

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

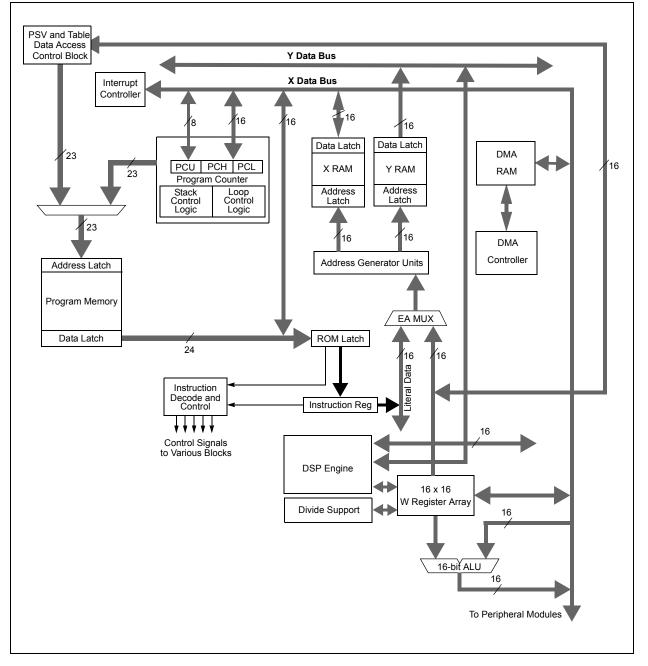
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Decalis	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128gp202-e-so

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.4 Special MCU Features

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 features a 17-bit by 17-bit single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed-sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0). The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 supports 16/16 and 32/16 divide operations, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A 40-bit barrel shifter is used to perform up to a 16-bit left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions.

FIGURE 3-1: dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/ X04 CPU CORE BLOCK DIAGRAM

Special Function Register Maps 4.4

TABLE 4-1: **CPU CORE REGISTERS MAP**

DS70	
292G	
i-page	
42	

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000								Working Re	gister 0								0000
WREG1	0002								Working Re	gister 1								0000
WREG2	0004								Working Re	gister 2								0000
WREG3	0006								Working Re	gister 3								0000
WREG4	0008								Working Re	gister 4								0000
WREG5	000A								Working Re	gister 5								0000
WREG6	000C								Working Re	gister 6								0000
WREG7	000E								Working Re	gister 7								0000
WREG8	0010								Working Re	gister 8								0000
WREG9	0012								Working Re	gister 9								0000
WREG10	0014							,	Working Reg	jister 10								0000
WREG11	0016								Working Reg	jister 11								0000
WREG12	0018							,	Working Reg	jister 12								0000
WREG13	001A								Working Reg	jister 13								0000
WREG14	001C								Working Reg	jister 14								0000
WREG15	001E		Working Register 15								0800							
SPLIM	0020		Stack Pointer Limit Register								XXXX							
ACCAL	0022		ACCAL									XXXX						
ACCAH	0024								ACCA	Н								XXXX
ACCAU	0026				ACCA<	39>							AC	CAU				XXXX
ACCBL	0028								ACCB	L								XXXX
ACCBH	002A								ACCB	Н								XXXX
ACCBU	002C				ACCB<	39>							AC	CBU				XXXX
PCL	002E							Program	Counter Lov	w Word Reg	ister							XXXX
PCH	0030	_		—			_	_	_			Progra	am Counter	High Byte F	Register			0000
TBLPAG	0032	_		—	_		—	_	—			Table	Page Addre	ss Pointer F	Register			0000
PSVPAG	0034	_		—			_	_	_		Progr	am Memor	y Visibility Pa	age Addres	s Pointer Re	egister		0000
RCOUNT	0036							Repe	at Loop Cou	nter Registe	r							XXXX
DCOUNT	0038								DCOUNT<	:15:0>								XXXX
DOSTARTL	003A							DOST	TARTL<15:1	>							0	XXXX
DOSTARTH	003C	_		_	_	_	_	_	_	_	_			DOSTAF	RTH<5:0>			00xx
DOENDL	003E		DOENDL<15:1> 0								XXXX							
DOENDH	0040	_	_	_	_	_	_	_	_	_	_			DOE	ENDH			00xx
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC		IPL<2:0>		RA	Ν	OV	Z	С	0000
CORCON	0044	_	_	_	US	EDT		DL<2:0>		SATA	SATB	SATDW	ACCSAT	IPL3	PSV	RND	IF	0020

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

© 2007-2012 Microchip Technology Inc.

TABLE 4-1: CPU CORE REGISTERS MAP (CONTINUED)

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1							Bit 0	All Resets						
MODCON	0046	XMODEN	YMODEN	—	BWM<3:0> YWM<3:0> XWM<3:0>									0000				
XMODSRT	0048		XS<15:1>								0	XXXX						
XMODEND	004A		XE<15:1>									1	XXXX					
YMODSRT	004C							Y	S<15:1>								0	XXXX
YMODEND	004E		YE<15:1>									1	XXXX					
XBREV	0050	BREN	BREN XB<14:0>									XXXX						
DISICNT	0052	_	Disable Interrupts Counter Register									XXXX						

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.8 Interfacing Program and Data Memory Spaces

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 architecture uses a 24 bit wide program space and a 16 bit wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the data space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.

4.8.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Page register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the Most Significant bit of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

For remapping operations, the 8-bit Program Space Visibility register (PSVPAG) is used to define a 16K word page in the program space. When the Most Significant bit of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike table operations, this limits remapping operations strictly to the user memory area.

Table 4-39 and Figure 4-9 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> refers to a program space word, and D<15:0> refers to a data space word.

TABLE 4-39: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access	Program Space Address							
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>			
Instruction Access	User	0		0					
(Code Execution)	de Execution) 0xx xxxx xxxx xxxx xxxx xxx0								
TBLRD/TBLWT	User	TB	LPAG<7:0>		Data EA<15:0>				
(Byte/Word Read/Write)		0	XXX XXXX	XXXX XX	****				
	Configuration	TBLPAG<7:0>		Data EA<15:0>					
		1	XXX XXXX	XXXX X	XXX XXXX XXXX				
Program Space Visibility	User	0	PSVPAG<7	<7:0> Data EA<14:0> ⁽¹⁾					
(Block Remap/Read)		0	XXXX XXXX	ĸ	XXX XXXX XXXX XXXX				

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

NOTES:

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3) (CONTINUED)

- bit 3 CF: Clock Fail Detect bit (read/clear by application)
 - 1 = FSCM has detected clock failure
 - 0 = FSCM has not detected clock failure
- bit 2 Unimplemented: Read as '0'
- bit 1 LPOSCEN: Secondary (LP) Oscillator Enable bit
 - 1 = Enable secondary oscillator
 - 0 = Disable secondary oscillator
- bit 0 OSWEN: Oscillator Switch Enable bit
 - 1 = Request oscillator switch to selection specified by NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- **Note 1:** Writes to this register require an unlock sequence. Refer to **Section 39. "Oscillator (Part III)"** (DS70216) in the *"dsPIC33F/PIC24H Family Reference Manual"* (available from the Microchip website) for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - **3:** This register is reset only on a Power-on Reset (POR).

REGISTER	9-2: CLKD	DIV: CLOCK DI	VISOR RE	GISTER ⁽²⁾			
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ROI		DOZE<2:0>		DOZEN ⁽¹⁾		FRCDIV<2:0>	
bit 15							bit 8
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PLLPC	ST<1:0>	—			PLLPRE<4:0	>	
bit 7							bit C
Legend:		v = Value set f	rom Configu	ration bits on P	OR		
R = Readable	a bit	W = Writable b	-		nented bit, rea	d as '0'	
-n = Value at		'1' = Bit is set	Л	'0' = Bit is cle			
	PUR	I = DILIS SEL			areu	x = Bit is unki	IOWII
bit 15	ROI: Recove	er on Interrupt bit					
		ts clears the DO		the processor c	lock/periphera	l clock ratio is s	et to 1:1
		ts have no effect					
bit 14-12	DOZE<2:0>:	Processor Cloc	k Reduction	Select bits			
	111 = Fcy/1	28					
	110 = Fcy/6						
	101 = Fcy/3						
	100 = Fcy/1 011 = Fcy/8						
	010 = Fcy/4						
	001 = Fcy/2						
	000 = Fcy/1						
bit 11	DOZEN: Doz	ze Mode Enable	bit ⁽¹⁾				
		2:0> field specifie			ipheral clocks	and the process	or clocks
bit 10-8		>: Internal Fast			S		
	111 = FRC (divide by 256					
	110 = FRC c						
	101 = FRC d						
	100 = FRC (
	011 = FRC o 010 = FRC o						
	010 = FRC (001 = FRC (-					
		divide by 1 (defai	ult)				
bit 7-6		I:0>: PLL VCO C		er Select bits (al	so denoted as	'N2', PLL posts	caler)
	11 = Output/					, .	,
	10 = Reserv						
	01 = Output/						
	00 = Output/	2					
bit 5	Unimpleme	nted: Read as '0	,				
bit 4-0	PLLPRE<4:	0>: PLL Phase D	etector Inpu	ıt Divider bits (a	lso denoted as	s 'N1', PLL pres	caler)
	11111 = Inp	ut/33					
	•						
	•						
	•						
	00000 = Inp	ut/2 (default)					
	00001 = Inp						

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER⁽²⁾

Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.

2: This register is reset only on a Power-on Reset (POR).

15.2 Output Compare Resources

Many useful resources related to Output Compare are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en532311

15.2.1 KEY RESOURCES

- Section 13. "Output Compare" (DS70209)
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
FRMEN	SPIFSD	FRMPOL	—	—	—	—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
—			—	—	—	FRMDLY	—
bit 7							bit C
Legend:							
R = Readab	lo hit	W = Writable	hit	II – Unimploy	mented bit, read	d as '0'	
				•			
-n = Value a	TPOR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own
bit 15	FRMEN: Fra	imed SPIx Supp	ort bit				
		SPIx support en		oin used as fram	ne sync pulse ir	nput/output)	
	0 = Framed	SPIx support dis	sabled				
bit 14	SPIFSD: Fra	ame Sync Pulse	Direction Co	ntrol bit			
	•	ync pulse input	• •				
	0 = Frame sy	ync pulse outpu	t (master)				
bit 13	FRMPOL: Fi	rame Sync Puls	e Polarity bit				
		ync pulse is acti					
	0 = Frame sy	ync pulse is acti	ve-low				
bit 12-2	Unimpleme	nted: Read as '	0'				
bit 1	FRMDLY: Fr	ame Sync Pulse	e Edge Selec	t bit			
	1 = Frame sy	ync pulse coinci	des with first	bit clock			
	0 = Frame sy	ync pulse prece	des first bit c	lock			
hit O		ntad. Daad as (o'				

REGISTER 16-3: SPIxCON2: SPIx CONTROL REGISTER 2

bit 0 **Unimplemented:** Read as '0' This bit must not be set to '1' by the user application.

18.1 UART Helpful Tips

- 1. In multi-node direct-connect UART networks, UART receive inputs react to the complementary logic level defined by the URXINV bit (UxMODE<4>), which defines the idle state, the default of which is logic high, (i.e., URXINV = 0). Because remote devices do not initialize at the same time, it is likely that one of the devices, because the RX line is floating, will trigger a start bit detection and will cause the first byte received after the device has been initialized to be invalid. To avoid this situation, the user should use a pull-up or pull-down resistor on the RX pin depending on the value of the URXINV bit.
 - a) If URXINV = 0, use a pull-up resistor on the RX pin.
 - b) If URXINV = 1, use a pull-down resistor on the RX pin.
- 2. The first character received on a wake-up from Sleep mode caused by activity on the UxRX pin of the UART module will be invalid. In Sleep mode, peripheral clocks are disabled. By the time the oscillator system has restarted and stabilized from Sleep mode, the baud rate bit sampling clock relative to the incoming UxRX bit timing is no longer synchronized, resulting in the first character being invalid. This is to be expected.

18.2 UART Resources

Many useful resources related to UART are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

```
Note: In the event you are not able to access the product page using the link above, enter this URL in your browser:
http://www.microchip.com/wwwproducts/
Devices.aspx?dDocName=en532311
```

18.2.1 KEY RESOURCES

- Section 17. "UART" (DS70188)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

REGISTER	R 21-3: AD1C0	ON3: ADC1 C		EGISTER 3			
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC					SAMC<4:0>(1)	
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ADCS<	:7:0> ⁽²⁾			
bit 7							bit
Legend:							
R = Reada	ble bit	W = Writable b	oit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15		Conversion Clo	ck Source bit				
	1 = ADC inter 0 = Clock der	nal RC clock ived from syste	m clock				
bit 14-13		ted: Read as '0					
bit 12-8		Auto Sample T					
511 12 0	11111 = 31 T	-					
	•						
	•						
	•						
	00001 = 1 T A						
h:+ 7 0	00000 = 0 TA			-+ -:+-(2)			
bit 7-0		ADC Conversio	on Clock Selec	Ct Dits -			
	•	Reserved					
	•						
	•						
	•						
	01000000 =	Reserved					
		TCY · (ADCS<7	7:0> + 1) = 64	• Tcy = Tad			
	•		, -				
	•						
	•						
	00000010 =	TCY · (ADCS<7	7:0> + 1) = 3 ·	TCY = TAD			
		Тсү · (ADCS<7 Тсү · (ADCS<7					
Note 1:	This bit only used i	f AD1CON1<7:	5> (SSRC<2:	0>) = 111.			
	This bit is not used			,			

40010

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

REGISTER 24-6: RTCVAL (WHEN RTCPTR<1:0> = 01): WKDYHR: WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—			—		WDAY<2:0>	
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	HRTEN	N<1:0>		HRON	E<3:0>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit; contains a value from 0 to 6
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit; contains a value from 0 to 2
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

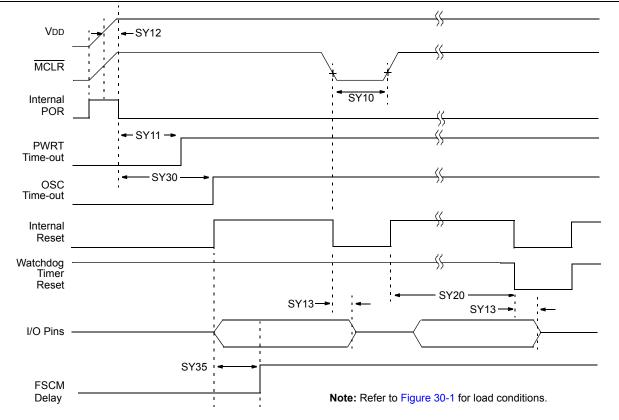
REGISTER 24-7: RTCVAL (WHEN RTCPTR<1:0> = 00): **MINUTES AND SECONDS VALUE REGISTER**

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—		MINTEN<2:0>			MINON	IE<3:0>	
bit 15							bit 8
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x

—	SECTEN<2:0>	SECONE<3:0>
bit 7		bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit; contains a value from 0 to 5
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit; contains a value from 0 to 9
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit; contains a value from 0 to 5
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit; contains a value from 0 to 9


© 2007-2012 Microchip Technology Inc.

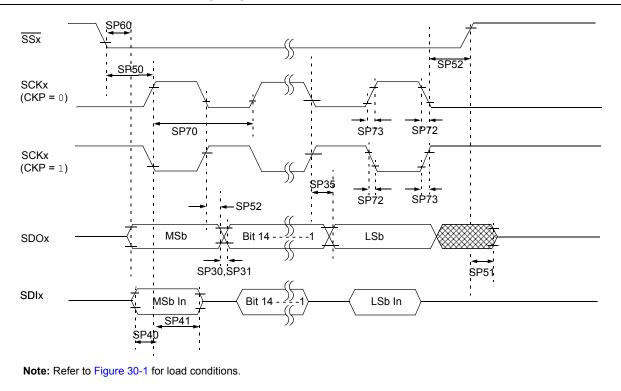

DC CHARACTERISTICS		Standar (unless Operatin	otherwi	se state	ed)	: 3.0V to 3.6V ≤TA ≤+85°C for Industrial	
						TA ≤+125°C for Extended	
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
		Output Low Voltage I/O Pins: 2x Sink Driver Pins - RA2, RA7- RA10, RB10, RB11, RB7, RB4, RC3-RC9	_	_	0.4	V	Io∟ ≤3 mA, Vod = 3.3V See Note 1
DO10	Vol	Output Low Voltage I/O Pins: 4x Sink Driver Pins - RA0, RA1, RB0-RB3, RB5, RB6, RB8, RB9,	_	_	0.4	V	Io∟ ⊴6 mA, Vod = 3.3V See Note 1
		RB12-RB15, RC0-RC2 Output Low Voltage I/O Pins: 8x Sink Driver Pins - RA3, RA4		_	0.4	v	IoL ≤10 mA, VDD = 3.3V See Note 1
		Output High Voltage I/O Pins: 2x Source Driver Pins - RA2, RA7-RA10, RB4, RB7, RB10, RB11, RC3-RC9	2.4			V	Іон ≥ -3 mA, Vod = 3.3V See Note 1
DO20 Voн	Output High Voltage I/O Pins: 4x Source Driver Pins - RA0, RA1, RB0-RB3, RB5, RB6, RB8, RB9, RB12-RB15, RC0-RC2	2.4	_	_	V	Іон ≥ -6 mA, Vod = 3.3V See Note 1	
		Output High Voltage I/O Pins: 8x Source Driver Pins - RA4, RA3	2.4	_	_	V	IOH ≥ -10 mA, VDD = 3.3V See Note 1
		Output High Voltage I/O Pins:	1.5	_	_		IOH ≥ -6 mA, VDD = 3.3V See Note 1
		2x Source Driver Pins - RA2, RA7-RA10, RB4, RB7, RB10, RB11, RC3-RC9	2.0	—	_	V	IOH ≥ -5 mA, VDD = 3.3V See Note 1
			3.0	_	_		IOH ≥ -2 mA, VDD = 3.3V See Note 1
		Output High Voltage 4x Source Driver Pins - RA0,	1.5	—	—		Iон ≥ -12 mA, VDD = 3.3V See Note 1
DO20A Voh1	Vон1	RA1, RB0-RB3, RB5, RB6, RB8, RB9, RB12-RB15, RC0-RC2	2.0	—	—	V	IOH ≥ -11 mA, VDD = 3.3V See Note 1
			3.0	_	_		IOH ≥ -3 mA, VDD = 3.3V See Note 1
		Output High Voltage I/O Pins:	1.5	_	_		IOH ≥ -16 mA, VDD = 3.3V See Note 1
		8x Source Driver Pins - RA3, RA4	2.0	_	_	V	Юн ≥ -12 mA, VDD = 3.3V See Note 1
			3.0	_			Іон ≥ -4 mA, Voo = 3.3V See Note 1

TABLE 30-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

FIGURE 30-14: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

TABLE 30-37: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

AC CHARACTERISTICS			Standard Op (unless other Operating ten	rwise sta	a ted) e -40°C	ons: 3.0V to 3.6V C \leq TA \leq +85°C for Industrial C \leq TA \leq +125°C for Extended	
Param.	Symbol	Charac	Characteristic		Max	Units	Conditions
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μs	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	_	μs	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5		μs	—
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μs	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μs	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5		μs	—
IS20	TF:SCL	SDAx and SCLx	100 kHz mode		300	ns	CB is specified to be from
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	—	100	ns	
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	—	300	ns	
IS25	TSU:DAT		100 kHz mode	250		ns	—
	Setup Time	400 kHz mode	100	_	ns		
		1 MHz mode ⁽¹⁾	100		ns		
IS26	THD:DAT		100 kHz mode	0		μs	—
	Hold	Hold Time	400 kHz mode	0	0.9	μs	
			1 MHz mode ⁽¹⁾	0	0.3	μs	
IS30	TSU:STA	Start Condition	100 kHz mode	4.7		μs	Only relevant for Repeated
		Setup Time	400 kHz mode	0.6		μs	Start condition
			1 MHz mode ⁽¹⁾	0.25		μs	
IS31	THD:STA	Start Condition	100 kHz mode	4.0	—	μs	After this period, the first
		Hold Time	400 kHz mode	0.6	—	μs	clock pulse is generated
			1 MHz mode ⁽¹⁾	0.25	—	μs	
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7		μs	—
		Setup Time	400 kHz mode	0.6		μs	
			1 MHz mode ⁽¹⁾	0.6		μs	
IS34	THD:ST	Stop Condition	100 kHz mode	4000		ns	
	0	Hold Time	400 kHz mode	600	—	ns	
			1 MHz mode ⁽¹⁾	250		ns	
IS40	TAA:SCL	Output Valid From Clock	100 kHz mode	0	3500	ns	
			400 kHz mode	0	1000	ns	
			1 MHz mode ⁽¹⁾	0	350	ns	
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be free
			400 kHz mode	1.3	—	μs	before a new transmission can start
			1 MHz mode ⁽¹⁾	0.5	—	μs	
IS50	Св	Bus Capacitive Lo	bading	—	400	pF	—

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

				otherwi	se stateo rature	d) -40°C ≤	: 3.0V to 3.6V TA ≤+85°C for Industrial TA ≤+125°C for Extended
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions
		ADC Accuracy (10-bit Mode) – Meas	urement	ts with e	xternal	VREF+/VREF-
AD20b	Nr	Resolution ⁽¹⁾	1() data bi	ts	bits	—
AD21b	INL	Integral Nonlinearity	-1.5	_	+1.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD22b	DNL	Differential Nonlinearity	> -1	_	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD23b	Gerr	Gain Error	—	3	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD24b	EOFF	Offset Error	—	2	5	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V
AD25b	—	Monotonicity	—	—	_	_	Guaranteed
		ADC Accuracy (10-bit Mode	e) – Meas	uremen	ts with ir	nternal V	VREF+/VREF-
AD20b	Nr	Resolution ⁽¹⁾	1() data bi	ts	bits	—
AD21b	INL	Integral Nonlinearity	-1	—	+1	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD22b	DNL	Differential Nonlinearity	> -1	—	< 1	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD23b	Gerr	Gain Error	3	7	15	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD24b	EOFF	Offset Error	1.5	3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD25b	—	Monotonicity			_		Guaranteed
		Dynamic	Performa	nce (10-	bit Mode	e)	
AD30b	THD	Total Harmonic Distortion	_		-64	dB	—
AD31b	SINAD	Signal to Noise and Distortion	57	58.5	_	dB	_
AD32b	SFDR	Spurious Free Dynamic Range	72	_		dB	_
AD33b	Fnyq	Input Signal Bandwidth	_		550	kHz	—
AD34b	ENOB	Effective Number of Bits	9.16	9.4	_	bits	

TABLE 30-43: ADC MODULE SPECIFICATIONS (10-BIT MODE)

Note 1: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

-	AC TERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature-40°C ≤TA ≤+150°C for High Temperature						
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions	
		C Accuracy (10-bit Mode)	Maggi	romonto	with Ex	tornal V		
	1	Resolution ⁽³⁾				1		
HAD20b	Nr			0 data bi		bits	—	
HAD21b	INL	Integral Nonlinearity	-3	_	3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
HAD22b	DNL	Differential Nonlinearity	> -1	—	< 1	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V	
HAD23b	Gerr	Gain Error	-5	—	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
HAD24b	EOFF	Offset Error	-1	—	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
	AD	C Accuracy (10-bit Mode)	– Measu	irement	s with In	ternal V	REF+/VREF- ⁽¹⁾	
HAD20b	Nr	Resolution ⁽³⁾	1	0 data bi	ts	bits	_	
HAD21b	INL	Integral Nonlinearity	-2		2	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
HAD22b	DNL	Differential Nonlinearity	> -1		< 1	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
HAD23b	Gerr	Gain Error	-5	—	15	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
HAD24b	EOFF	Offset Error	-1.5	—	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
	•	Dynamic Po	erformar	nce (10-l	oit Mode	(2)		
HAD33b	Fnyq	Input Signal Bandwidth	_		400	kHz	_	

TABLE 31-16: ADC MODULE SPECIFICATIONS (10-BIT MODE)

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

TABLE A-2: MAJOR SECTION Section Name	UPDATES (CONTINUED)
	Update Description
Section 10.0 "Power-Saving Features"	 Added the following registers: PMD1: Peripheral Module Disable Control Register 1 (Register 10-1) PMD2: Peripheral Module Disable Control Register 2 (Register 10-2) PMD3: Peripheral Module Disable Control Register 3 (Register 10-3)
Section 11.0 "I/O Ports"	Removed Table 11-1 and added reference to pin diagrams for I/O pin availability and functionality. Added paragraph on ADPCFG register default values to Section 11.3 "Configuring Analog Port Pins" . Added Note box regarding PPS functionality with input mapping to
	Section 11.6.2.1 "Input Mapping".
Section 16.0 "Serial Peripheral Interface (SPI)"	Added Note 2 and 3 to the SPIxCON1 register (see Register 16-2).
Section 18.0 "Universal Asynchronous Receiver Transmitter (UART)"	Updated the Notes in the UxMODE register (see Register 18-1). Updated the UTXINV bit settings in the UxSTA register and added Note 1 (see Register 18-2).
Section 19.0 "Enhanced CAN (ECAN™) Module"	Changed bit 11 in the ECAN Control Register 1 (CiCTRL1) to Reserved (see Register 19-1).
Section 21.0 "10-bit/12-bit Analog- to-Digital Converter (ADC)"	Replaced the ADC1 Module Block Diagrams with new diagrams (see Figure 21-1 and Figure 21-2).
	Updated bit values for ADCS<7:0> and added Notes 1 and 2 to the ADC1 Control Register 3 (AD1CON3) (see Register 21-3).
	Added Note 2 to the ADC1 Input Scan Select Register Low (AD1CSSL) (see Register 21-7).
	Added Note 2 to the ADC1 Port Configuration Register Low (AD1PCFGL) (see Register 21-8).
Section 22.0 "Audio Digital-to- Analog Converter (DAC)"	Updated the midpoint voltage in the last sentence of the first paragraph. Updated the voltage swing values in the last sentence of the last paragraph in Section 22.3 "DAC Output Format" .
Section 23.0 "Comparator Module"	Updated the Comparator Voltage Reference Block Diagram (see Figure 23-2).
Section 24.0 "Real-Time Clock and Calendar (RTCC)"	Updated the minimum positive adjust value for CAL<7:0> in the RTCC Calibration and Configuration (RCFGCAL) Register (see Register 24-1).
Section 27.0 "Special Features"	Added Note 1 to the Device Configuration Register Map (see Table 27-1). Updated Note 1 in the dsPIC33F Configuration Bits Description (see Table 27-2).

TABLE A-2: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
Section 30.0 "Electrical Characteristics"	Updated Typical values for Thermal Packaging Characteristics (see Table 30-3).
	Updated Min and Max values for parameter DC12 (RAM Data Retention Voltage) and added Note 4 (see Table 30-4).
	Updated Power-Down Current Max values for parameters DC60b and DC60c (see Table 30-7).
	Updated Characteristics for I/O Pin Input Specifications and added parameter DI21 (see Table 30-9).
	Updated Program Memory values for parameters 136, 137, and 138 (renamed to 136a, 137a, and 138a), added parameters 136b, 137b, and 138b, and added Note 2 (see Table 30-12).
	Added parameter OS42 (Gм) to the External Clock Timing Requirements (see Table 30-16).
	Updated Watchdog Timer Time-out Period parameter SY20 (see Table 30-21).
	Updated the IREF Current Drain parameter AD08 (see Table 30-37).
	Updated parameters AD30a, AD31a, AD32a, AD33a, and AD34a (see Table 30-38)
	Updated parameters AD30b, AD31b, AD32b, AD33b, and AD34b (see Table 30-39)

TABLE A-2: MAJOR SECTION UPDATES (CONTINUED)