

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128gp202-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

6.0 RESETS

- Note 1: This data sheet summarizes the features dsPIC33FJ32GP302/304. of the dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Reset" (DS70192) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- · BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset

FIGURE 6-1: **RESET SYSTEM BLOCK DIAGRAM**

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.

Note: Refer to the specific peripheral section or Section 3.0 "CPU" of this manual for register Reset states.

All types of device Reset sets a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the POR bit (RCON<0>), that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

The status bits in the RCON register Note: should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

NOTES:

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 3	ADDRERR: Address Error Trap Status bit
	 1 = Address error trap has occurred 0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit
	1 = Stack error trap has occurred
	0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred
	0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

					<u> </u>	<u> </u>				
	DMA4IF	PMPIF		—	<u> </u>					
bit 15							bit 8			
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—	—	DMA3IF	C1IF ⁽¹⁾	C1RXIF ⁽¹⁾	SPI2IF	SPI2EIF			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown			
			- 1							
DIT 15	Unimplement	ted: Read as "				.,				
bit 14	DMA4IF: DMA Channel 4 Data Transfer Complete Interrupt Flag Status bit 1 = Interrupt request has occurred									
bit 13	PMPIF: Paral	lel Master Port	Interrupt Flac	ı Status bit						
	1 = Interrupt r	equest has oc	curred							
	0 = Interrupt r	equest has no	t occurred							
bit 12-5	Unimplement	ted: Read as '	0'							
bit 4	DMA3IF: DMA	A Channel 3 D	ata Transfer C	Complete Interr	rupt Flag Status b	pit				
	1 = Interrupt r	equest has oc	curred							
	0 = Interrupt r	equest has no	toccurred	(1)						
bit 3	C1IF: ECAN1	Event Interrup	ot Flag Status	bit ⁽¹⁾						
	1 = Interrupt request has occurred									
hit 2	C1RXIE: ECA	N1 Receive D	ata Ready Inte	errunt Elan Sta	itus bit(1)					
SIL Z	1 = Interrupt r	equest has oc	curred	shupt hug old						
	0 = Interrupt r	equest has no	toccurred							
bit 1	SPI2IF: SPI2	Event Interrup	t Flag Status b	bit						
	1 = Interrupt r	equest has oc	curred							
	0 = Interrupt r	equest has no	t occurred							
bit 0	SPI2EIF: SPI2	2 Error Interrup	ot Flag Status	bit						
	1 = Interrupt n	equest has oc	curred							

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

Note 1: Interrupts are disabled on devices without ECAN[™] modules.

REGISTER	7-20: IPC5:	INTERRUPT	PRIORITY	CONTROL R	EGISTER 5							
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
		IC8IP<2:0>				IC7IP<2:0>						
bit 15							bit					
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0					
_	_	—	_	—		INT1IP<2:0>						
bit 7							bit					
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit. rea	ad as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own					
bit 15	Unimpleme	nted: Read as ')'									
bit 14-12 IC8IP<2:0>: Input Capture Channel 8 Interrupt Priority bits												
	111 = Interro	upt is priority 7 (l	nighest priori	ty interrupt)								
	•											
	•											
	001 = Interru	upt is priority 1										
	000 = Interru	upt source is dis	abled									
bit 11	Unimpleme	nted: Read as ')'									
bit 10-8	IC7IP<2:0>:	Input Capture C	hannel 7 Int	errupt Priority b	its							
	111 = Interro	111 = Interrupt is priority 7 (highest priority interrupt)										
	•											
	•											
	001 = Interri	001 = Interrupt is priority 1										
	000 = Interru	upt source is dis	abled									
bit 7-3	Unimpleme	nted: Read as ')'									
bit 2-0	INT1IP<2:0>	: External Interr	upt 1 Priority	/ bits								
	111 = Interro	upt is priority 7 (I	nighest priori	ty interrupt)								
	•											
	•											
	001 = Interru	upt is priority 1										

000 = Interrupt source is disabled

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
_		T4IP<2:0>		_		OC4IP<2:0>				
bit 15							bit 8			
		DAVA	DAALO			DAVO	DAMA			
0-0	R/W-1	R/VV-U	R/W-0	0-0	R/W-1		R/W-0			
— h:+ 7		0031P<2:0>				DIVIAZIP<2:0>	h:t 0			
DIL 7							DILU			
Legend:										
R = Readab	le bit	W = Writable I	bit	U = Unimple	emented bit, rea	ad as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkr	nown			
bit 15	Unimpleme	ented: Read as '0)'							
bit 14-12	T4IP<2:0>:	Timer4 Interrupt	Priority bits							
	111 = Interr	rupt is priority 7 (I	nighest prior	ity interrupt)						
	•									
	•									
	001 = Interr	upt is priority 1								
	000 = Interr	upt source is dis	abled							
bit 11	Unimpleme	ented: Read as '0)'							
bit 10-8	OC4IP<2:0>: Output Compare Channel 4 Interrupt Priority bits									
	111 = Interr	rupt is priority 7 (f	highest prior	ity interrupt)						
	•									
	•									
	001 = Interr	upt is priority 1								
L:1 7		upt source is disa								
	Unimpleme	ented: Read as 1								
DIT 6-4		>: Output Compa	ire Channel	3 Interrupt Prio	rity dits					
	•		lighest phon	ity interrupt)						
	•									
	•									
	001 = Interr	rupt is priority 1	abled							
hit 3		nted. Bead as '	מטוכט ז'							
bit 2_0) al 2 Data Tra	unsfer Complet	e Interrunt Prio	rity bite				
DIL 2-0	111 = Interr	unt is priority 7 (b	nighest prior	ity interrunt)	e interrupt Filo	They bits				
	•		iighteet phon							
	•									
	•	unt in priority d								
	001 = Interr	upt is priority 1	ablad							

DECISTED 7-21. IDCA- INTERDURT DRIOPITY CONTROL DECISTER A

18.1 UART Helpful Tips

- 1. In multi-node direct-connect UART networks, UART receive inputs react to the complementary logic level defined by the URXINV bit (UxMODE<4>), which defines the idle state, the default of which is logic high, (i.e., URXINV = 0). Because remote devices do not initialize at the same time, it is likely that one of the devices, because the RX line is floating, will trigger a start bit detection and will cause the first byte received after the device has been initialized to be invalid. To avoid this situation, the user should use a pull-up or pull-down resistor on the RX pin depending on the value of the URXINV bit.
 - a) If URXINV = 0, use a pull-up resistor on the RX pin.
 - b) If URXINV = 1, use a pull-down resistor on the RX pin.
- 2. The first character received on a wake-up from Sleep mode caused by activity on the UxRX pin of the UART module will be invalid. In Sleep mode, peripheral clocks are disabled. By the time the oscillator system has restarted and stabilized from Sleep mode, the baud rate bit sampling clock relative to the incoming UxRX bit timing is no longer synchronized, resulting in the first character being invalid. This is to be expected.

18.2 UART Resources

Many useful resources related to UART are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

```
Note: In the event you are not able to access the product page using the link above, enter this URL in your browser:
http://www.microchip.com/wwwproducts/
Devices.aspx?dDocName=en532311
```

18.2.1 KEY RESOURCES

- Section 17. "UART" (DS70188)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

23.2 Comparator Control Register

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CMIDL	_	C2EVT	C1EVT	C2EN	C1EN	C2OUTEN ⁽¹⁾	C1OUTEN ⁽²⁾			
bit 15				·	•	·	bit 8			
R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
C2OUT	C1OUT	C2INV	C1INV	C2NEG	C2POS	C1NEG	C1POS			
bit 7							bit 0			
Legend:	Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	CMIDL: Stop	in Idle Mode bi	t							
	1 = When de	vice enters Idle	e mode, modu	le does not ge	nerate interrup	ts. Module is sti	ll enabled.			
bit 14				Idle mode						
DIL 14		arator 2 Evon	, hit							
DIC 13	1 = Compara	tor output char	nad states							
	0 = Compara	tor output did r	ot change sta	ates						
bit 12	C1EVT: Com	parator 1 Even	t bit							
	1 = Compara	tor output char	nged states							
	0 = Compara	tor output did r	not change sta	ates						
bit 11	C2EN: Compa	arator 2 Enable	e bit							
	1 = Compara	tor is enabled								
hit 10		tor is disabled	hit							
DIL TO	1 = Compara	tor is enabled								
	0 = Compara	tor is disabled								
bit 9	C2OUTEN: C	omparator 2 O	utput Enable	bit ⁽¹⁾						
	1 = Compara	tor output is dr	iven on the ou	utput pad						
	0 = Compara	tor output is no	ot driven on th	e output pad						
bit 8	C1OUTEN: C	omparator 1 O	utput Enable	bit ⁽²⁾						
	1 = Compara	tor output is dr	iven on the oi at driven on th	utput pad						
bit 7	C2OUT: Com	narator 2 Outp	ut bit							
bit i	When C2INV	= 0.								
	1 = C2 VIN + > C2 VIN -									
	0 = C2 VIN+ •	< C2 VIN-								
	$\frac{\text{When C2INV} = 1}{22}$									
	$0 = 02 \text{ VIN}^{-} < 02 \text{ VIN}^{-}$ $1 = C2 \text{ VIN}^{+} < C2 \text{ VIN}^{-}$									
		52 111								
Note 1: If C	20UTEN = 1, t	he C2OUT per	ipheral output	t must be confi	gured to an ava	ailable RPx pin.	See			

REGISTER 23-1: CMCON: COMPARATOR CONTROL REGISTER

- **Note 1:** If C2OUTEN = 1, the C2OUT peripheral output must be configured to an available RPx pin. See **Section 11.6 "Peripheral Pin Select"** for more information.
 - 2: If C1OUTEN = 1, the C1OUT peripheral output must be configured to an available RPx pin. See Section 11.6 "Peripheral Pin Select" for more information.

REGISTER 24-10: ALRMVAL (WHEN ALRMPTR<1:0> = 00): ALARM MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
_		MINTEN<2:0>			MINONE<3:0>					
bit 15							bit 8			
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
_		SECTEN<2:0>			SECON	VE<3:0>				
bit 7							bit 0			
l egend:										

Logona.						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15 Unimplemented: Read as '0'

bit 14-12 MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit; contains a value from 0 to 5

bit 11-8MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit; contains a value from 0 to 9bit 7Unimplemented: Read as '0'

bit 6-4 SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit; contains a value from 0 to 5

bit 3-0 SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit; contains a value from 0 to 9

29.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

29.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

29.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

29.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

29.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- · Command line interface
- · Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

			Standard (Operating	Operating temperate	g Conditio ure -40° -40°	ons: 3.0V C ≤ Ta ≤ + C ≤ Ta ≤ +	to 3.6V ∙85°C fo ∙125°C fo	(unless otherwise stated) r Industrial or Extended
Param No.	Symbol	Characteris	tic	Min	Typ ⁽¹⁾	Max	Units	Conditions
OS50	Fplli	PLL Voltage Controll Oscillator (VCO) Inpl Frequency Range	ed ut	0.8		8	MHz	ECPLL, HSPLL, XTPLL modes
OS51	Fsys	On-Chip VCO Syster Frequency	n	100	_	200	MHz	—
OS52	TLOCK	PLL Start-up Time (L	ock Time)	0.9	1.5	3.1	mS	—
OS53	DCLK	CLKO Stability (Jitter	·) ⁽²⁾	-3	0.5	3	%	Measured over 100 ms period

TABLE 30-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: These parameters are characterized by similarity, but are not tested in manufacturing. This specification is based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time bases or communication clocks use this formula:

$$Peripheral Clock Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Peripheral Bit Rate Clock}}}$$

For example: Fosc = 32 MHz, DCLK = 3%, SPI bit rate clock, (i.e., SCK) is 2 MHz.

$$SPI SCK Jitter = \left\lfloor \frac{D_{CLK}}{\sqrt{\left(\frac{32 \ MHz}{2 \ MHz}\right)}} \right\rfloor = \left\lfloor \frac{3\%}{\sqrt{16}} \right\rfloor = \left\lfloor \frac{3\%}{4} \right\rfloor = 0.75\%$$

TABLE 30-18: AC CHARACTERISTICS: INTERNAL RC ACCURACY

AC CHA	RACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param No.	Characteristic	Min	Тур	Max	Units	Conditions			
	Internal FRC Accuracy @	0 7.3728	MHz ⁽¹⁾						
F20a	FRC	-2	—	+2	%	$-40^{\circ}C \le TA \le +85^{\circ}C$	VDD = 3.0-3.6V		
F20b	FRC	-5	_	+5	%	$-40^{\circ}C \le TA \le +125^{\circ}C$ VDD = 3.0-3.6V			

Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift.

TABLE 30-19: INTERNAL RC ACCURACY

АС СН/	ARACTERISTICS	Standar Operatir	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Characteristic	Min Typ Max Units Conditions					tions	
	LPRC @ 32.768 kHz ⁽¹⁾							
F21a	LPRC	-20	±6	+20	%	$-40^\circ C \le T_A \le +85^\circ C$	VDD = 3.0-3.6V	
F21b	LPRC	$-30 \qquad - \qquad +30 \qquad \% \qquad -40^{\circ}C \le TA \le +125^{\circ}C VDD = 3.0-3.6V$						

Note 1: Change of LPRC frequency as VDD changes.

^{© 2007-2012} Microchip Technology Inc.

АС СНА	AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min.	Typ ⁽²⁾	Max.	Units	Conditions			
Clock Parameters ⁽¹⁾										
AD50	TAD	ADC Clock Period	117.6	_		ns	—			
AD51	tRC	ADC Internal RC Oscillator Period	—	250	_	ns	_			
Conversion Rate										
AD55	tCONV	Conversion Time	—	14 Tad		ns	—			
AD56	FCNV	Throughput Rate		—	500	ksps	—			
AD57	TSAMP	Sample Time	3 Tad	_	_		—			
		Timin	ig Parame	eters						
AD60	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2 Tad	_	3 Tad	—	Auto convert trigger not selected			
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2 Tad	—	3 Tad		_			
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾		0.5 TAD			_			
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)		_	20	μs	—			

TABLE 30-44: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

Note 1: Because the sample caps eventually loses charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

2: These parameters are characterized but not tested in manufacturing.

3: The tDPU is the time required for the ADC module to stabilize at the appropriate level when the module is turned on ADON bit (AD1CON1<15>) = '1'. During this time, the ADC result is indeterminate.

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic	Min.	Typ ⁽²⁾	Max.	Units	Conditions		
		Clock	Paramet	ers ⁽¹⁾					
AD50	TAD	ADC Clock Period	76	_	_	ns	—		
AD51	tRC	ADC Internal RC Oscillator Period	—	250	-	ns	—		
	Conversion Rate								
AD55	tCONV	Conversion Time	—	12 Tad		_	—		
AD56	FCNV	Throughput Rate	—	_	1.1	Msps	—		
AD57	TSAMP	Sample Time	2 Tad	—		—	—		
	Timing Parameters								
AD60	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2 Tad	—	3 Tad	_	Auto-Convert Trigger not selected		
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2 Tad	-	3 Tad	—	_		
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾	—	0.5 TAD	—	—	—		
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)	—	—	20	μs	—		

TABLE 30-45: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

Note 1: Because the sample caps eventually loses charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

2: These parameters are characterized but not tested in manufacturing.

3: The tDPU is the time required for the ADC module to stabilize at the appropriate level when the module is turned on ADON bit (AD1CON1<15>) = 1. During this time, the ADC result is indeterminate.

|--|

AC/DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param No.	Symbol	Characteristic	Min. Typ Max. Units Conditions			Conditions	
		Clo	ock Para	ameters			
DA01	VOD+	Positive Output Differential Voltage	1	1.15	2	V	Vod+ = Vdach – Vdacl See Note 1, 2
DA02	Vod-	Negative Output Differential Voltage	-2	-1.15	-1	V	Vod- = Vdacl – Vdach See Note 1, 2
DA03	Vres	Resolution	_	16	—	bits	_
DA04	Gerr	Gain Error	—	3.1	—	%	—
DA08	FDAC	Clock frequency	_	_	25.6	MHz	—
DA09	FSAMP	Sample Rate	0	—	100	kHz	_
DA10	FINPUT	Input data frequency	0	_	45	kHz	Sampling frequency = 100 kHz
DA11	TINIT	Initialization period	1024	_	_	Clks	Time before first sample
DA12	SNR	Signal-to-Noise Ratio	_	61		dB	Sampling frequency = 96 kHz

Note 1: Measured VDACH and VDACL output with respect to Vss, with 15 µA load and FORM bit (DACxCON<8>) = 0.

^{2:} This parameter is tested at $-40^{\circ}C \leq TA \leq 85^{\circ}C$ only.

DC CHARACTERISTICS			Standar (unless	d Opera otherwi	iting Co se state	nditions ed) -40°C <	ons: 3.0V to 3.6V	
						Temperature		
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
DO10	Vol	Output Low Voltage I/O Pins: 2x Sink Driver Pins - RA2, RA7- RA10, RB10, RB11, RB7, RB4, RC3-RC9	_	_	0.4	V	lo∟ ≤1.8 mA, VDD = 3.3V See Note 1	
		Output Low Voltage I/O Pins: 4x Sink Driver Pins - RA0, RA1, RB0-RB3, RB5, RB6, RB8, RB9, RB12-RB15, RC0-RC2	_	_	0.4	V	lo∟ ≤3.6 mA, VDD = 3.3V See Note 1	
		Output Low Voltage I/O Pins: 8x Sink Driver Pins - RA3, RA4	—	_	0.4	V	Io∟ ⊴6 mA, VDD = 3.3V See Note 1	
DO20	Vон	Output High Voltage I/O Pins: 2x Source Driver Pins - RA2, RA7-RA10, RB4, RB7, RB10, RB11, RC3-RC9	2.4	_	_	V	IoL ≥ -1.8 mA, VDD = 3.3V See Note 1	
		Output High Voltage I/O Pins: 4x Source Driver Pins - RA0, RA1, RB0-RB3, RB5, RB6, RB8, RB9, RB12-RB15, RC0-RC2	2.4	_	_	V	lo∟ ≥ -3 mA, VDD = 3.3V See Note 1	
		Output High Voltage I/O Pins: 8x Source Driver Pins - RA4, RA3	2.4	_	_	V	Io∟ ≥ -6 mA, VDD = 3.3V See Note 1	
	VoH1	Output High Voltage I/O Pins: 2x Source Driver Pins - RA2, RA7-RA10, RB4, RB7, RB10, RB11, RC3-RC9	1.5	—	_	V	ІОН ≥ -1.9 mA, VDD = 3.3V See Note 1	
			2.0	_	_		IOH ≥ -1.85 mA, VDD = 3.3V See Note 1	
			3.0	—	_		IOH ≥ -1.4 mA, VDD = 3.3V See Note 1	
DO20A		Output High Voltage 4x Source Driver Pins - RA0, RA1, RB0-RB3, RB5, RB6, RB8, RB9, RB12-RB15, RC0-RC2	1.5	_	_	V	IOH ≥ -3.9 mA, VDD = 3.3V See Note 1	
			2.0	_	_		IOH ≥ -3.7 mA, VDD = 3.3V See Note 1	
			3.0	—	_		IOH ≥ -2 mA, VDD = 3.3V See Note 1	
		Output High Voltage I/O Pins: 8x Source Driver Pins - RA3, RA4	1.5	—	—		IOH ≥ -7.5 mA, VDD = 3.3V See Note 1	
			2.0	_	_	v	IOH ≥ -6.8 mA, VDD = 3.3V See Note 1	
			3.0	_	_		IOH ≥ -3 mA, VDD = 3.3V See Note 1	

TABLE 31-6: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature-40°C ≤TA ≤+150°C for High Temperature						
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions	
	AD	C Accuracy (10-bit Mode)	– Measu	rements	with Ex	ternal V	REF+/VREF- ⁽¹⁾	
HAD20b	Nr	Resolution ⁽³⁾	10 data bits			bits	—	
HAD21b	INL	Integral Nonlinearity	-3	—	3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
HAD22b	DNL	Differential Nonlinearity	> -1	—	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
HAD23b	Gerr	Gain Error	-5	—	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
HAD24b	EOFF	Offset Error	-1	—	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
	AD	C Accuracy (10-bit Mode)	– Measu	irement	s with Int	ernal V	REF+/VREF- ⁽¹⁾	
HAD20b	Nr	Resolution ⁽³⁾	1	0 data bi	ts	bits	_	
HAD21b	INL	Integral Nonlinearity	-2	_	2	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
HAD22b	DNL	Differential Nonlinearity	> -1		< 1	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
HAD23b	Gerr	Gain Error	-5	_	15	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
HAD24b	EOFF	Offset Error	-1.5	_	7	LSb	VINL = AVss = 0V, AVDD = 3.6V	
Dynamic Performance (10-bit Mode) ⁽²⁾								
HAD33b	FNYQ	Input Signal Bandwidth	_	_	400	kHz	_	

TABLE 31-16: ADC MODULE SPECIFICATIONS (10-BIT MODE)

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

^{0.060} 3.6V 0.050 3.3V -0.040 _ 3V-IOL (A) 0.030 0.020 0.010 0.000 0.00 1.00 2.00 3.00 VOL (V)

VOL - 8x DRIVER PINS

128:1

40

33.0 PACKAGING INFORMATION

28-Lead SPDIP

28-Lead SOIC

28-Lead QFN-S

44-Lead QFN

44-Lead TQFP

Example

Example

Example

Example

Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	If the full N line, thus I	licrochip part number cannot be marked on one line, it is carried over to the next imiting the number of available characters for customer-specific information.

Revision F (August 2011)

This revision includes typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in the following table.

TABLE A-5: MAJOR SECTION UPDATES

Section Name	Update Description
Section 2.0 "Guidelines for Getting Started with 16-bit Digital Signal Controllers"	Updated the Recommendation Minimum Connection (see Figure 2-1).
Section 27.0 "Special Features"	Added Note 3 to the Connections for the On-chip Voltage Regulator diagram (see Figure 27-1).
Section 30.0 "Electrical Characteristics"	Removed Voltage on VCAP with respect to Vss from the Absolute Maximum Ratings.
	Removed Note 3 and parameter DC10 (VCORE) from the DC Temperature and Voltage Specifications (see Table 30-4).
	Updated the Characteristics definition and Conditions for parameter BO10 in the Electrical Characteristics: BOR (see Table 30-11).
	Added Note 1 to the Internal Voltage Regulator Specifications (see Table 30-13).

Revision G (April 2012)

This revision includes typographical and formatting changes throughout the data sheet text.

In addition, where applicable, new sections were added to each peripheral chapter that provide information and links to related resources, as well as helpful tips. For examples, see Section 9.2 "Oscillator Resources" and Section 21.4 "ADC Helpful Tips".

All other major changes are referenced by their respective section in the following table.

TABLE A-6: MAJOR SECTION UPDATES

Section Name	Update Description
Section 2.0 "Guidelines for Getting Started	Added two new tables:
with 16-bit Digital Signal Controllers"	 Crystal Recommendations (see Table 2-1)
	 Resonator Recommendations (see Table 2-2)
Section 30.0 "Electrical Characteristics"	Updated parameters DO10 and DO20 and removed parameters DO16 and DO26 in the DC Characteristics: I/O Pin Output Specifications (see Table 30-10)