU: S12SCPU module

DBG: S12SDBG module

POR: Power On Reset

Tag: Tags can be attached to CPU opcodes as they enter the instruction pipe. If the tagged opcode reaches
the execution stage a tag hit occurs.

Revision Number Revision
Date

Sections
Affected Summary of Changes

02.07 13.DEC.2007 6.5 Added application information

02.08 09.MAY.2008 General Spelling corrections. Revision history format changed.

02.09 29.MAY.2008 6.4.5.4 Added note for end aligned, PurePC, rollover case.
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6.3.2.7 Debug State Control Registers

There is a dedicated control register for each of the state sequencer states 1 to 3 that determines if
transitions from that state are allowed, depending upon comparator matches or tag hits, and defines the
next state for the state sequencer following a match. The three debug state control registers are located at
the same address in the register address map (0x0027). Each register can be accessed using the COMRV
bits in DBGC1 to blend in the required register. The COMRV = 11 value blends in the match flag register
(DBGMFR).

Table 6-12. DBGCNT Field Descriptions

Field Description

7
TBF

Trace Buffer Full — The TBF bit indicates that the trace buffer has stored 64 or more lines of data since it was
last armed. If this bit is set, then all 64 lines will be valid data, regardless of the value of DBGCNT bits. The TBF
bit is cleared when ARM in DBGC1 is written to a one. The TBF is cleared by the power on reset initialization.
Other system generated resets have no affect on this bit
This bit is also visible at DBGSR[7]

5–0
CNT[5:0]

Count Value — The CNT bits indicate the number of valid data 20-bit data lines stored in the Trace Buffer.
Table 6-13 shows the correlation between the CNT bits and the number of valid data lines in the Trace Buffer.
When the CNT rolls over to zero, the TBF bit in DBGSR is set and incrementing of CNT will continue in end-
trigger mode. The DBGCNT register is cleared when ARM in DBGC1 is written to a one. The DBGCNT register
is cleared by power-on-reset initialization but is not cleared by other system resets. Thus should a reset occur
during a debug session, the DBGCNT register still indicates after the reset, the number of valid trace buffer
entries stored before the reset occurred. The DBGCNT register is not decremented when reading from the trace
buffer.

Table 6-13. CNT Decoding Table

TBF CNT[5:0] Description

0 000000 No data valid

0 000001
000010
000100
000110

..
111111

1 line valid
2 lines valid
4 lines valid
6 lines valid

..
63 lines valid

1 000000 64 lines valid; if using Begin trigger alignment,
ARM bit will be cleared and the tracing session ends.

1 000001
..
..

111110

64 lines valid,
oldest data has been overwritten by most recent data

Table 6-14. State Control Register Access Encoding

COMRV Visible State Control Register

00  DBGSCR1

01  DBGSCR2

10  DBGSCR3

11  DBGMFR
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Figure 7-1. Block diagram of S12CPMU

Figure 7-2 shows a block diagram of the OSCLCP.

Figure 7-2. OSCLCP Block Diagram

7.2 Signal Description
This section lists and describes the signals that connect off chip.

7.2.1 RESET

RESET is an active-low bidirectional pin. As an input it initializes the MCU asynchronously to a known
start-up state. As an open-drain output it indicates that an MCU-internal reset has been triggered.

7.2.2 EXTAL and XTAL

These pins provide the interface for a crystal to control the internal clock generator circuitry. EXTAL is
the external clock input or the input to the crystal oscillator amplifier. XTAL is the output of the crystal
oscillator amplifier. The MCU internal OSCCLK is derived from the EXTAL input frequency. If OSCE=0,
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Figure 11-24. Start Bit Search Example 3

Figure 11-25 shows the effect of noise early in the start bit time. Although this noise does not affect proper
synchronization with the start bit time, it does set the noise flag.

Figure 11-25. Start Bit Search Example 4

Figure 11-26 shows a burst of noise near the beginning of the start bit that resets the RT clock. The sample
after the reset is low but is not preceded by three high samples that would qualify as a falling edge.
Depending on the timing of the start bit search and on the data, the frame may be missed entirely or it may
set the framing error flag.
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Figure 12-9. Reception with SPIF serviced in Time

Figure 12-10. Reception with SPIF serviced too late

12.4 Functional Description
The SPI module allows a duplex, synchronous, serial communication between the MCU and peripheral
devices. Software can poll the SPI status flags or SPI operation can be interrupt driven.

The SPI system is enabled by setting the SPI enable (SPE) bit in SPI control register 1. While SPE is set,
the four associated SPI port pins are dedicated to the SPI function as:

• Slave select (SS)

• Serial clock (SCK)

• Master out/slave in (MOSI)

• Master in/slave out (MISO)
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When the third edge occurs, the value previously latched from the serial data input pin is shifted into the
LSB or MSB of the SPI shift register, depending on LSBFE bit. After this edge, the next bit of the master
data is coupled out of the serial data output pin of the master to the serial input pin on the slave.

This process continues for a total of n1 edges on the SCK line with data being latched on even numbered
edges and shifting taking place on odd numbered edges.

Data reception is double buffered, data is serially shifted into the SPI shift register during the transfer and
is transferred to the parallel SPI data register after the last bit is shifted in.

After 2n1 SCK edges:

• Data that was previously in the SPI data register of the master is now in the data register of the
slave, and data that was in the data register of the slave is in the master.

• The SPIF flag bit in SPISR is set indicating that the transfer is complete.

Figure 12-14 shows two clocking variations for CPHA = 1. The diagram may be interpreted as a master or
slave timing diagram because the SCK, MISO, and MOSI pins are connected directly between the master
and the slave. The MISO signal is the output from the slave, and the MOSI signal is the output from the
master. The SS line is the slave select input to the slave. The SS pin of the master must be either high or
reconfigured as a general-purpose output not affecting the SPI.

Figure 12-14. SPI Clock Format 1 (CPHA = 1), with 8-Bit Transfer Width selected (XFRW = 0)
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13.3 Memory Map and Registers
This section describes the memory map and registers for the Flash module. Read data from unimplemented
memory space in the Flash module is undefined. Write access to unimplemented or reserved memory space
in the Flash module will be ignored by the Flash module.

13.3.1 Module Memory Map

The S12 architecture places the P-Flash memory between global addresses 0x2_0000 and 0x3_FFFF as
shown in Table 13-2.The P-Flash memory map is shown in Figure 13-2.

The FPROT register, described in Section 13.3.2.9, can be set to protect regions in the Flash memory from
accidental program or erase. Three separate memory regions, one growing upward from global address
0x3_8000 in the Flash memory (called the lower region), one growing downward from global address
0x3_FFFF in the Flash memory (called the higher region), and the remaining addresses in the Flash
memory, can be activated for protection. The Flash memory addresses covered by these protectable regions
are shown in the P-Flash memory map. The higher address region is mainly targeted to hold the boot loader
code since it covers the vector space. Default protection settings as well as security information that allows
the MCU to restrict access to the Flash module are stored in the Flash configuration field as described in
Table 13-3.

Table 13-2. P-Flash Memory Addressing

Global Address
Size

(Bytes)
Description

0x2_0000 – 0x3_FFFF 128 K
P-Flash Block
Contains Flash Configuration Field
(see Table 13-3)

Table 13-3. Flash Configuration Field

Global Address
Size

(Bytes)
Description

0x3_FF00-0x3_FF07 8
Backdoor Comparison Key
Refer to Section 13.4.5.11, “Verify Backdoor Access Key Command,” and
Section 13.5.1, “Unsecuring the MCU using Backdoor Key Access”

0x3_FF08-0x3_FF0B(1)

1. 0x3FF08-0x3_FF0F form a Flash phrase and must be programmed in a single command write sequence. Each byte in
the 0x3_FF08 - 0x3_FF0B reserved field should be programmed to 0xFF.

4 Reserved

0x3_FF0C1 1
P-Flash Protection byte.
Refer to Section 13.3.2.9, “P-Flash Protection Register (FPROT)”

0x3_FF0D1 1
D-Flash Protection byte.
Refer to Section 13.3.2.10, “D-Flash Protection Register (DFPROT)”

0x3_FF0E1 1
Flash Nonvolatile byte
Refer to Section 13.3.2.16, “Flash Option Register (FOPT)”

0x3_FF0F1 1
Flash Security byte
Refer to Section 13.3.2.2, “Flash Security Register (FSEC)”
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The (unreserved) bits of the FPROT register are writable with the restriction that the size of the protected
region can only be increased (see Section 13.3.2.9.1, “P-Flash Protection Restrictions,” and Table 13-20).

During the reset sequence, the FPROT register is loaded with the contents of the P-Flash protection byte
in the Flash configuration field at global address 0x3_FF0C located in P-Flash memory (see Table 13-3)
as indicated by reset condition ‘F’ in Figure 13-13. To change the P-Flash protection that will be loaded
during the reset sequence, the upper sector of the P-Flash memory must be unprotected, then the P-Flash
protection byte must be reprogrammed. If a double bit fault is detected while reading the P-Flash phrase
containing the P-Flash protection byte during the reset sequence, the FPOPEN bit will be cleared and
remaining bits in the FPROT register will be set to leave the P-Flash memory fully protected.

Trying to alter data in any protected area in the P-Flash memory will result in a protection violation error
and the FPVIOL bit will be set in the FSTAT register. The block erase of a P-Flash block is not possible
if any of the P-Flash sectors contained in the same P-Flash block are protected.

Offset Module Base + 0x0008

7 6 5 4 3 2 1 0

R
FPOPEN

RNV6
FPHDIS FPHS[1:0] FPLDIS FPLS[1:0]

W

Reset F F F F F F F F

= Unimplemented or Reserved

Figure 13-13. Flash Protection Register (FPROT)

Table 13-16. FPROT Field Descriptions

Field Description

7
FPOPEN

Flash Protection Operation Enable — The FPOPEN bit determines the protection function for program or
erase operations as shown in Table 13-17 for the P-Flash block.
0 When FPOPEN is clear, the FPHDIS and FPLDIS bits define unprotected address ranges as specified by the

corresponding FPHS and FPLS bits
1 When FPOPEN is set, the FPHDIS and FPLDIS bits enable protection for the address range specified by the

corresponding FPHS and FPLS bits

6
RNV[6]

Reserved Nonvolatile Bit — The RNV bit should remain in the erased state for future enhancements.

5
FPHDIS

Flash Protection Higher Address Range Disable — The FPHDIS bit determines whether there is a
protected/unprotected area in a specific region of the P-Flash memory ending with global address 0x3_FFFF.
0 Protection/Unprotection enabled
1 Protection/Unprotection disabled

4–3
FPHS[1:0]

Flash Protection Higher Address Size — The FPHS bits determine the size of the protected/unprotected area
in P-Flash memory as shown inTable 13-18. The FPHS bits can only be written to while the FPHDIS bit is set.

2
FPLDIS

Flash Protection Lower Address Range Disable — The FPLDIS bit determines whether there is a
protected/unprotected area in a specific region of the P-Flash memory beginning with global address 0x3_8000.
0 Protection/Unprotection enabled
1 Protection/Unprotection disabled

1–0
FPLS[1:0]

Flash Protection Lower Address Size — The FPLS bits determine the size of the protected/unprotected area
in P-Flash memory as shown in Table 13-19. The FPLS bits can only be written to while the FPLDIS bit is set.



128 KByte Flash Module (S12FTMRC128K1V1)

S12P-Family Reference Manual, Rev. 1.13

Freescale Semiconductor 445

P-Flash phrase containing the D-Flash protection byte during the reset sequence, the DPOPEN bit will be
cleared and DPS bits will be set to leave the D-Flash memory fully protected.

Trying to alter data in any protected area in the D-Flash memory will result in a protection violation error
and the FPVIOL bit will be set in the FSTAT register. Block erase of the D-Flash memory is not possible
if any of the D-Flash sectors are protected.

13.3.2.11 Flash Common Command Object Register (FCCOB)

The FCCOB is an array of six words addressed via the CCOBIX index found in the FCCOBIX register.
Byte wide reads and writes are allowed to the FCCOB register.

Table 13-21. DFPROT Field Descriptions

Field Description

7
DPOPEN

D-Flash Protection Control
0 Enables D-Flash memory protection from program and erase with protected address range defined by DPS

bits
1 Disables D-Flash memory protection from program and erase

3–0
DPS[3:0]

D-Flash Protection Size — The DPS[3:0] bits determine the size of the protected area in the D-Flash memory
as shown in Table 13-22.

Table 13-22. D-Flash Protection Address Range

DPS[3:0]  Global Address Range Protected Size

0000 0x0_4400 – 0x0_44FF 256 bytes

0001 0x0_4400 – 0x0_45FF 512 bytes

0010 0x0_4400 – 0x0_46FF 768 bytes

0011 0x0_4400 – 0x0_47FF 1024 bytes

0100 0x0_4400 – 0x0_48FF 1280 bytes

0101 0x0_4400 – 0x0_49FF 1536 bytes

0110 0x0_4400 – 0x0_4AFF 1792 bytes

0111 0x0_4400 – 0x0_4BFF 2048 bytes

1000 0x0_4400 – 0x0_4CFF 2304 bytes

1001 0x0_4400 – 0x0_4DFF 2560 bytes

1010 0x0_4400 – 0x0_4EFF 2816 bytes

1011 0x0_4400 – 0x0_4FFF 3072 bytes

1100 0x0_4400 – 0x0_50FF 3328 bytes

1101 0x0_4400 – 0x0_51FF 3584 bytes

1110 0x0_4400 – 0x0_52FF 3840 bytes

1111 0x0_4400 – 0x0_53FF 4096 bytes
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Read: Anytime but will always return 0x0000 (1 state is transient)

Write: Anytime

14.3.2.3 Output Compare 7 Mask Register (OC7M)

Read: Anytime

Write: Anytime

Table 14-3. CFORC Field Descriptions

Field Description

7:0
FOC[7:0]

Force Output Compare Action for Channel 7:0 — A write to this register with the corresponding data bit(s) set
causes the action which is programmed for output compare “x” to occur immediately. The action taken is the
same as if a successful comparison had just taken place with the TCx register except the interrupt flag does not
get set.
Note: A channel 7 event, which can be a counter overflow when TTOV[7] is set or a successful output compare

on channel 7, overrides any channel 6:0 compares. If forced output compare on any channel occurs at the
same time as the successful output compare then forced output compare action will take precedence and
interrupt flag won’t get set.

Module Base + 0x0002

7 6 5 4 3 2 1 0

R
OC7M7 OC7M6 OC7M5 OC7M4 OC7M3 OC7M2 OC7M1 OC7M0

W

Reset 0 0 0 0 0 0 0 0

Figure 14-8. Output Compare 7 Mask Register (OC7M)

Table 14-4. OC7M Field Descriptions

Field Description

7:0
OC7M[7:0]

Output Compare 7 Mask — A channel 7 event, which can be a counter overflow when TTOV[7] is set or a
successful output compare on channel 7, overrides any channel 6:0 compares. For each OC7M bit that is set,
the output compare action reflects the corresponding OC7D bit.
0 The corresponding OC7Dx bit in the output compare 7 data register will not be transferred to the timer port on

a channel 7 event, even if the corresponding pin is setup for output compare.
1 The corresponding OC7Dx bit in the output compare 7 data register will be transferred to the timer port on a

channel 7 event.
Note: The corresponding channel must also be setup for output compare (IOSx = 1 and OCPDx = 0) for data to

be transferred from the output compare 7 data register to the timer port.
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NOTE
In the following context VDD35 is used for either VDDA, VDDR, and
VDDX; VSS35 is used for either VSSA and VSSX unless otherwise noted.

IDD35 denotes the sum of the currents flowing into the VDDA, VDDX and
VDDR pins.

A.1.3 Pins

There are four groups of functional pins.

A.1.3.1 I/O Pins

The I/O pins have a level in the range of 3.15V to 5.5V. This class of pins is comprised of all port I/O pins,
the analog inputs, BKGD and the RESET pins. Some functionality may be disabled.

A.1.3.2 Analog Reference

This group is made up by the VRH and VRL pins.

A.1.3.3 Oscillator

The pins EXTAL, XTAL dedicated to the oscillator have a nominal 1.8V level.

A.1.3.4 TEST

This pin is used for production testing only. The TEST pin must be tied to ground in all applications.

A.1.4 Current Injection

Power supply must maintain regulation within operating VDD35 or VDD range during instantaneous and
operating maximum current conditions. If positive injection current (Vin > VDD35) is greater than IDD35,
the injection current may flow out of VDD35 and could result in external power supply going out of
regulation. Ensure external VDD35 load will shunt current greater than maximum injection current. This
will be the greatest risk when the MCU is not consuming power; e.g., if no system clock is present, or if
clock rate is very low which would reduce overall power consumption.

A.1.5 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only. A functional operation under or outside those maxima
is not guaranteed. Stress beyond those limits may affect the reliability or cause permanent damage of the
device.

This device contains circuitry protecting against damage due to high static voltage or electrical fields;
however, it is advised that normal precautions be taken to avoid application of any voltages higher than
maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused
inputs are tied to an appropriate logic voltage level (e.g., either VSS35 or VDD35).
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In Table A-27 the timing characteristics for master mode are listed.

A.11.2 Slave Mode

In Figure A-7 the timing diagram for slave mode with transmission format CPHA = 0 is depicted.

Figure A-7. SPI Slave Timing (CPHA = 0)

Table A-27. SPI Master Mode Timing Characteristics

Num C Characteristic Symbol Min Typ Max Unit

1 D SCK frequency fsck 1/2048 — 1/2 fbus

1 D SCK period tsck 2 — 2048 tbus

2 D Enable lead time tlead — 1/2 — tsck

3 D Enable lag time tlag — 1/2 — tsck

4 D Clock (SCK) high or low time twsck — 1/2 — tsck

5 D Data setup time (inputs) tsu 8 — — ns

6 D Data hold time (inputs) thi 8 — — ns

9 D Data valid after SCK edge tvsck — — 29 ns

10 D Data valid after SS fall (CPHA = 0) tvss — — 15 ns

11 D Data hold time (outputs) tho 20 — — ns

12 D Rise and fall time inputs trfi — — 8 ns

13 D Rise and fall time outputs trfo — — 8 ns

SCK

(Input)

SCK

(Input)

MOSI
(Input)

MISO
(Output)

SS
(Input)

1

9

5 6

MSB IN

Bit MSB-1 . . . 1

LSB IN

Slave MSB Slave LSB OUT

Bit MSB-1. . . 1

11

442

7

(CPOL = 0)

(CPOL = 1)

3

13

NOTE: Not defined

12

12

11

See

13

Note

810

See
Note
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C.2 48 QFN Package Mechanical Outline
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0x010D FRSV2
R 0 0 0 0 0 0 0 0
W

0x010E FRSC3
R 0 0 0 0 0 0 0 0
W

0x010F FRSV4
R 0 0 0 0 0 0 0 0
W

0x0110 FOPT
R NV7 NV6 NV5 NV4 NV3 NV2 NV1 NV0
W

0x0111 FRSV5
R 0 0 0 0 0 0 0 0
W

0x0112 FRSV6
R 0 0 0 0 0 0 0 0
W

0x0113 FRSV7
R 0 0 0 0 0 0 0 0
W

0x0114-0x011F Reserved

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0x0114-
0x011F

Reserved
R 0 0 0 0 0 0 0 0
W

0x0120 Interrupt Vector Base Register

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0x0120 IVBR
R

IVB_ADDR[7:0]
W

0x0121-0x013F Reserved

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0x0114-
0x011F

Reserved
R 0 0 0 0 0 0 0 0
W

0x0140-0x017F MSCAN Map

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0x0140 CAN0CTL0
R

RXFRM
RXACT

CSWAI
SYNCH

TIME WUPE SLPRQ INITRQ
W

0x0141 CAN0CTL1
R

CANE CLKSRC LOOPB LISTEN BORM WUPM
SLPAK INITAK

W

0x0142 CAN0BTR0
R

SJW1 SJW0 BRP5 BRP4 BRP3 BRP2 BRP1 BRP0
W

0x0100-0x0113 NVM Contol Register (FTMRC) Map

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0


