

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

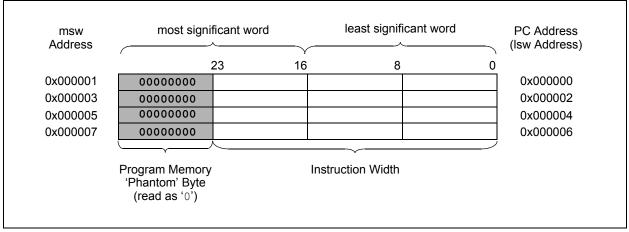
Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128gp202t-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

4.1.1 PROGRAM MEMORY ORGANIZATION


The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at 0x000000, with the actual address for the start of code at 0x000002.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices also have two interrupt vector tables, located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in **Section 7.1 "Interrupt Vector Table**".

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

TABLE 4	4-5:	TIMEF	R REGIS	TER MA	٨P													
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	Register								0000
PR1	0102								Period F	Register 1								FFFF
T1CON	0104	TON	_	- TSIDL TGATE TCKPS<1:0> - TSYNC TCS - 0000										0000				
TMR2	0106								Timer2	Register								0000
TMR3HLD	0108		Timer3 Holding Register (for 32-bit timer operations only)										XXXX					
TMR3	010A		Timer3 Register 000										0000					
PR2	010C		Period Register 2 FF.										FFFF					
PR3	010E								Period F	Register 3								FFFF
T2CON	0110	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	T32	_	TCS		0000
T3CON	0112	TON		TSIDL				_	—	—	TGATE	TCKP	S<1:0>	—	_	TCS	—	0000
TMR4	0114								Timer4	Register								0000
TMR5HLD	0116						Tin	ner5 Holding	Register (fo	r 32-bit timeı	operations o	only)						XXXX
TMR5	0118								Timer5	Register								0000
PR4	011A								Period F	Register 4								FFFF
PR5	011C								Period F	Register 5								FFFF
T4CON	011E	TON		TSIDL				_	_	-	TGATE	TCKP	S<1:0>	T32	—	TCS	_	0000
T5CON	0120	TON		TSIDL				_	_	-	TGATE	TCKP	S<1:0>	—	—	TCS	_	0000
Legend:	x = un	known value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.																

TABLE 4-6: INPUT CAPTURE REGISTER MAP

			•/			· ••••												
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1BUF	0140		Input 1 Capture Register										XXXX					
IC1CON	0142	—	- ICSIDL ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> 00							0000								
IC2BUF	0144		Input 2 Capture Register										XXXX					
IC2CON	0146	—		ICSIDL	—		-			ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC7BUF	0158								Input 7 Ca	pture Regist	er							XXXX
IC7CON	015A	—	_	ICSIDL	—					ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC8BUF	015C		Input 8Capture Register									XXXX						
IC8CON	015E	—		ICSIDL	—		_			ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>		0000

Legend: x = unknown value on Reset, -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-16: DMA REGISTER MAP (CONTINUED)

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA5PAD	03C4							PAD<15:0> 000								0000		
DMA5CNT	03C6	_	_	_		_	—					CNT	<9:0>					0000
DMA6CON	03C8	CHEN	SIZE	DIR	HALF	NULLW	—	AMODE<1:0> MODE<1:0> 000							0000			
DMA6REQ	03CA	FORCE	_	_		_	—	_	_	_			I	RQSEL<6:0	>			0000
DMA6STA	03CC								S	TA<15:0>								0000
DMA6STB	03CE								S	TB<15:0>								0000
DMA6PAD	03D0			PAD<15:0> 0000														
DMA6CNT	03D2	_	_	_		_	—					CNT	<9:0>					0000
DMA7CON	03D4	CHEN	SIZE	DIR	HALF	NULLW	—	_	_	_	_	AMOD	E<1:0>	_	_	MODE	<1:0>	0000
DMA7REQ	03D6	FORCE	_	_		_	—	_	_	_			I	RQSEL<6:0	>			0000
DMA7STA	03D8								S	TA<15:0>								0000
DMA7STB	03DA								S	TB<15:0>								0000
DMA7PAD	03DC								P	AD<15:0>								0000
DMA7CNT	03DE	_	_	_		_	—					CNT	<9:0>					0000
DMACS0	03E0	PWCOL7	PWCOL6	PWCOL5	PWCOL4	PWCOL3	PWCOL2	PWCOL1	PWCOL0	XWCOL7	XWCOL6	XWCOL5	XWCOL4	XWCOL3	XWCOL2	XWCOL1	XWCOL0	0000
DMACS1	03E2	-	_		—		LSTCH	1<3:0>		PPST7	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPST0	0000
DSADR	03E4								DS	ADR<15:0>								0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 7-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)

bit 2	OC1IE: Output Compare Channel 1 Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 1	IC1IE: Input Capture Channel 1 Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 0	INTOIE: External Interrupt 0 Flag Status bit
	1 = Interrupt request enabled0 = Interrupt request not enabled

REGISTER 7	7-31: INTTR	EG: INTERR	UPT CONTI	ROL AND STA	ATUS REGI	STER	
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
_	—	—	_		ILF	<3:0>	
bit 15							bit 8
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
_				VECNUM<6:0	>		
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, rea	ad as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-12	Unimplomon	ted: Read as '	`				
	-			-1			
bit 11-8		w CPU Interru	-	el bits			
	1111 = CPU	Interrupt Priorit	y Level is 15				
	•						
	•						
		Interrupt Priorit Interrupt Priorit					
bit 7		•	•				
	Unimplemen	ted: Read as '	0.				

0111111 = Interrupt Vector pending is number 135

0000001 = Interrupt Vector pending is number 9 0000000 = Interrupt Vector pending is number 8

•

REGISTER 11-17: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	_	—			RP1R<4:0>					
bit 15		·					bit 8			
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
		—			RP0R<4:0>	•				
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit U = Unimp				U = Unimpler	U = Unimplemented bit, read as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown						

bit 12-8 **RP1R<4:0>:** Peripheral Output Function is Assigned to RP1 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP0R<4:0>:** Peripheral Output Function is Assigned to RP0 Output Pin bits (see Table 11-2 for peripheral function numbers)

REGISTER 11-18: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP3R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP2R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP3R<4:0>:** Peripheral Output Function is Assigned to RP3 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP2R<4:0>:** Peripheral Output Function is Assigned to RP2 Output Pin bits (see Table 11-2 for peripheral function numbers)

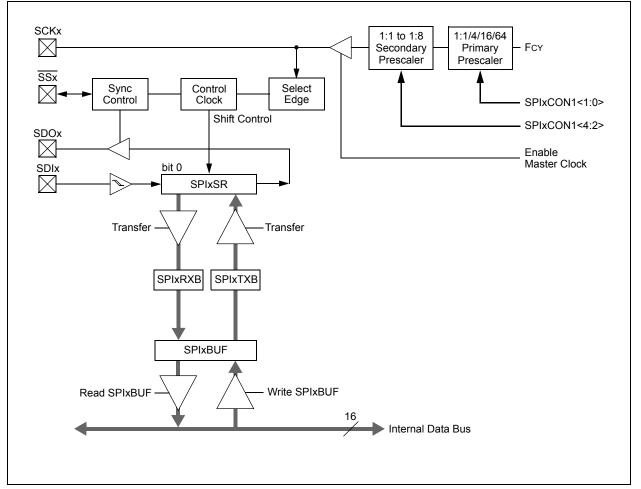
15.3 Output Compare Control Register

REGISTER 15-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER (x = 1, 2, 3 OR 4)

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0					
—	—	OCSIDL	—	—	—	—						
bit 15							bit 8					
U-0	U-0	U-0	R-0 HC	R/W-0	R/W-0	R/W-0	R/W-0					
	—	—	OCFLT	OCTSEL		OCM<2:0>						
bit 7							bit C					
Legend:		HC = Cleared ir	n Hardware	HS = Set in H	lardware							
R = Readab	le bit	W = Writable bi	t	U = Unimpler	nented bit, rea	id as '0'						
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown												
bit 15-14	Unimplemen	nted: Read as '0'	1									
bit 13	OCSIDL: Sto	p Output Compa	re in Idle Mod	e Control bit								
		 1 = Output Compare x halts in CPU Idle mode 0 = Output Compare x continues to operate in CPU Idle mode 										
	•	-	-	in CPU Idle mo	ode							
bit 12-5	-	nted: Read as '0'										
bit 4	-	/I Fault Condition										
		ult condition has Fault condition h		ared in hardwar	e only)							
	• • • • • • • • • • • • • • • • • • • •	ly used when O		1.)								
bit 3		, Itput Compare Ti										
		the clock source										
	0 = Timer2 is	the clock source	e for Compare	x								
bit 2-0	OCM<2:0>: (Output Compare	Mode Select I	oits								
		mode on OCx, F										
		mode on OCx, F ze OCx pin low, g				ain						
		ze OCx pin low, g				JIII						
		are event toggles		e calbar bares (
		ze OCx pin high,										
	001 = Initialize OCx pin low, compare event forces OCx pin high 000 = Output compare channel is disabled											
					ringii							

16.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features dsPIC33FJ32GP302/304. the of dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 18. "Serial Peripheral Interface (SPI)" (DS70206) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, analog-to-digital converters, etc. The SPI module is compatible with Motorola[®] SPI and SIOP.

Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates status conditions.

The serial interface consists of 4 pins:

- · SDIx (serial data input)
- SDOx (serial data output)
- <u>SCK</u>x (shift clock input or output)
- SSx (active-low slave select).

In Master mode operation, SCK is a clock output. In Slave mode, it is a clock input.

FIGURE 16-1: SPI MODULE BLOCK DIAGRAM

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
FRMEN	SPIFSD	FRMPOL	—	—	—	_		
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	
—			—	—	—	FRMDLY	—	
bit 7							bit C	
Legend:								
R = Readab	lo hit	W = Writable	hit	II – Unimploy	monted bit read	d as '0'		
				•		ented bit, read as '0'		
-n = Value a	TPOR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own	
bit 15	FRMEN: Fra	imed SPIx Supp	ort bit					
		SPIx support en		oin used as fram	ne sync pulse ir	nput/output)		
	0 = Framed	SPIx support dis	sabled					
bit 14	SPIFSD: Fra	ame Sync Pulse	Direction Co	ntrol bit				
	•	ync pulse input	• •					
	0 = Frame sy	ync pulse outpu	t (master)					
bit 13	FRMPOL: Fi	rame Sync Puls	e Polarity bit					
		ync pulse is acti						
	0 = Frame sy	ync pulse is acti	ve-low					
bit 12-2	Unimpleme	nted: Read as '	0'					
bit 1	FRMDLY: Fr	ame Sync Pulse	e Edge Selec	t bit				
	1 = Frame sy	ync pulse coinci	des with first	bit clock				
	0 = Frame sy	ync pulse prece	des first bit c	lock				
hit O		ntad. Daad as (o'					

REGISTER 16-3: SPIxCON2: SPIx CONTROL REGISTER 2

bit 0 **Unimplemented:** Read as '0' This bit must not be set to '1' by the user application.

R/W-0	U-0	R/W-0	R/W-1 HC	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN
bit 15						·	bit 8
R/W-0	R/W-0	R/W-0	R/W-0 HC	R/W-0 HC	R/W-0 HC	R/W-0 HC	R/W-0 HC
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7	SITCEN	ACRET	ACKEN	ROEN	I LIN	ROLIN	bit (
				1			
Legend:		•	mented bit, read				
R = Readable		W = Writable		HS = Set in h		HC = Cleared	
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	IOWN
bit 15	12CEN: 12Cx	Enable bit					
			le and configure ile. All l ² C™ pir			as serial port pir tions	าร
bit 14	Unimplemer	ted: Read as	ʻ0 '				
bit 13	I2CSIDL: Sto	p in Idle Mode	bit				
			eration when de tion in Idle mod		n Idle mode		
bit 12	SCLREL: SC	Lx Release Co	ontrol bit (when	operating as	l ² C slave)		
	1 = Release 0 = Hold SCL	SCLx clock ₋x clock low (cl	ock stretch)				
	If STREN = 1	<u>:</u>	-	tiate stretch a	nd write '1' to re	elease clock). H	ardware clea
	•		nission. Hardwa			,	
	If STREN = 0						
	Bit is R/S (i.e transmission.		only write '1' to	o release cloc	k). Hardware cl	ear at beginning	g of slave
bit 11	IPMIEN: Inte	lligent Peripher	ral Managemer	nt Interface (IP	MI) Enable bit		
	1 = IPMI mod 0 = IPMI mod		all addresses A	cknowledged			
bit 10	A10M: 10-bit	Slave Address	s bit				
) is a 10-bit slav) is a 7-bit slave					
bit 9	DISSLW: Dis	able Slew Rate	e Control bit				
		control disable control enable					
bit 8	SMEN: SMB	us Input Levels	s bit				
		O pin threshold MBus input th	ls compliant wi resholds	th SMBus spe	cification		
bit 7			e bit (when ope	rating as I ² C s	slave)		
	1 = Enable in (module i		general call ac	•	,	RSR	
bit 6			h Enable bit (wi	hon operating	$ac l^2 C alove)$		
	SINCH SUL		i Litable bit (Wi	nen operating	as i U Slave)		
	Llood in achi	unction with SC					

REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER

REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected.
bit 2	R_W: Read/Write Information bit (when operating as I^2C slave)
	1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I^2C device address byte.
bit 1	RBF: Receive Buffer Full Status bit 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit 1 = Transmit in progress, I2CxTRN is full 0 = Transmit complete, I2CxTRN is empty Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

18.1 UART Helpful Tips

- 1. In multi-node direct-connect UART networks, UART receive inputs react to the complementary logic level defined by the URXINV bit (UxMODE<4>), which defines the idle state, the default of which is logic high, (i.e., URXINV = 0). Because remote devices do not initialize at the same time, it is likely that one of the devices, because the RX line is floating, will trigger a start bit detection and will cause the first byte received after the device has been initialized to be invalid. To avoid this situation, the user should use a pull-up or pull-down resistor on the RX pin depending on the value of the URXINV bit.
 - a) If URXINV = 0, use a pull-up resistor on the RX pin.
 - b) If URXINV = 1, use a pull-down resistor on the RX pin.
- 2. The first character received on a wake-up from Sleep mode caused by activity on the UxRX pin of the UART module will be invalid. In Sleep mode, peripheral clocks are disabled. By the time the oscillator system has restarted and stabilized from Sleep mode, the baud rate bit sampling clock relative to the incoming UxRX bit timing is no longer synchronized, resulting in the first character being invalid. This is to be expected.

18.2 UART Resources

Many useful resources related to UART are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

```
Note: In the event you are not able to access the product page using the link above, enter this URL in your browser:
http://www.microchip.com/wwwproducts/
Devices.aspx?dDocName=en532311
```

18.2.1 KEY RESOURCES

- Section 17. "UART" (DS70188)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	—	_	_	_
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
IVRIE	WAKIE	ERRIE		FIFOIE	RBOVIE	RBIE	TBIE
bit 7							bit (
Legend:		C = Writable b	oit. but only '()' can be writter	n to clear the bit		
R = Readabl	e bit	W = Writable			mented bit, read		
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	iown
bit 15-8	Unimplemer	nted: Read as ')'				
bit 7	IVRIE: Invalio	d Message Rec	eived Interru	pt Enable bit			
		Request Enable					
		Request not en					
bit 6		Wake-up Activi		lag bit			
		Request Enable					
L:1 F		Request not en					
bit 5		Interrupt Enab					
		Request Enable Request not en					
bit 4	-						
	-	nted: Read as '(a hit			
bit 3		D Almost Full Inf Request Enable		ebit			
		Request not en					
bit 2	-	Buffer Overflov		nable bit			
		Request Enable					
	0 = Interrupt	Request not en	abled				
bit 1	RBIE: RX Bu	iffer Interrupt Er	able bit				
		Request Enable					
		Request not en					
bit 0		ffer Interrupt En					
		Request Enable					
	0 = interrupt	Request not en	apied				

22.5 DAC Resources

Many useful resources related to DAC are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en532311

22.5.1 KEY RESOURCES

- Section 33. "Audio Digital-to-Analog Converter (DAC)" (DS70211)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

26.2 PMP Control Registers

REGISTER 26-1: PMCON: PARALLEL MASTER PORT CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PMPEN	_	PSIDL	ADRMUX1	ADRMUX0	PTBEEN	PTWREN	PTRDEN
bit 15							bit 8

R/W-0	R/W-0	R/W-0 ⁽¹⁾	U-0	R/W-0 ⁽¹⁾	R/W-0	R/W-0	R/W-0
CSF1	CSF0	ALP	—	CS1P	BEP	WRSP	RDSP
bit 7							bit 0

Legend:			
R = Readabl	e bit W = Writable I	Dit U = Unimplemented b	bit, read as '0'
-n = Value at	POR '1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	PMPEN: Parallel Master Por 1 = PMP enabled 0 = PMP disabled, no off-ch		
bit 14	Unimplemented: Read as '0		
bit 13	PSIDL: Stop in Idle Mode bit		
	•	ration when device enters Idle mode	9
bit 12-11	ADRMUX1:ADRMUX0: Add	ress/Data Multiplexing Selection bits	_S (1)
		e multiplexed on PMD<7:0> pins s are multiplexed on PMD<7:0> pi ar on separate pins	ns, upper 3 bits are multiplexed o
bit 10	PTBEEN: Byte Enable Port I	Enable bit (16-bit Master mode)	
	1 = PMBE port enabled0 = PMBE port disabled		
bit 9	PTWREN: Write Enable Stro	be Port Enable bit	
	1 = PMWR/PMENB port ena0 = PMWR/PMENB port dis		
bit 8	PTRDEN: Read/Write Strobe		
	1 = PMRD/PMWR port enable 0 = PMRD/PMWR port disa		
bit 7-6	CSF1:CSF0: Chip Select Fu	nction bits	
	11 = Reserved 10 = PMCS1 functions as ch 0x = PMCS1 functions as ac	•	
bit 5	ALP: Address Latch Polarity	bit ⁽¹⁾	
	1 = Active-high (PMALL and 0 = Active-low (PMALL and		
bit 4	Unimplemented: Read as '0	,	
bit 3	CS1P: Chip Select 1 Polarity	bit ⁽¹⁾	
	1 = Active-high (PMCS1/PM 0 = Active-low (PMCS1/PM		

Note 1: These bits have no effect when their corresponding pins are used as address lines.

29.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

29.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

29.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

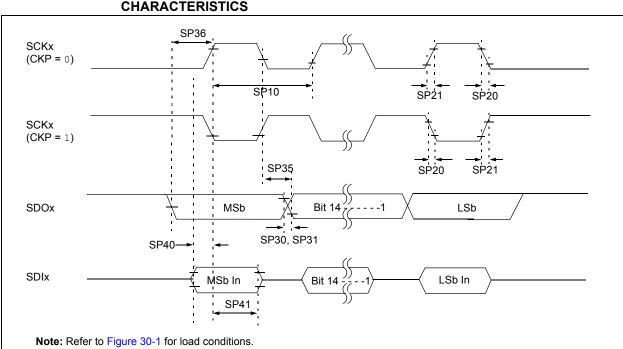
The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

29.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.


The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

29.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- · Command line interface
- · Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

FIGURE 30-11: SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 30-30:SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING
REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	¹ Symbol Characteristic ⁽¹⁾ Min Ty				Max	Units	Conditions	
SP10	TscP	Maximum SCK Frequency	_	_	9	MHz	See Note 3	
SP20	TscF	SCKx Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4	
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	_	
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	—	ns	_	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	_	ns	_	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—		ns	—	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

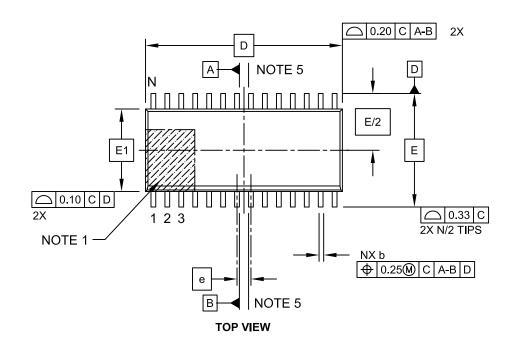
3: The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.

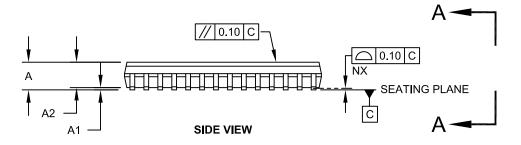
4: Assumes 50 pF load on all SPIx pins.

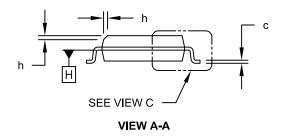
TABLE 31-17:	ADC CONVERSION	12-BIT MODE) TIMING REQUIREMENTS
--------------	----------------	-------------	-----------------------

AC CHARACTERISTICSStandard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature-40°C ≤TA ≤+150°C for High Temperature						tated)	
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
Clock Parameters							
HAD50	Tad	ADC Clock Period ⁽¹⁾	147	_	_	ns	_
HAD50	Tad		147 version R	 Late	_	ns	

Note 1: These parameters are characterized but not tested in manufacturing.


TABLE 31-18: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS


-	AC TERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \leq TA \leq +150^{\circ}C$ for High Temperature						
Param No. Symbol		Characteristic	Min	Тур	Max	Units	Conditions	
		Cloc	k Parame	ters				
HAD50	Tad	ADC Clock Period ⁽¹⁾	104	_	_	ns	_	
	Conversion Rate							
HAD56	FCNV	Throughput Rate ⁽¹⁾ — — 800 Ksps —						


Note 1: These parameters are characterized but not tested in manufacturing.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2