E·XFL

onsemi - LC87F1K64AUWA-2H Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	-
Core Size	8-Bit
Speed	12MHz
Connectivity	I ² C, SIO, UART/USART, USB
Peripherals	LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-SQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/onsemi/lc87f1k64auwa-2h

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ports

• I/O ports

Ports whose input/output can be specified in 1-bit units:	34 (P00 to P07, P10 to P17, P20 to P25, P30 to P34, P70 to P73, PWM0, PWM1, XT2)
• USB ports	4 (UHAD+, UHAD–, UHBD+, UHBD–)
Dedicated oscillator ports	2 (CF1, CF2)
• Input-only port (also used for the oscillator)	1 (XT1)
• Reset pin	$1 (\overline{\text{RES}})$
• Power supply pins	6 (V _{SS} 1 to 3, V _{DD} 1 to 3)
Timers	

- Timer 0: 16-bit timer/counter with 2 capture registers
 - Mode 0: 8-bit timer with an 8-bit programmable prescaler
 - (with two 8-bit capture registers) \times 2 channels
 - Mode 1: 8-bit timer with an 8-bit programmable prescaler
 - (with two 8-bit capture registers) + 8-bit counter (with two 8-bit capture registers)
 - Mode 2: 16-bit timer with an 8-bit programmable prescaler (with two 16-bit capture registers)
 - Mode 3: 16-bit counter (with two 16-bit capture registers)
- Timer 1: 16-bit timer/counter that supports PWM/toggle output
 - Mode 0: 8-bit timer with an 8-bit prescaler (with toggle output)
 - + 8-bit timer/counter with an 8-bit prescaler (with toggle output)
 - Mode 1: 8-bit PWM with an 8-bit prescaler \times 2 channels
 - Mode 2: 16-bit timer/counter with an 8-bit prescaler (with toggle output)
 - (Toggle output also possible from low-order 8 bits.)
 - Mode 3: 16-bit timer with an 8-bit prescaler (with toggle output)
 - (Low-order 8 bits can be used as a PWM output.)
- Timer 4: 8-bit timer with a 6-bit prescaler
- Timer 5: 8-bit timer with a 6-bit prescaler
- Timer 6: 8-bit timer with a 6-bit prescaler (with toggle output)
- Timer 7: 8-bit timer with a 6-bit prescaler (with toggle output)
- Base timer

1) The clock can be selected from among a subclock (32.768kHz crystal oscillator), low-speed RC oscillator clock, system clock, and timer 0 prescaler output.

2) Interrupts programmable in 5 different time schemes.

Serial Interfaces

- SIO0: Synchronous serial interface
 - 1) LSB first/MSB first selectable
 - 2) Transfer clock cycle: 4/3 to 512/3 tCYC
 - Continuous automatic data transmission (1 to 256 bits can be specified in 1-bit units) (Suspension and resumption of data transfer possible in 1-byte units)
- SIO1: 8-bit asynchronous/synchronous serial interface
- Mode 0: Synchronous 8-bit serial I/O (2- or 3-wire configuration, 2 to 512 tCYC transfer clock) Mode 1: Asynchronous serial I/O (half-duplex, 8 data bits, 1 stop bit, 8 to 2048 tCYC baudrate) Mode 2: Bus mode 1 (start bit, 8 data bits, 2 to 512 tCYC transfer clock)
- Mode 3: Bus mode 2 (start detection, 8 data bits, stop detection)
- SIO4: Synchronous serial interface
- 1) LSB first/MSB first selectable
- 2) Transfer clock cycle: 4/3 to 1020/3 tCYC
- 3) Continuous automatic data transmission (1 to 8192 bytes can be specified in 1-byte units) (Suspension and resumption of data transmission possible in 1-byte units or in word units)
- 4) Clock polarity can be selected.
- 5) CRC16 calculator circuit built- in
- SMIIC0: Single-master I²C/8-bit synchronous SIO Mode 0: Communication in single-master mode. Mode 1: 8-bit synchronous serial I/O (data MSB first)

- ■Full Duplex UART
 - 1) Data length: 7/8/9 bits selectable
 - 2) Stop bits: 1 bit (2 bits in continuous transmission mode)
 - 3) Parity bits: None/even/odd selectable (for 8-bit data only)
 - 4) Baudrate: 16/3 to 8192/3 tCYC
- AD Converter: 12 bits × 12 channels
- ■PWM: Variable frequency 12-bit PWM × 2 channels
- Infrared Remote Control Receiver Circuit
 - 1) Noise rejection function (noise filter time constant: Approx. 120us when the 32.768kHz crystal oscillator is selected as the reference clock)
 - 2) Supports data encoding systems such as PPM (Pulse Position Modulation) and Manchester encoding.
 - 3) X'tal HOLD mode release function
- ■USB Interface (host control function) × 2 ports
 - 1) Supports full-speed (12Mbps) and low-speed (1.5Mbps) specifications.
 - 2) Supports four transfer types (control transfer, bulk transfer, interrupt transfer, and isochronous transfer).
- Audio Interface
 - 1) Sampling frequencies (fs): 8kHz/11.025kHz/12kHz/16kHz/22.05kHz/24kHz/32kHz/44.1kHz/48kHz
 - 2) Master clock: 256fs/384fs 48fs/64fs
 - 3) Bit clock:
 - 4) Data bit length: 16bits/18bits/20bits/24bits
 - 5) LSB first/MSB first selectable.
 - 6) Left justified/right justified/I2S format selectable
- ■Watchdog Timer
 - External RC time constant type
 - 1) Interrupt generation/reset generation selectable
 - 2) Operation in HALT/HOLD mode can be selected from "continue operation" and "suspend operation."
 - Internal timer type
 - 1) Capable of generating a internal reset signal on an overflow of the timer running on the low-speed RC oscillator clock, or subclock.
 - 2) Operation in HALT/HOLD mode can be selected from among "continue count operation," "suspend operation," and "retain the count value."

■Clock Output Function

- 1) Can output a clock with a clock rate of 1/1, 1/2, 1/4, 1/8, 1/16, 1/32, or 1/64 of the source oscillator clock selected as the system clock.
- 2) Can output the source oscillator clock for the subclock.

Interrupts

- 44 sources, 10 vectors
 - 1) Provides three levels (low (L), high (H), and highest (X)) of multiplex interrupt control. Any interrupt request of the level equal to or lower than the current interrupt level is not accepted.
 - 2) When interrupt requests to two or more vector addresses occur at the same time, the interrupt of the highest level takes precedence over the other interrupts. For interrupts of the same level, the interrupt into the lowest vector address is given priority.

No.	Vector	Level	Interrupt Source				
1	00003H	X or L	INTO				
2	0000BH	X or L	INT1				
3	00013H	H or L	T2/T0L/INT4/UHC-A bus active/UHC-B bus active/remote control receive				
4	0001BH	H or L	INT3/INT5/base timer				
5	00023H	H or L	T0H/INT6/UHC-A device connected, disconnected, resumed				
6	0002BH	H or L	T1L/T1H/INT7/AIF start/SMIIC0/UHC-B device connected, disconnected, resumed				
7	00033H	H or L	SIO0/UART1 reception completed				
8	0003BH	H or L	SIO1/SIO4/UART1 buffer empty/UART1 transmission completed/AIF end				
9	00043H	H or L	ADC/T6/T7/UHC-ACK/UHC-NAK/UHC error/UHC-STALL				
10	0004BH	H or L	Port 0/PWM0/PWM1/T4/T5/UHC-SOF				

- Priority levels X > H > L
- When interrupts of the same level occur at the same time, the interrupt with the lowest vector address is given priority.

■ Subroutine Stack Levels: Up to 4096 levels (The stack is allocated in RAM.)

■ High-speed Multiplication/Division Instructions

- 16 bits \times 8 bits (5 tCYC execution time)
- 24 bits \times 16 bits (12 tCYC execution time)
- 16 bits ÷ 8 bits (8 tCYC execution time)
- 24 bits ÷ 16 bits (12 tCYC execution time)

■Oscillator Circuit and PLL

- Medium-speed RC oscillator circuit (internal): For system clock (approx. 1MHz)
- Low-speed RC oscillator circuit (internal): For system clock, timer, and watchdog timer (approx. 30kHz)
- CF oscillator circuit:
- Crystal oscillator circuit:
- PLL circuit (internal):

- For system clock For system clock and time-of-day clock
- For USB interface (see Fig. 5) and audio interface (see Fig. 6)

■Internal Reset Functions

- Power-on reset (POR) function
 - 1) POR is activated at power-on.
 - 2) POR release voltage can be selected from 8 levels (1.67V, 1.97V, 2.07V, 2.37V, 2.57V, 2.87V, 3.86V, and 4.35V) by setting options.
- Low voltage detection reset (LVD) function
- 1) LVD and POR functions are combined to generate resets when power is turned on and when power voltage falls below a threshold level.
- 2) The use/disuse of the LVD function and the low voltage threshold level (7 levels: 1.91V, 2.01V, 2.31V, 2.51V, 2.81V, 3.79V, and 4.28V) can be selected by setting options.

■Standby Function

- HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation.
 - 1) Oscillators do not stop automatically.
 - 2) There are three ways of releasing HOLD mode.
 - (1) Setting the reset pin to a low level.
 - (2) Generating a reset signal by watchdog timer or low-voltage detection
 - (3) Occurrence of an interrupt
- HOLD mode: Suspends instruction execution and operation of the peripheral circuits.
 - 1) The PLL, CF, RC and crystal oscillators automatically stop operation.
 - Note: Low-speed RC oscillator is controlled directly by the watchdog timer and its oscillation in standby mode is also controlled.
 - 2) There are five ways of releasing HOLD mode.
 - (1) Setting the reset pin to a low level
 - (2) Generating a reset signal by the watchdog timer or low-voltage detection
 - (3) Establishing an interrupt source at one of INT0, INT1, INT2, INT4, and INT5 pins
 - * INT0 and INT1 HOLD mode release is available only when level detection is configured.
 - (4) Establishing an interrupt source at port 0
 - (5) Establishing an bus active interrupt source in the USB host control circuit
- X'tal HOLD mode: Suspends instruction execution and the operation of the peripheral circuits except the base timer and infrared remote control receiver circuit.
 - 1) The PLL, CF and RC oscillators automatically stop operation.
 - Note: Low-speed RC oscillator is controlled directly by the watchdog timer and its oscillation in standby mode is also controlled.
 - Note: The low-speed RC oscillator retains the state that is established on entry into X'tal HOLD mode if the base timer is running with the low-speed RC oscillator selected as the base timer input clock source.
 - 2) The state of crystal oscillator established when the X'tal HOLD mode is entered is retained.
 - 3) There are seven ways of releasing X'tal HOLD mode.
 - (1) Setting the reset pin to a low level
 - (2) Generating a reset signal by the watchdog timer or low-voltage detection
 - (3) Establishing an interrupt source at one of INT0, INT1, INT2, INT4, and INT5 pins
 - * INT0 and INT1 X'tal HOLD mode release is available only when level detection is configured.
 - (4) Establishing an interrupt source at port 0
 - (5) Establishing an interrupt source in the base timer circuit
 - (6) Establishing an interrupt source in the infrared remote control receiver circuit
 - (7) Establishing an bus active interrupt source in the USB host control circuit
- Development Tools
 - On-chip debugger: TCB87–Type B + LC87F1K64A or

TCB87-Type C (3-wire communication cable) + LC87F1K64A

■Flash ROM Programming Board

Package	Programming Board
SQFP48 (7×7)	W87F55256SQ

Flash ROM Programm	ner				
Maker		Model	Supported Version	Device	
Flash Support Group Company (FSG)	Single	AF9709C	Rev.03.32 and later	87F064JU	
Flash Support Group		AF9101/AF9103 (main unit)		LC87F1K64A	
Company (FSG)	Onboard	(FSG model)	(Noto 2)		
+	single/ganged	SIB87 Type C (interface driver)	(Note 2)		
Our company (Note 1)		(Our company model)		<u> </u>	
	Cingle/genged	SKK/SKK Type C	Application version		
	Siligie/galiged	(SANYO FWS)	1.07 and later	1 09751/64	
	Onboard	SKK-DBG Type C	Chip data version	LC07F1K04	
	single/ganged	(SANYO FWS)	2.39 and later		

(Further information on the AF series) Flash Support Group Company (TOA ELECTRONICS, Inc.) Phone: 053-459-1050 E-mail: sales@j- fsg.co.jp

Note 1: PC-less standalone onboard programming is possible using the FSG onboard programmer (AF9101/AF9103) and the serial interface driver (SIB87 Type C) provided by Our company in pair.

Note 2: Dedicated programming device and program are required depending on the programming conditions. Contact Our company or FSG if you have any questions or difficulties regarding this matter.

SQFP48	NAME
1	P73/INT3/T0IN/RMIN
2	RES
3	XT1/AN10
4	XT2/AN11
5	V _{SS} 1
6	CF1
7	CF2
8	V _{DD} 1
9	P10/SO0
10	P11/SI0/SB0
11	P12/SCK0
12	P13/SO1/SM0CK1
13	P14/SI1/SB1/SM0DA1
14	P15/SCK1/SM0DO
15	P16/T1PWML/SM0DA0
16	P17/T1PWMH/BUZ/SM0CK0
17	PWM1/MCLKI
18	PWM0/MCLKO
19	V _{DD} 2
20	V _{SS} 2
21	P00/AN0
22	P01/AN1
23	P02/AN2/DBGP0
24	P03/AN3/DBGP1

[]	
SQFP48	NAME
25	P04/AN4/DBGP2
26	P05/AN5/CKO/SDAT
27	P06/AN6/T6O/BCLK
28	P07/AN7/T7O/LRCK
29	P20/INT4/INT6
30	P21/INT4
31	P22/INT4/SO4
32	P23/INT4/SI4
33	P24/INT5/INT7/SCK4
34	P25/INT5
35	UHBD-
36	UHBD+
37	UHAD-
38	UHAD+
39	V _{DD} 3
40	V _{SS} 3
41	P34/UFILT
42	P33/AFILT
43	P32
44	P31/URX1
45	P30/UTX1
46	P70/INT0/T0LCP/AN8
47	P71/INT1/T0HCP/AN9
48	P72/INT2/T0IN

System Block Diagram

Pin Description

Pin Name	I/O	Description								
V _{SS} 1, V _{SS} 2, V _{SS} 3	-	-power suppl	No							
V _{DD} 1, V _{DD} 2	-	+power supp	No							
V _{DD} 3	-	USB referen	USB reference voltage							
Port 0	I/O	• 8-bit I/O po	rt					Yes		
P00 to P07		• I/O can be	specified in 1-bit	units						
		 Pull-up resi 	stors can be turn	ed on and off in f	I-bit units.					
		HOLD release	ase input							
		Port 0 inter	rupt input							
		 Pin functior 	าร							
		AD convert	ter input port: AN	0 to AN7 (P00 to	P07)					
		On-chip de	bugger pins: DB	GP0 to DBGP2 (F	P02 to P04)					
		P05: Syste	m clock output /	audio interface S	DAT I/O					
		P06: Timer	6 toggle output	audio interface i	BCLK I/O					
Dert 4	1/0	PU7: Timer		audio internace i				Vez		
Port 1	1/0	• 8-bit I/O po	Π apocified in 1 hit	unito				res		
P10 to P17		• I/O can be	specified in 1-bit	ed on and off in ?	l-hit units					
		Pin function			i-bit units.					
		P10 [.] SIO0	data output							
		P11: SIO0	data input / bus l	/0						
		P12: SIO0	clock I/O							
		P13: SIO1	data output / SM	IIC0 clock I/O						
		P14: SIO1	data input / bus l	/O / SMIIC0 bus	I/O / data input					
		P15: SIO1	clock I/O / SMIIC	0 data output (us	sed in 3-wire SIO	mode)				
		P16: Timer	1 PWML output	/ SMIIC0 bus I/O	/ data input					
		P17: Timer	1 PWMH output	/ buzzer output /	SMIIC0 clock I/O					
Port 2	I/O	• 6-bit I/O po	rt					Yes		
P20 to P25		 I/O can be 	specified in 1-bit	units						
		 Pull-up resi 	stors can be turn	ed on and off in ?	I-bit units.					
		Pin function	1S							
		P20 to P23	B: IN I 4 input / HC	LD release input	/ timer 1 event in	put /				
		D24 to D25	timer UL captur	e Input / timer 0H	capture input	out /				
		P24 10 P20	timer 01 contur	o input / timor 0H	conture input	put /				
		P20. INT6	input / timer 0L captur	anture 1 input	capture input					
		P22: SIO4	data I/O							
		P23: SIO4	data I/O							
		P24: INT7	input / timer 0H c	apture 1 input / S	SIO4 clock I/O					
		Interrupt ac	knowledge types							
			Rising	Falling	Rising &	H Level	L Level			
		INT4	Enable	Enable	Enable	Disable	Disable			
		INT5	Enable	Enable	Enable	Disable	Disable			
		INT6	Enable	Enable	Enable	Disable	Disable			
		INIT7	Enable	Enable	Enable	Disable	Disable			
		11117	LIIdble	LINDIC	LINDIE	Disable	Disable			
Port 3	I/O	• 5-bit I/O no	rt					Yes		
P30 to P34		• I/O can be	specified in 1-bit	units						
		• Pull-up resi	stors can be turn	ed on and off in f	I-bit units.					
		Pin function	าร							
		P30: UART	1 transmit							
		P31: UAR1	1 receive							
		P33: Conn	ected to audio inf	terface PLL filter	circuit (see Fig. 6)).				
		P34: Conn	ected to USB inte	erface PLL filter c	ircuit (see Fig. 5).					

Continued on next page.

	Descenter	Ourseland	Dir (Demedue	Canditiana			Specifi	cation	
	Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Ma: volt	ximum supply age	V _{DD} max	V _{DD} 1, V _{DD} 2, V _{DD} 3	V _{DD} 1=V _{DD} 2=V _{DD} 3		-0.3		+6.5	-
Input voltage Input/output voltage Peak output		V _I (1)	XT1, CF1, RES			-0.3		V _{DD} +0.3	v
		V _{IO} (1)	Ports 0, 1, 2, 3, 7 PWM0, PWM1 XT2			-0.3		V _{DD} +0.3	-
	Peak output current	IOPH(1)	Ports 0, 1, 2	 When CMOS output type is selected Per 1 applicable pin 		-10			
		IOPH(2)	PWM0, PWM1	Per 1 applicable pin		-20			
High level output current		IOPH(3)	Port 3 P71 to P73	When CMOS output type is selected Per 1 applicable pin		-5			
	Average output current (Note 1-1)	IOMH(1)	Ports 0, 1, 2	When CMOS output type is selected Per 1 applicable pin		-7.5			
	, , , , , , , , , , , , , , , , , , ,	IOMH(2)	PWM0, PWM1	Per 1 applicable pin		-15			
		IOMH(3)	Port 3 P71 to P73	When CMOS output type is selected Per 1 applicable pin		-3			
	Total output current	ΣIOAH(1)	Ports 0, 2	Total current of all applicable pins		-25			
		ΣIOAH(2)	Port 1 PWM0, PWM1	Total current of all applicable pins		-25			
		ΣIOAH(3)	Ports 0, 1, 2 PWM0, PWM1	Total current of all applicable pins		-45			
		ΣIOAH(4)	Port 3 P71 to P73	Total current of all applicable pins		-10			
		ΣIOAH(5)	UHAD+, UHAD- UHBD+, UHBD-	Total current of all applicable pins		-50			mA
	Peak output current	IOPL(1)	P02 to P07 Ports 1, 2 PWM0, PWM1	Per 1 applicable pin				20	
		IOPL(2)	P00, P01	Per 1 applicable pin				30	
		IOPL(3)	Ports 3, 7 XT2	Per 1 applicable pin				10	
rent	Average output current (Note 1-1)	IOML(1)	P02 to P07 Ports 1, 2 PWM0, PWM1	Per 1 applicable pin				15	
t cur	()	IOML(2)	P00, P01	Per 1 applicable pin				20	
el outpu		IOML(3)	Ports 3, 7 XT2	Per 1 applicable pin				7.5	
ow leve	Total output current	ΣIOAL(1)	Ports 0, 2	Total current of all applicable pins				45	
Г		ΣIOAL(2)	Port 1 PWM0, PWM1	Total current of all applicable pins				45	
		ΣIOAL(3)	Ports 0, 1, 2 PWM0, PWM1	Total current of all applicable pins				80	
		ΣIOAL(4)	Ports 3, 7 XT2	Total current of all applicable pins				15	
		ΣIOAL(5)	UHAD+, UHAD- UHBD+, UHBD-	Total current of all applicable pins				50	
Allo	wable power	Pd max	SQFP48(7×7)	Ta=-40 to +85°C				140	mW
Ope Ter	erating ambient	Topr				-40		+85	
Sto terr	rage ambient	Tstg				-55		+125	-0

Note 1-1: The average output current is an average of current values measured over 100ms intervals.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

_						Specifica	ation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
High level input current	I _{IH} (1)	Ports 0, 1, 2, 3, 7 RES PWM0, PWM1	Output disabled Pull-up resistor off V _{IN} =V _{DD} (Including output Tr's off leakage current)	2.7 to 5.5			1	
	I _{IH} (2)	XT1, XT2	Input port configuration VIN=VDD	2.7 to 5.5			1	
	I _{IH} (3)	CF1	V _{IN} =V _{DD}	2.7 to 5.5			15	
Low level input current	ι _Ι Γ(1)	Ports 0, 1, 2, 3, 7 RES PWM0, PWM1	Output disabled Pull-up resistor off VIN ^{=V} SS (Including output Tr's off leakage current)	2.7 to 5.5	-1			μΑ
	I _{IL} (2)	XT1, XT2	Input port configuration VIN=VSS	2.7 to 5.5	-1			
	I _{IL} (3)	CF1	V _{IN} =V _{SS}	2.7 to 5.5	-15			
High level output	V _{OH} (1)	Ports 0, 1, 2, 3	I _{OH} =-1mA	4.5 to 5.5	V _{DD} -1			
voltage	V _{OH} (2)	P71 to P73	I _{OH} =-0.4mA	3.0 to 5.5	V _{DD} -0.4			
	V _{OH} (3)		I _{OH} =-0.2mA	2.7 to 5.5	V _{DD} -0.4			
	V _{OH} (4)	PWM0, PWM1	I _{OH} =-10mA	4.5 to 5.5	V _{DD} -1.5			
	V _{OH} (5)	P05 to P07	I _{OH} =-1.6mA	3.0 to 5.5	V _{DD} -0.4			
	V _{OH} (6)	(Note 3-1)	I _{OH} =-1mA	2.7 to 5.5	V _{DD} -0.4			
Low level output	V _{OL} (1)	P00, P01	I _{OL} =30mA	4.5 to 5.5			1.5	
voltage	V _{OL} (2)		I _{OL} =5mA	3.0 to 5.5			0.4	v
	V _{OL} (3)		I _{OL} =2.5mA	2.7 to 5.5			0.4	
	V _{OL} (4)	Ports 0, 1, 2	I _{OL} =10mA	4.5 to 5.5			1.5	
	V _{OL} (5)	PWM0, PWM1	I _{OL} =1.6mA	3.0 to 5.5			0.4	
	V _{OL} (6)	X12	I _{OL} =1mA	2.7 to 5.5			0.4	
	V _{OL} (7)	Ports 3, 7	I _{OL} =1.6mA	3.0 to 5.5			0.4	
	V _{OL} (8)		I _{OL} =1mA	2.7 to 5.5			0.4	
Pull-up resistance	Rpu(1)	Ports 0, 1, 2, 3, 7	V _{OH} =0.9V _{DD}	4.5 to 5.5	15	35	80	1.0
	Rpu(2)			2.7 to 4.5	18	50	150	K52
Hysteresis voltage	VHYS	RES Ports 1, 2, 3, 7		2.7 to 5.5		0.1V _{DD}		v
Pin capacitance	СР	All pins	For pins other than those under test: VIN ^{=V} SS f=1MHz Ta=25°C	2.7 to 5.5		10		pF

Note 3-1: When the CKO system clock output function (P05) or the audio interface output function (P05 to P07) is used.

Serial I/O Characteristics at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$ 1. SIO0 Serial I/O Characteristics (Note 4-1-1)

Parameter		aramatar	Sumbol	Pin/	Conditions		Specification			
	Р	arameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
		Frequency	tSCK(1)	SCK0(P12)	See Fig. 9.		2			
		Low level	tSCKL(1)				1			
		pulse width								-
		High level	tSCKH(1)				1			-
		puise width	tSCKHA(1a)		Continuous data transmission/					
					ISB AIE SIO4 not used at the					
					same time.		4			
					• See Fig. 9.					
	×				• (Note 4-1-2)					
	cloc		tSCKHA(1b)		 Continuous data transmission/ 	2 7 to 5 5				
	Iput				reception mode	2.7 10 5.5				tCYC
	-				USB used at the same time AIE_SIO4 not used at the same		7			
					time.		,			
					• See Fig. 9.					
					• (Note 4-1-2)					
			tSCKHA(1c)		Continuous data transmission/					
					reception mode					
					• USB, AIF, SIO4 used at the		9			
					• See Fig. 9.					
lock					• (Note 4-1-2)					
		Frequency	tSCK(2)	SCK0(P12)	 When CMOS output type is 		4/3			
ial cl		Low level	tSCKL(2)		selected. • See Fig. 9.			1/2		
Ser		pulse width	40.01/11/20							tSCK
		pulse width	(SCKH(2)					1/2		
		P	tSCKHA(2a)		Continuous data transmission/					
					reception mode					
					 USB, AIF, SIO4 not used at the 		tSCKH(2)		tSCKH(2)	
					same time.		+2tCYC		+	
					• when CMOS output type is selected				(10/3)(CTC	
	¥				• See Fig. 9.					
	cloc		tSCKHA(2b)		Continuous data transmission/					
	tput				reception mode	2.7 to 5.5				
	Oui				USB used at the same time				tSCKH(2)	
					 AIF, SIO4 not used at the same 		tSCKH(2)		+	tCYC
					time.		+21040		(19/3)tCYC	
					selected.					
					• See Fig. 9.					
			tSCKHA(2c)		Continuous data transmission/					
					reception mode					
					USB, AIF, SIO4 used at the		tSCKH(2)		tSCKH(2)	
					• When CMOS output type is		+2tCYC		+ (25/3)tCYC	
					selected.				(20,0)(010	
					• See Fig. 9.					

Note 4-1-1: These specifications are theoretical values. Margins must be allowed according to the actual operating conditions.

Note 4-1-2: In an application where the serial clock input is to be used in continuous data transmission/reception mode, the time from SIORUN being set when serial clock is high to the falling edge of the first serial clock must be longer than tSCKHA.

Continued on next page.

3. SIO4 Serial I/O Characteristics (Note 4-3-1)

			0 set et	Pin/				Specification		
	Pa	arameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
		Frequency	tSCK(5)	SCK4(P24)	See Fig. 9.		2			
		Low level	tSCKL(5)				1			ĺ
		pulse width					1			
		High level	tSCKH(5)				1			
		pulse width	tSCKHA(5a)		 USB, SIO0 continuous transfer 					
					mode,					
					AIF not used at the same time.		4			
	ck				• See Fig. 9.					
	it clo		tSCKHA(5b)		(Note 4-3-2) (ISB used at the same time	2.7 to 5.5				
	Inpu				SIO0 continuous transfer mode.					tCYC
					AIF not used at the same time.		7			
					• See Fig. 9.					
					• (Note 4-3-2)					
			tSCKHA(5c)		 USB, SIO0 continuous transfer 					
					mode used at the same time.					
					• AIF not used at the same time.		10			
					• See Fig. 9.					
Š		Frequency	tSCK(6)	SCK4(P24)	• When CMOS output type is		1/3			
al clo				001(1(121)	selected.		4/3			
seria		LOW level	ISCKL(0)		• See Fig. 9.		1/2			tSCK
0,		High level	tSCKH(6)				1/2			look
		pulse width	tSCKHA(6a)		• USB_SIO0 continuous transfer					
					mode					
					AIF not used at the same time.		tSCKH(6)		tSCKH(6)	
					 When CMOS output type is 		+ (5/2)+CVC		+ (10/2)+CVC	
	~				selected.		(5/3)1010		(10/3)(CTC	
	clock				• See Fig. 9.					
	put c		tSCKHA(6b)		• USB used at the same time.	2.7 to 5.5				
	Out				SIO0 continuous transfer mode		tSCKH(6)		tSCKH(6)	
					• When CMOS output type is		+		+	tCYC
					selected.		(5/3)tCYC		(19/3)tCYC	
					• See Fig. 9.					
			tSCKHA(6c)		USB, SIO0 continuous transfer					
					mode used at the same time		ISCKH(6)		ISCKH(6)	
					 AIF not used at the same time. 		+		+	
					When CMOS output type is		(5/3)tCYC		(28/3)tCYC	
					selected.					
	Da	ta setun time	tsDI(3)	SO4(P22)	Must be specified with respect to					
Ŧ	Du		1301(0)	SI4(P23)	rising edge of SIOCLK.		0.03			
inpu				()	• See Fig. 9.					
erial	Da	ta hold time	thDI(3)		-	2.7 to 5.5				
Š							0.03			
L										μs
	Ou	tput delay	tdDO(5)	SO4(P22),	Must be specified with respect to					
utput	tim	e		SI4(P23)	falling edge of SIOCLK.				(4/0)(0)(0)	
al ot					Invite the specified as the time up to the beginning of output state	2.7 to 5.5			(1/3)tCYC ±0.05	
Seri					change in open drain output state				+0.05	
0					• See Fig. 9.					

Note 4-3-1: These specifications are theoretical values. Margins must be allowed according to the actual operating conditions.

Note 4-3-2: In an application where the serial clock input is to be used, the time from SI4RUN being set when serial clock is high to the falling edge of the first serial clock must be longer than tSCKHA when continuous data transmission/reception is started.

	De	ramatar	Cumbol	Din/Domorko	Conditions			Speci	fication	
	Pa	Irameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
		Frequency	tSCK(7)	SM0CK0(P17),	See Fig. 9.		4/3			
	ut clock	Low level pulse width	tSCKL(7)	SM0CK1(P13)		2.7 to 5.5	2/3			101/0
clock	lnpi	High level pulse width	tSCKH(7)				2/3			IC YC
erial	×	Frequency	tSCK(8)	SM0CK0(P17),	When CMOS output type is		4/3			
Low Low Palue High Puls	Low level pulse width	tSCKL(8)	SM0CK1(P13)	selected. • See Fig. 9.	2.7 to 5.5	1.		1/2		
	High level pulse width	tSCKH(8)	-				1/2		tSCK	
Data	ta setup time	tsDI(4)	SM0DA0(P16), SM0DA1(P14)	SM0DA0(P16), • Must be specified with SM0DA1(P14) respect to rising edge of SIOCLK. SIOCLK.		0.03				
Serial	Da	ta hold time	thDI(4)		• See Fig. 9.	2.7 to 5.5	0.03			
Serial output	Ou tim	tput delay e	tdDO(6)	SM0DO(P15), SM0DA0(P16), SM0DA1(P14)	 Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change. See Fig. 9 	2.7 to 5.5			(1/3)tCYC +0.05	μs

Note 4-4-1: These specifications are theoretical values. Margins must be allowed according to the actual operating conditions.

4-2. SMIIC0 I²C Mode I/O Characteristics (Note 4-5-1)

	_								Specifi	cation	
	F	arameter		Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
		Frequency		tSCL	SM0CK0(P17),	See Fig. 11.		5			
	slock	Low level		tSCLL	SM0CK1(P13)			2.5			
	out c	pulse width					2.7 to 5.5	2.5			Tfilt
sс	Inp	High level		tSCLH				2			
al		pulse width									
Seri	×	Frequency		tSCLx	SM0CK0(P17),	Must be specified as the time up		10			
	cloc	Low level		tSCLLx	SINIUCKI (PIS)	change.	2 7 to 5 5		1/2		
	itput	Highlevel		tSCI Hx			2.1 10 0.0				tSCL
	ŋ	pulse width		1002.1.1					1/2		
SN	10CK	, SM0DA pin		tsp	SM0CK0(P17),	See Fig. 11.					
inp	out sp	ike suppressi	on		SM0CK1(P13),		0 7 to 5 5			4	T £114
tim	ne				SM0DA0(P16),		2.7 10 5.5			1	11111
					SM0DA1(P14)						
Bu	s reli	nquish time		tBUF	SM0CK0(P17),	See Fig. 11.					
be	tweer	n start and	Indu		SM0CK1(P13),			2.5			Tfilt
Sto	р				SM0DA0(P16),						
				tBLIEv	SWODAT(F14)	Standard clock mode					
						Must be specified as the time up					
						to the beginning of output state	2.7 to 5.5	5.5			
			put			change.					
			Out			High-speed clock mode					μs
						Must be specified as the time up		16			
						to the beginning of output state		1.0			
						change.					
Sta	art, re	estart		tHD; STA	SM0CK0(P17),	When SMIIC register control bit					
со	nditio	n hold time	t		SM0CK1(P13),	SHDS=0		2.0			
			inpu		SM0DA0(F10), SM0DA1(P14)	• When SMIC register control bit					Tfilt
						SHDS=1		25			
						• See Fig. 11.					
				tHD; STAx		Standard clock mode	071055				
						Must be specified as the time up	2.7 to 5.5	4.4			
						to the beginning of output state		4.1			
			utpui			change.					us
			õ			High-speed clock mode					
						Must be specified as the time up		1.0			
						change					
Re	start	condition		tSU: STA	SM0CK0(P17)	See Fig. 11					
se	tup tir	ne	ut		SM0CK1(P13),						
	•		inp		SM0DA0(P16),			1.0			Tfilt
					SM0DA1(P14)						
				tSU; STAx		Standard clock mode					
						Must be specified as the time up	2.7 to 5.5	5.5			
			rt			to the beginning of output state					
			Jutpi			• High speed cleak mode					μs
			0			Must be specified as the time up					
						to the beginning of output state		1.6			
						change.					

Continued on next page.

Continued from p	reco	eding page.							
Deremeter		Symphol	Din/Domorko	Conditions			Specific	ation	
Parameter		Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Stop condition setup time	input	tSU; STO	SM0CK0(P17), SM0CK1(P13), SM0DA0(P16),	See Fig. 11.		1.0			Tfilt
	tput	tSU; STOx	SM0DA1(P14)	 Standard clock mode Must be specified as the time up to the beginning of output state change. 	2.7 to 5.5	4.9			
	Out			 High-speed clock mode Must be specified as the time up to the beginning of output state change. 		1.1			μs
Data hold time	Input	tHD; DAT	SM0CK0(P17), SM0CK1(P13), SM0DA0(P16),	See Fig. 11.	07455	0			TCH
	Output	tHD; DATx	SM0DA1(P14)	Must be specified as the time up to the beginning of output state change.	2.7 to 5.5	1		1.5	ITIL
Data setup time	Input	tSU; DAT	SM0CK0(P17), SM0CK1(P13), SM0DA0(P16),	See Fig. 11.	2 7 to 5 5	1			Tfilt
	Output	tSU; DATx	SM0DA1(P14)	Must be specified as the time up to the beginning of output state change.	2.7 10 5.5	1tSCL- 1.5Tfilt			TUUT

Note 4-5-1: These specifications are theoretical values. Margins must be allowed according to the actual operating conditions.

Note 4-5-2: The value of Tfilt is determined by bits 7 and 6 (BRP1 and BRP0) of the SMIC0BRG register and the system clock frequency.

BRP1	BRP0	Tfilt
0	0	(1/3) tCYC×1
0	1	(1/3) tCYC×2
1	0	(1/3) tCYC×3
1	1	(1/3) tCYC×4

Set the value of the BRP1 and BRP0 bits so that the value of Tfilt falls within the following value range: $250ns \ge Tfilt > 140ns$

Note 4-5-3: For standard clock mode operation, set up the SMIC0BRG register so that the following conditions are satisfied:

 $250ns \geq Tfilt > 140ns$

BRDQ (bit5) = 1

SCL frequency value ≤ 100 kHz

For high-speed clock mode operation, set up the SMIC0BRG register so that the following conditions are satisfied:

 $250 \text{ns} \ge \text{Tfilt} > 140 \text{ns}$ BRDQ (bit5) = 1 SCL frequency value $\le 400 \text{kHz}$

			<u> </u>	0.1		Spe	oification	
Parameter	Symbol	Pin/Remarks	Conditions			Spe	cincation	1
	-			V _{DD} [V]	min	typ	max	unit
High/low level	tPIH(1)	INT0(P70),	Interrupt source flag can be					
pulse width	tPIL(1)	INT1(P71),	set.					
		INT2(P72),	Event inputs for timer 0/1 are					
		INT4(P20 to P23),	enabled.	2.7 to 5.5	1			
		INT5(P24 to P25),						
		INT6(P20),						
		INT7(P24)						
	tPIH(2)	INT3(P73) when	Interrupt source flag can be					
	tPIL(2)	noisefilter time constant	set.	071.55	0			
		is 1/1.	• Event inputs for timer 0 are	2.7 to 5.5	2			tCYC
			enabled.					
	tPIH(3)	INT3(P73) when	Interrupt source flag can be					
	tPIL(3)	noisefilter time constant	set.	074555	64			
		is 1/32.	• Event inputs for timer 0 are	2.7 to 5.5	64			
			enabled.					
	tPIH(4)	INT3(P73) when	Interrupt source flag can be					
	tPIL(4)	noisefilter time constant	set.					
		is 1/128.	Event inputs for timer 0 are	2.7 to 5.5	256			
			enabled.					
	tPIL(5)	RMIN(P73)	Recognized as a signal by					DMOK
			infrared remote control	2.7 to 5.5	4			
			receiver circuit					(NOTE 5-1)
	tPIL(6)	RES	Resetting is enabled.	2.7 to 5.5	200			μs

Pulse Input Conditions at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

Note 5-1: Denotes the reference frequency of the infrared remote control receiver circuit (1tCYC to 128tCYC or source oscillation frequency of the subclock)

AD Converter Characteristics at Ta = -40°C to +85°C, $V_{SS1} = V_{SS2} = V_{SS3} = 0V$

<12-bit AD Converter Mode>

Deservator	O: make al	Pin/Remarks	S Conditions			Specific	cation	
Parameter	Symbol			V _{DD} [V]	min	typ	max	unit
Resolution	N	AN0(P00)		3.0 to 5.5		12		bit
Absolute accuracy	ET	to AN7(P07)	(Note 6-1)	3.0 to 5.5			±16	LSB
Conversion time	TCAD	AN8(P70)	See conversion time	4.0 to 5.5	32		115	
		AN10(XT1)	calculation formulas. (Note 6-2)	3.0 to 5.5	64		115	μs
Analog input voltage range	VAIN	AN11(X12)		3.0 to 5.5	V _{SS}		V _{DD}	V
Analog port input	IAINH		VAIN=V _{DD}	3.0 to 5.5			1	
current	IAINL		VAIN=V _{SS}	3.0 to 5.5	-1			μΑ

<8-bit AD Converter Mode>

Deremeter	Symbol	Din/Domorko	Conditions			Specific	cation	
Parameter	Symbol	Tin/Temarks	Conditions	V _{DD} [V]	min	typ	max	unit
Resolution	Ν	AN0(P00)		3.0 to 5.5		8		bit
Absolute accuracy	ET	to AN7(P07)	(Note 6-1)	3.0 to 5.5			±1.5	LSB
Conversion time	TCAD	AN8(P70)	See conversion time	4.0 to 5.5	20		90	
		AN10(XT1)	calculation formulas. (Note 6-2)	3.0 to 5.5	40		90	μs
Analog input voltage range	VAIN	AN11(X12)		3.0 to 5.5	V _{SS}		V _{DD}	V
A Analog port input	IAINH		VAIN=V _{DD}	3.0 to 5.5			1	
current	IAINL		VAIN=V _{SS}	3.0 to 5.5	-1			μΑ

Conversion time calculation formulas :

12-bits AD Converter Mode : TCAD (Conversion time) = $((52/(AD \text{ division ratio}))+2) \times (1/3) \times tCYC$ 8-bits AD Converter Mode : TCAD (Conversion time) = $((32/(AD \text{ division ratio}))+2) \times (1/3) \times tCYC$

<Recommended Operating Conditions>

External	Supply Voltage	System Clock	Cycle Time	AD Frequency	Conversion Tir	me (TCAD)[μs]
Oscillator	Range	Division	tCYC [ns]	Division Ratio	12-bit AD	8-bit AD
FmCF[MHz]	V _{DD} [V]	(SYSDIV)		(ADDIV)		
12	4.0 to 5.5	1/1	250	1/8	34.8	21.5
	3.0 to 5.5	1/1	250	1/16	69.5	42.8

Note 6-1: The quantization error (±1/2LSB) must be excluded from the absolute accuracy. The absolute accuracy must be measured in the microcontroller's state in which no I/O operations occur at the pins adjacent to the analog input channel.

Note 6-2: The conversion time refers to the period from the time an instruction for starting a conversion process until the time the conversion result register is loaded with a complete digital conversion value corresponding to the analog input value.

The conversion time is doubled in the following cases:

• The AD conversion is carried out in the 12-bit AD conversion mode for the first time after a system reset.

• The AD conversion is carried out for the first time after the AD conversion mode is switched from 8-bit to 12-bit AD conversion mode.

Power-on Reset (POR) Cha	racteristics at Ta = -40	0° C to +85°C, VS	S1 = VSS2 =	= V _{SS} 3 $=$ 0V	V	
					Specific	ation	
Parameter	Symbol	Conditions	Option selected voltage	min	typ	max	unit
POR release voltage	PORRL	Select from option	1.67V	1.55	1.67	1.79	
		(Note 7-1)	1.97V	1.85	1.97	2.09	
			2.07V	1.95	2.07	2.19	
			2.37V	2.25	2.37	2.49	
			2.57V	2.45	2.57	2.69	V
			2.87V	2.75	2.87	2.99	
			3.86V	3.73	3.86	3.99	
			4.35V	4.21	4.35	4.49	
Detection voltage unknown state	POUKS	See Fig. 13 (Note 7-2)			0.7	0.95	
Power supply rise time	PORIS	Power supply rise time from VD=0V to 1.6V				100	ms

Note 7-1: The POR release level can be selected out of 8 levels only when LDV reset function is disabled. Note 7-2: POR is in unknown state before transistors start operation.

Low Voltage Detection (LVD) Characteristics at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

Parameter Symbol Conditions Option		Specific	ation				
Parameter	Symbol	Conditions	Option selected voltage	min	typ	max	unit
LVD reset voltage	LVDET	Select from option.	1.91V	1.81	1.91	2.01	
(Note 8-2)		See Fig. 14.	2.01V	1.91	2.01	2.11	
		(Note 8-1) (Note 8-3)	2.31V	2.21	2.31	2.41	
		(Note 0-3)	2.51V	2.41	2.51	2.61	V
			2.81V	2.71	2.81	2.91	
			3.79V	3.69	3.79	3.89	
			4.28V	4.18	4.28	4.38	
LVD hysteresis width	LVHYS		1.91V		55		
			2.01V		55		
			2.31V		55		
			2.51V		55		mV
			2.81V		55		
			3.79V		60		
			4.28V		65		
Detection voltage unknown state	LVUKS	See Fig. 14. (Note 8-4)			0.7	0.95	V
Low voltage detection minimum width (Reply sensitivity)	TLVDW	LVDET-0.5V See Fig. 15.		0.2			ms

Note 8-1: The LVD reset level can be selected out of 7 levels only when the LVD reset function is enabled.

Note 8-2: LVD reset voltage specification values do not include hysteresis voltage.

Note 8-3: LVD reset voltage may exceed its specification values when port output state changes and/or when a large current flows through port.

Note 8-4: LVD is in an unknown state before transistors start operation.

USB Characteristics and Timing at Ta = -40°C to +85°C, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

Deremeter	Sympol	Din/Domorko		Cond	litions	
Parameter	Symbol	Pinkemarks	min	typ	max	unit
High level output	V _{OH(USB)}	• 15k Ω ±5% to GND	2.8		3.6	V
Low level output	VOL(USB)	• 1.5kΩ±5% to 3.6V	0.0		0.3	V
Output signal crossover voltage	V _{CRS}		1.3		2.0	V
Differential input sensitivity	V _{DI}	• (UHAD+) – (UHAD–) • (UHBD+) – (UHBD–)	0.2			V
Differential input common mode range	V _{CM}		0.8		2.5	V
High level input	VIH(USB)		2.0		3.6	V
Low level input	V _{IL(USB)}		0.0		0.8	V
Rise time (full-speed)	t _{FR}	R _S =33Ω, C _L =50pF	4		20	ns
Fall time (full-speed)	tFF	R _S =33Ω, C _L =50pF	4		20	ns
Rise time (low-speed)	^t LR	$R_S=33\Omega$, $C_L=200$ to 600pF	75		300	ns
Fall time (low-speed)	tLF	R _S =33Ω, C _L =200 to 600pF	75		300	ns

F-ROM Programming Characteristics at $Ta = +10^{\circ}C$ to $+55^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

Deremeter	Symbol	Pin/Remarks	Conditions		Specification			
Parameter	Symbol		Conditions	V _{DD} [V]	min	typ	max	unit
Onboard programming current	IDDFW(1)	V _{DD} 1	Excluding power dissipation in the microcontroller block	3.0 to 5.5		5	10	mA
Programming time	tFW(1)		 Erase operation 	2.0 to 5.5		20	30	ms
	tFW(2)		Write operation	3.0 10 5.5		40	60	μs

Main System Clock Oscillation

The characteristics of a sample main system clock oscillator circuit shown in Table 1 are measured using a Our specification oscillation characteristics evaluation board and external components with circuit constant values with which the resonator vendor confirmed normal and stable oscillation.

Table 1 shows the characteristics of a oscillator circuit when USB host function is not used. If USB host function is to be used, it is absolutely recommended to use a resonator that satisfies the precision and stability according to the USB standards (±500ppm)

Nominal Frequency	Vendor Name	Resonator Name	Circuit Constant			Operating Voltage	Oscillation Stabilization Time		
			C1	C2	Rd1	Range typ	typ	max	Remarks
			[pF]	[pF]	[Ω]	[V]	[ms]	[ms]	
									C1 and C2
12MHz	MURATA	CSTCE12M0GH5L**-R0	(33)	(33)	470	3.0 to 5.5	0.1	0.5	integrated
									SMD type

Table 1 Chara	cteristics of a San	nple Main S	ystem Clock	Oscillator C	Circuit with a	Ceramic Resonator
---------------	---------------------	-------------	-------------	--------------	----------------	-------------------

The oscillation stabilization time is required for the oscillator to get stabilized in the following cases (see Figure 4):

- Until oscillation is stabilized after VDD goes above the operating voltage lower limit
- Until oscillation is stabilized after the instruction for starting the main clock oscillator circuit is executed
- Until oscillation is stabilized after HOLD mode is released.
- Until oscillation is stabilized after X'tal HOLD mode is released with CFSTOP (OCR register, bit 0) set to 0 and oscillation is started.

Subsystem Clock Oscillation

Table 2 shows the characteristics of a sample subsystem clock oscillator circuit that are measured using a Our specification oscillation characteristics evaluation board and external components with circuit constant values with which the resonator vendor confirmed normal and stable oscillation.

Table 2 Characteristics of a Sample Subsystem Clock Osemator Circuit with a Crystal Resonan

Nominal	Vendor Name	Resonator Name	Circuit Constant				Operating Voltage	Oscil Stabiliza	llation tion Time	Davida	
Frequency			C3	C4	Rf	Rd2	Range	Range typ	max	Remarks	
			[pF]	[pF]	[Ω]	[Ω]	[V]	[s]	[s]		
										Applicable CL	
32.768kHz	EPSON TOYOCOM	MC-306	18	18	Open	680k	2.7 to 5.5	1.1	3.0	value=12.5pF	
										SMD type	

The oscillation stabilization time is required for the oscillator to get stabilized in the following cases (see Figure 4):

Until oscillation is stabilized after the instruction for starting the subclock oscillator circuit is executed
Until oscillation is stabilized after HOLD mode is released with EXTOSC (OCR register, bit 6) set to 1 and oscillation is started.

Note: The components that are involved in oscillation should be placed as close to the IC and to one another as possible because they are vulnerable to the influences of the circuit pattern.

Figure 1 CF Oscillator Circuit

Figure 2 Crystal Oscillator Circuit