

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I2S, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128gp202t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

28-Pin QFN-S⁽²⁾ Pins are up to 5V tolerant AN10/DAC1LP/RTCC/RP14⁽¹⁾/CN12/PMWR/RB14 AN9/DAC1LN/RP15(1)/CN11/PMCS1/RB15 AN0/VREF+/CN2/RA0 AN1/NREF-/CN3/RA1 MCLR AVDD AVSS 27 [26 [25 [28 24 [23 [22 [PGED1/AN2/C2IN-/RP0⁽¹⁾/CN4/RB0 1 AN11/DAC1RN/RP13⁽¹⁾/CN13/PMRD/RB13 21 PGEC1/AN3/C2IN+/RP1(1)/CN5/RB1 2 AN12/DAC1RP/RP12⁽¹⁾/CN14/PMD0/RB12 20 AN4/C1IN-/RP2⁽¹⁾/CN6/RB2 PGEC2/TMS/RP11⁽¹⁾/CN15/PMD1/RB11 3 dsPIC33FJ64GP802 19 PGED2/TDI/RP10⁽¹⁾/CN16/PMD2/RB10 AN5/C1IN+/RP3(1)/CN7/RB3 4 dsPIC33FJ128GP802 18 Vss 5 VCAP 17 OSC1/CLKI/CN30/RA2 6 16 Vss TDO/SDA1/RP9(1)/CN21/PMD3/RB9 OSC2/CLKO/CN29/PMA0/RA3 7 15 9 2 33 4 PGEC3/ASCL1/RP6⁽¹⁾/CN24/PMD6/RB6 INT0/RP7⁽¹⁾/CN23/PMD5/RB7 PGED3/ASDA1/RP5⁽¹⁾/CN27/PMD7/RB5 TCK/SCL1/RP8⁽¹⁾/CN22/PMD4/RB8 SOSCI/RP4⁽¹⁾/CN1/PMBE/RB4 VDD SOSCO/T1CK/CN0/PMA1/RA4 The RPx pins can be used by any remappable peripheral. See Table 1 in this section for the list of available peripherals. Note 1: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally. 2:

Pin Diagrams (Continued)

Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPIC33F/PIC24H Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note 1: To access the documents listed below, browse to the documentation section of the dsPIC33FJ64GP804 product page of the Microchip web site (www.microchip.com) or select a family reference manual section from the following list.

In addition to parameters, features, and other documentation, the resulting page provides links to the related family reference manual sections.

- Section 1. "Introduction" (DS70197)
- Section 2. "CPU" (DS70204)
- Section 3. "Data Memory" (DS70202)
- Section 4. "Program Memory" (DS70203)
- Section 5. "Flash Programming" (DS70191)
- Section 8. "Reset" (DS70192)
- Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196)
- Section 11. "Timers" (DS70205)
- Section 12. "Input Capture" (DS70198)
- Section 13. "Output Compare" (DS70209)
- Section 16. "Analog-to-Digital Converter (ADC)" (DS70183)
- Section 17. "UART" (DS70188)
- Section 18. "Serial Peripheral Interface (SPI)" (DS70206)
- Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195)
- Section 23. "CodeGuard™ Security" (DS70199)
- Section 24. "Programming and Diagnostics" (DS70207)
- Section 25. "Device Configuration" (DS70194)
- Section 30. "I/O Ports with Peripheral Pin Select (PPS)" (DS70190)
- Section 32. "Interrupts (Part III)" (DS70214)
- Section 33. "Audio Digital-to-Analog Converter (DAC)" (DS70211)
- Section 34. "Comparator" (DS70212)
- Section 35. "Parallel Master Port (PMP)" (DS70299)
- Section 36. "Programmable Cyclic Redundancy Check (CRC)" (DS70298)
- Section 37. "Real-Time Clock and Calendar (RTCC)" (DS70301)
- Section 38. "Direct Memory Access (DMA) (Part III)" (DS70215)
- Section 39. "Oscillator (Part III)" (DS70216)

3.8.1 MULTIPLIER

The 17-bit x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. The output of the 17-bit x 17-bit multiplier/scaler is a 33-bit value that is sign-extended to 40 bits. Integer data is inherently represented as a signed two's complement value, where the Most Significant bit (MSb) is defined as a sign bit. The range of an N-bit two's complement integer is -2^{N-1} to $2^{N-1} - 1$.

- For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF) including 0.
- For a 32-bit integer, the data range is -2,147,483,648 (0x8000 0000) to 2,147,483,647 (0x7FFF FFFF).

When the multiplier is configured for fractional multiplication, the data is represented as a two's complement fraction, where the MSb is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit two's complement fraction with this implied radix point is -1.0 to $(1 - 2^{1-N})$. For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0 and has a precision of 3.01518x10⁻⁵. In Fractional mode, the 16 x 16 multiply operation generates a 1.31 product that has a precision of 4.65661 x 10⁻¹⁰.

The same multiplier is used to support the MCU multiply instructions, which include integer 16-bit signed, unsigned and mixed sign multiply operations.

The MUL instruction can be directed to use byte or word-sized operands. Byte operands direct a 16-bit result, and word operands direct a 32-bit result to the specified registers in the W array.

3.8.2 DATA ACCUMULATORS AND ADDER/SUBTRACTER

The data accumulator consists of a 40-bit adder/ subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its preaccumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled using the barrel shifter prior to accumulation.

3.8.2.1 Adder/Subtracter, Overflow and Saturation

The adder/subtracter is a 40-bit adder with an optional zero input into one side, and either true or complement data into the other input.

- In the case of addition, the Carry/Borrow input is active-high and the other input is true data (not complemented).
- In the case of subtraction, the Carry/Borrow input is active-low and the other input is complemented.

The adder/subtracter generates Overflow Status bits, SA/SB and OA/OB, which are latched and reflected in the STATUS register:

- Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed.
- Overflow into guard bits 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other.

The adder has an additional saturation block that controls accumulator data saturation, if selected. It uses the result of the adder, the Overflow Status bits described previously and the SAT<A:B> (CORCON<7:6>) and ACCSAT (CORCON<4>) mode control bits to determine when and to what value to saturate.

Six STATUS register bits support saturation and overflow:

- · OA: ACCA overflowed into guard bits
- · OB: ACCB overflowed into guard bits

or

• SA: ACCA saturated (bit 31 overflow and saturation)

ACCA overflowed into guard bits and saturated (bit 39 overflow and saturation)

 SB: ACCB saturated (bit 31 overflow and saturation) or

ACCB overflowed into guard bits and saturated (bit 39 overflow and saturation)

- OAB: Logical OR of OA and OB
- · SAB: Logical OR of SA and SB

The OA and OB bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). The OA and OB bits can also optionally generate an arithmetic warning trap when set and the corresponding Overflow Trap Flag Enable bits (OVATE, OVBTE) in the INTCON1 register are set (refer to **Section 7.0 "Interrupt Controller**"). This allows the user application to take immediate action, for example, to correct the system gain.

The SA and SB bits are modified each time data passes through the adder/subtracter, but can only be cleared by the user application. When set, they indicate that the accumulator has overflowed its maximum range (bit 31 for 32-bit saturation or bit 39 for 40-bit saturation) and is saturated (if saturation is enabled). When saturation is not enabled, SA and SB default to bit 39 overflow and thus indicate that a catastrophic overflow has occurred. If the COVTE bit in the INTCON1 register is set, the SA and SB bits generate an arithmetic warning trap when saturation is disabled. The Overflow and Saturation Status bits can optionally be viewed in the STATUS Register (SR) as the logical OR of OA and OB (in bit OAB) and the logical OR of SA and SB (in bit SAB). Programmers can check one bit in the STATUS register to determine if either accumulator has overflowed, or one bit to determine if either accumulator has saturated. This is useful for complex number arithmetic, which typically uses both accumulators.

The device supports three Saturation and Overflow modes:

• Bit 39 Overflow and Saturation:

When bit 39 overflow and saturation occurs, the saturation logic loads the maximally positive 9.31 (0x7FFFFFFFFF) or maximally negative 9.31 value (0x800000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user application. This condition is referred to as 'super saturation' and provides protection against erroneous data or unexpected algorithm problems (such as gain calculations).

- Bit 31 Overflow and Saturation: When bit 31 overflow and saturation occurs, the saturation logic then loads the maximally positive 1.31 value (0x007FFFFFFF) or maximally negative 1.31 value (0x008000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user application. When this Saturation mode is in effect, the guard bits are not used, so the OA, OB or OAB bits are never set.
- Bit 39 Catastrophic Overflow: The bit 39 Overflow Status bit from the adder is used to set the SA or SB bit, which remains set until cleared by the user application. No saturation operation is performed, and the accumulator is allowed to overflow, destroying its sign. If the COVTE bit in the INTCON1 register is set, a catastrophic overflow can initiate a trap exception.

3.8.3 ACCUMULATOR 'WRITE BACK'

The MAC class of instructions (with the exception of MPY, MPY.N, ED and EDAC) can optionally write a rounded version of the high word (bits 31 through 16) of the accumulator that is not targeted by the instruction into data space memory. The write is performed across the X bus into combined X and Y address space. The following addressing modes are supported:

- W13, Register Direct: The rounded contents of the non-target accumulator are written into W13 as a 1.15 fraction.
- [W13] + = 2, Register Indirect with Post-Increment: The rounded contents of the non-target accumulator are written into the address pointed to by W13 as a 1.15 fraction. W13 is then incremented by 2 (for a word write).

3.8.3.1 Round Logic

The round logic is a combinational block that performs a conventional (biased) or convergent (unbiased) round function during an accumulator write (store). The Round mode is determined by the state of the RND bit in the CORCON register. It generates a 16-bit, 1.15 data value that is passed to the data space write saturation logic. If rounding is not indicated by the instruction, a truncated 1.15 data value is stored and the least significant word is simply discarded.

Conventional rounding zero-extends bit 15 of the accumulator and adds it to the ACCxH word (bits 16 through 31 of the accumulator).

- If the ACCxL word (bits 0 through 15 of the accumulator) is between 0x8000 and 0xFFFF (0x8000 included), ACCxH is incremented.
- If ACCxL is between 0x0000 and 0x7FFF, ACCxH is left unchanged.

A consequence of this algorithm is that over a succession of random rounding operations, the value tends to be biased slightly positive.

Convergent (or unbiased) rounding operates in the same manner as conventional rounding, except when ACCxL equals 0x8000. In this case, the Least Significant bit (bit 16 of the accumulator) of ACCxH is examined:

- If it is '1', ACCxH is incremented.
- If it is '0', ACCxH is not modified.

Assuming that bit 16 is effectively random in nature, this scheme removes any rounding bias that may accumulate.

The SAC and SAC.R instructions store either a truncated (SAC), or rounded (SAC.R) version of the contents of the target accumulator to data memory via the X bus, subject to data saturation (see **Section 3.8.3.2 "Data Space Write Saturation**"). For the MAC class of instructions, the accumulator writeback operation functions in the same manner, addressing combined MCU (X and Y) data space though the X bus. For this class of instructions, the data is always subject to rounding.

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300					ADC Data Buffer 0									XXXX			
AD1CON1	0320	ADON	—	ADSIDL	ADDMABM	_	AD12B	FOR	M<1:0>	:	SSRC<2:0>		_	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	١	/CFG<2:0	>	_	_	CSCNA	CHP	S<1:0>	BUFS	_		SMPI	<3:0>		BUFM	ALTS	0000
AD1CON3	0324	ADRC	_	-		S	AMC<4:0>						ADCS	<7:0>				0000
AD1CHS123	0326	_	_	-	_	_	CH123N	VB<1:0>	CH123SB	_	_	_	_	_	CH123	NA<1:0>	CH123SA	0000
AD1CHS0	0328	CH0NB	_	-		С	H0SB<4:0>	>		CH0NA	_	_		С	H0SA<4:0	>		0000
AD1PCFGL	032C	_	_	-	PCFG12	PCFG11	PCFG10	PCFG9	_	_	_	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
AD1CSSL	0330	—	—	—	CSS12	CSS11	CSS10	CSS9	—	—	_	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000
AD1CON4	0332	_	_	_	_	_	_	_	_	—	—	_	_	_		DMABL<2:	0>	0000

TABLE 4-13: ADC1 REGISTER MAP FOR dsPIC33FJ64GP202/802, dsPIC33FJ128GP202/802 AND dsPIC33FJ32GP302

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-14: ADC1 REGISTER MAP FOR dsPIC33FJ64GP204/804, dsPIC33FJ128GP204/804 AND dsPIC33FJ32GP304

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300				ADC Data Buffer 0									XXXX				
AD1CON1	0320	ADON	_	ADSIDL	ADDMABM	—	AD12B	FOR	M<1:0>		SSRC<2:0>		—	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	V	/CFG<2:0	>	—	—	CSCNA	CHP	S<1:0>	BUFS	_		SMP	<3:0>		BUFM	ALTS	0000
AD1CON3	0324	ADRC		_		S	SAMC<4:0>			ADCS<7:0>					0000			
AD1CHS123	0326	—	_	_	_	—	CH123N	VB<1:0>	CH123SB		_	—	—	—	CH123	VA<1:0>	CH123SA	0000
AD1CHS0	0328	CH0NB		_		С	H0SB<4:0>	>		CH0NA	_	—		С	H0SA<4:0	>		0000
AD1PCFGL	032C	—	_	_	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
AD1CSSL	0330	_	_	_	CSS12	CSS11	CSS10	CSS9	CSS8	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000
AD1CON4	0332	_	_	_	_	_	_	_	_	_	_	_	_	_		DMABL<2:	0>	0000

Legend: x = unknown value on Reset, -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-15: DAC1 REGISTER MAP FOR dsPIC33FJ128GP802/804 AND dsPIC33FJ64GP802/804

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DAC1CON	03F0	DACEN	—	DACSIDL	AMPON	—	—	—	FORM	-	DACFDIV<6:0>						0000	
DAC1STAT	03F2	LOEN	—	LMVOEN	_	—	LITYPE	LFULL	LEMPTY	ROEN	—	RMVOEN	_	—	RITYPE	RFULL	REMPTY	0000
DAC1DFLT	03F4								DAC1D	FLT<15:0>								0000
DAC1RDAT	03F6								DAC1RI	DAT<15:0>								0000
DAC1LDAT	03F8	DAC1LDAT<15:0> 000								0000								

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-16: DMA REGISTER MAP (CONTINUED)

File Name Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 F										
	Bit 9 Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA5PAD 03C4	P	AD<15:0>								0000
DMA5CNT 03C6 — — — — — — —				CN1	<9:0>					0000
DMA6CON 03C8 CHEN SIZE DIR HALF NULLW -		_	_	AMOD	E<1:0>	_	_	MODE	<1:0>	0000
DMA6REQ 03CA FORCE — — — — — —		_			I	RQSEL<6:0	>			0000
DMA6STA 03CC	S	TA<15:0>								0000
DMA6STB 03CE	S	STB<15:0>					0000			
DMA6PAD 03D0	P	AD<15:0>								0000
DMA6CNT 03D2 — — — — — — —				CN1	<9:0>					0000
DMA7CON 03D4 CHEN SIZE DIR HALF NULLW -		—	_	AMOD	E<1:0>	—	—	MODE	<1:0>	0000
DMA7REQ 03D6 FORCE — — — — — —		_			I	RQSEL<6:0	>			0000
DMA7STA 03D8	S	TA<15:0>								0000
DMA7STB 03DA	S	TB<15:0>								0000
DMA7PAD 03DC	P	AD<15:0>								0000
DMA7CNT 03DE — — — — — — —				CN1	<9:0>					0000
DMACS0 03E0 PWCOL7 PWCOL6 PWCOL5 PWCOL4 PWCOL3 PWCOL2 PV	WCOL1 PWCOL0	XWCOL7	XWCOL6	XWCOL5	XWCOL4	XWCOL3	XWCOL2	XWCOL1	XWCOL0	0000
DMACS1 03E2 LSTCH<3:	3:0>	PPST7 PPST6 PPST5 PPST4 PPST3 PPST2 PPST1 PPST0 0							0000	
DSADR 03E4	DS	DSADR<15:0> C						0000		

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn forms the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

TABLE 4-37: FUNDAMENTAL ADDRESSING MODES SUPPORTED

4.5.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions and the DSP accumulator class of instructions provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note:	For the MOV instructions, the addressing mode specified in the instruction can differ										
	for the source and destination EA.										
	However, the 4-bit Wb (Register Offset)										
	field is shared by both source and										
	destination (but typically only used by one).										

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-bit Literal
- 16-bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.5.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY. N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the data pointers through register indirect tables.

The two-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The effective addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W8 and W9 and Y data space for W10 and W11.

Note:	Register	Indirect	with	Register	Offset
	Addressir	ng mode i	s avai	lable only	for W9
	(in X space	ce) and W	/11 (in	Y space).	

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- Register Indirect
- Register Indirect Post-Modified by 2
- · Register Indirect Post-Modified by 4
- · Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.5.5 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP302/304 dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Programming" (DS70191) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows any of the following devices, dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04, to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and three other lines for power (VDD), ground (Vss) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user application can write program memory data either in blocks or 'rows' of 64 instructions (192 bytes) at a time or a single program memory word, and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.

5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits <7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits <15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits <23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

NOTES:

REGISTER	7-28: IPC1	6: INTERRUPT	PRIORITY	CONTROL	REGISTER 1	6		
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0	
—		CRCIP<2:0>				U2EIP<2:0>		
bit 15							bit 8	
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
		U1EIP<2:0>			—	—	—	
bit 7							bit C	
Legend:								
R = Readab	le bit	W = Writable I	oit	U = Unimple	mented bit, rea	ad as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknown		
bit 15	Unimpleme	ented: Read as '0)'					
bit 14-12	CRCIP<2:0	>: CRC Generate	or Error Inter	rupt Flag Priori ⁻	ty bits			
	111 = Interr	rupt is priority 7 (ł	nighest priori	ty interrupt)				
	•							
	•							
	•	unt in priority 1						
	001 - Interior 000 = 1	upt is priority i rupt source is disa	abled					
bit 11	Unimpleme	ented: Read as '0)'					
bit 10-8	U2EIP<2:0>	>: UART2 Error Ir	nterrupt Prio	ritv bits				
	111 = Interr	rupt is priority 7 (ł	niahest priori	tv interrupt)				
	•			·) ······				
	•							
	•							
	001 = Interr	rupt is priority 1						
	000 = Interr	rupt source is disa	abled					
bit 7	Unimpleme	ented: Read as '0)'					
bit 6-4	U1EIP<2:0>	: UART1 Error Ir	nterrupt Prior	rity bits				
	111 = Interr	rupt is priority 7 (ł	nighest priori	ty interrupt)				
	•							
	•							
	• 001 = Interr	unt is priority 1						
	000 = Interr	rupt source is dis	abled					

_ _ . . _ _

bit 3-0 Unimplemented: Read as '0'

REGISTER	7-29: IPC17	: INTERRUPT	PRIORITY	Y CONTROL F	REGISTER 1	7	
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
	—	—		—		C1TXIP<2:0>(1)	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		DMA7IP<2:0>				DMA6IP<2:0>	
bit 7							bit (
Legend:							
R = Readab	ole bit	W = Writable I	bit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-11	Unimplemer	nted: Read as ')'				
bit 10-8	C1TXIP<2:0	>: FCAN1 Trans	smit Data Re	auest Interrupt	Priority bits ⁽¹⁾		
	111 = Interru	upt is priority 7 (I	nighest prior	itv interrupt)			
	•						
	•						
	•						
	001 = Interru 000 = Interru	upt is priority 1 upt source is disa	abled				
bit 7	Unimplemer	nted: Read as 'o)'				
bit 6-4	DMA7IP<2:0	>: DMA Channe	el 7 Data Tra	ansfer Complete	e Interrupt Prio	ritv bits	
	111 = Interru	upt is priority 7 (ł	niahest prior	itv interrupt)		.,	
	•		5	- J [J			
	•						
	•						
	001 = Interru	upt is priority 1					
	000 = Interru	pt source is dis	abled				
bit 3	Unimplemer	nted: Read as '0)'				
bit 2-0	DMA6IP<2:0	>: DMA Channe	el 6 Data Tra	ansfer Complete	e Interrupt Prio	rity bits	
	111 = Interru	upt is priority 7 (ł	nighest prior	ity interrupt)			
	•						
	•						
	•						
		ipt is priority 1	ablad				
	000 = Interru	ipi source is disa	aplea				

Note 1: Interrupts are disabled on devices without ECAN[™] modules.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

				_			
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	—			CSCKR<4:0	>	
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	—			CSDIR<4:0	>	
bit 7	·	· · ·					bit 0
Legend:							
R = Readable	e bit	W = Writable b	oit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at	n = Value at POR '1' =			'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13	Unimplemen	ted: Read as '0)'				
bit 12-8	CSCKR<4:0>	: Assign DCI S	erial Clock In	nput (CSCK) to	the correspon	ding RPn pin	
	11111 = Inpu	t tied to Vss					
	11001 = Inpu	t tied to RP25					
	•						
	•						
	•						
	00001 = Inpu	t tied to RP1					
	00000 = inpu	t tied to RPU					
bit 4-0	CSDIR<4:0>:	Assign DCI Se	erial Data Inpi	ut (CSDI) to the	e correspondir	ig RPn pin	
	11111 = Inpu	t tied to VSS					
	11001 – mpu	i lieu lo RF25					
	•						
	00001 = Inn u	t tied to RP1					
	00000 = Inpu	t tied to RP0					

REGISTER 11-14: RPINR24: PERIPHERAL PIN SELECT INPUT REGISTER 24

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F7BI	P<3:0>			F6BP	2<3:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F5BI	P<3:0>			F4BP	2<3:0>	
bit 7							bit 0
Legend:		C = Writable	bit, but only '0	' can be written	to clear the bit		
R = Readable bit W = Writable bit				U = Unimpler	nented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-12	F7BP<3:0>	: RX Buffer mas	k for Filter 7				
	1111 = Filte	er hits received in	n RX FIFO bu	ffer			
	1110 = Filte	er hits received in	n RX Buffer 14	1			
	•						
	•						
	•						
	0001 = Filte	er hits received in	n RX Buffer 1				
	0000 = Filte	er hits received in	n RX Buffer 0				
bit 11-8	F6BP<3:0>	: RX Buffer mas	k for Filter 6 (s	same values as	bit 15-12)		
bit 7-4	F5BP<3:0>	: RX Buffer mas	k for Filter 5 (s	same values as	bit 15-12)		
			•		,		

REGISTER 19-13: CiBUFPNT2: ECAN™ FILTER 4-7 BUFFER POINTER REGISTER

bit 3-0 F4BP<3:0>: RX Buffer mask for Filter 4 (same values as bit 7	15-12)
--	--------

REGISTER 19-14: CiBUFPNT3: ECAN™ FILTER 8-11 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F11BP	2<3:0>			F10BI	P<3:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F9BP	<3:0>			F8BF	?<3:0>	
bit 7							bit 0
Legend:		C = Writable	bit, but only '0	' can be writter	to clear the bi	t	
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			
bit 15-12	F11BP<3:0>:	: RX Buffer ma	sk for Filter 11				
	1111 = Filter	hits received in	n RX FIFO bu	ffer			
	1110 = Filter	hits received ii	n RX Buffer 14	1			
	•						
	•						
	•						
	0001 = Filter	hits received in	n RX Buffer 1				
	0000 = Filter	hits received ii	n RX Buffer 0				
bit 11-8	F10BP<3:0>	: RX Buffer ma	sk for Filter 10) (same values	as bit 15-12)		
bit 7-4	F9BP<3:0>:	RX Buffer mas	k for Filter 9 (s	same values as	s bit 15-12)		
bit 3-0	F8BP<3:0>:	RX Buffer mas	k for Filter 8 (s	same values as	s bit 15-12)		

20.2 DCI Resources

Many useful resources related to DCI are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en532311

20.2.1 KEY RESOURCES

- Section 20. "Data Converter Interface (DCI)" (DS70288)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

22.4 DAC Clock

The DAC clock signal clocks the internal logic of the Audio DAC module. The data sample rate of the Audio DAC is an integer division of the rate of the DAC clock. The DAC clock is generated via a clock divider circuit that accepts an auxiliary clock from the auxiliary oscillator.

The divisor ratio is programmed by clock divider bits (DACFDIV<6:0>) in the DAC Control register (DAC1CON). The resulting DAC clock must not exceed 25.6 MHz. If lower sample rates are to be used, then the DAC filter clock frequency may be reduced to reduce power consumption. The DAC clock frequency is 256 times the sampling frequency.

FIGURE 22-2: AUDIO DAC OUTPUT FOR RAMP INPUT (UNSIGNED)

26.2 PMP Control Registers

REGISTER 26-1: PMCON: PARALLEL MASTER PORT CONTROL REGISTER

PMPEN — PSIDL ADRMUX1 ADRMUX0 PTBEEN PTWREN PTR	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15	PMPEN	—	PSIDL	ADRMUX1	ADRMUX0	PTBEEN	PTWREN	PTRDEN
5	bit 15							bit 8

R/W-0	R/W-0	R/W-0 ⁽¹⁾	U-0	R/W-0 ⁽¹⁾	R/W-0	R/W-0	R/W-0
CSF1	CSF0	ALP	—	CS1P	BEP	WRSP	RDSP
bit 7							bit 0

Legend:				
R = Readable	bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at P	OR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	PMPEN: Para	allel Master Port Enable bit		
	1 = PMP ena	bled	formo d	
		tody Dood on (o)	Iormed	
DIL 14				
DIL 13	1 - Discontin	In tale Mode bit	lovico ontors Idlo modo	
	0 = Continue	module operation in Idle mo	de	
bit 12-11	ADRMUX1:A	DRMUX0: Address/Data Mu	Itiplexing Selection bits ⁽¹⁾	
	11 = Reserve	d		
	10 = All 16 bit	ts of address are multiplexed	l on PMD<7:0> pins	ver 2 hite are multipleyed on
	PMA<1		exed on PMD<7.02 pins, upp	ber 5 bits are multiplexed on
	00 = Address	and data appear on separat	e pins	
bit 10	PTBEEN: Byt	e Enable Port Enable bit (16	-bit Master mode)	
	1 = PMBE po	rt enabled		
	0 = PMBE po	rt disabled		
bit 9	PTWREN: Wr	rite Enable Strobe Port Enab	le bit	
	1 = PMWR/P 0 = PMWR/P	MENB port enabled		
hit 8		ad/Write Strobe Port Enable	bit	
Sit 0	1 = PMRD/PI	MWR port enabled		
	0 = PMRD/PI	MWR port disabled		
bit 7-6	CSF1:CSF0:	Chip Select Function bits		
	11 = Reserve	d		
	10 = PMCS1	functions as chip select		
bit 5		Latch Polarity hit(1)		
bit 5	1 = Active-hic	The (PMALL and PMALH)		
	0 = Active-low	w (PMALL and PMALH)		
bit 4	Unimplemen	ted: Read as '0'		
bit 3	CS1P: Chip S	Select 1 Polarity bit ⁽¹⁾		
	1 = Active-hig	gh <u>(PMCS1/PMCS</u> 1)		
	0 = Active-low	w (PMCS1/PMCS1)		

Note 1: These bits have no effect when their corresponding pins are used as address lines.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

FIGURE 30-5: TIMER1, 2, 3 AND 4 EXTERNAL CLOCK TIMING CHARACTERISTICS

TABLE 30-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					ndustrial Extended	
Param No.	Symbol	Charact	teristic		Min	Тур	Мах	Units	Conditions	
TA10	ТтхН	TxCK High Time	Synchror no presc	nous, aler	Tcy + 20			ns	Must also meet parameter TA15.	
			Synchror with pres	nous, scaler	(Tcy + 20)/N	—	_	ns	N = prescale value	
			Asynchro	onous	20	_	—	ns	(1, 8, 64, 256)	
TA11	T⊤xL	TxCK Low Time	CK Low Time Synchronous, (T no prescaler		(Tcy + 20)		—	ns	Must also meet parameter TA15.	
		Synchror with pres	nous, scaler	(Tcy + 20)/N	_	—	ns	N = prescale value		
			Asynchro	onous	20	_	_	ns	(1, 8, 64, 256)	
TA15	ΤτχΡ	TxCK Input Period	Synchror no presc	nous, aler	2 Tcy + 40	_	—	ns	—	
			Synchror with pres	nous, scaler	Greater of: 40 ns or (2 Tcy + 40)/ N	_	_	_	N = prescale value (1, 8, 64, 256)	
			Asynchro	onous	40		—	ns	—	
OS60	Ft1	SOSCI/T1CK Oscillator Input frequency Range (oscillator enabled by setting bit TCS (T1CON<1>))		DC	_	50	kHz	_		
TA20	TCKEXTMRL	Delay from Extern Edge to Timer Inc	nal TxCK C crement	Clock	0.75 Tcy + 40	_	1.75 Tcy + 40	—	—	

Note 1: Timer1 is a Type A.

31.1 High Temperature DC Characteristics

TABLE 31-1: OPERATING MIPS VS. VOLTAGE

			Max MIPS
Characteristic	VDD Range (in Volts)	Temperature Range (in °C)	dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04
_	3.0V to 3.6V ⁽¹⁾	-40°C to +150°C	20

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules such as the ADC will have degraded performance. Device functionality is tested but not characterized.

TABLE 31-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
High Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+155	°C
Operating Ambient Temperature Range	TA	-40	—	+150	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD	PINT + PI/O			W
Maximum Allowed Power Dissipation	PDMAX	(TJ - TA)/θJ	A	W

TABLE 31-3: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARA	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+150°C for High Temperature							
Parameter No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions	
Operating Voltage								
HDC10	Supply Voltage							
	Vdd	—	3.0	3.3	3.6	V	-40°C to +150°C	

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules such as the ADC will have degraded performance. Device functionality is tested but not characterized.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2