

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128gp204-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Pin Diagrams (Continued)

3.5 CPU Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en532311

3.5.1 KEY RESOURCES

- Section 2. "CPU" (DS70204)
- Code Samples
- Application Notes
- · Software Libraries
- · Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

3.8.1 MULTIPLIER

The 17-bit x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. The output of the 17-bit x 17-bit multiplier/scaler is a 33-bit value that is sign-extended to 40 bits. Integer data is inherently represented as a signed two's complement value, where the Most Significant bit (MSb) is defined as a sign bit. The range of an N-bit two's complement integer is -2^{N-1} to $2^{N-1} - 1$.

- For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF) including 0.
- For a 32-bit integer, the data range is -2,147,483,648 (0x8000 0000) to 2,147,483,647 (0x7FFF FFFF).

When the multiplier is configured for fractional multiplication, the data is represented as a two's complement fraction, where the MSb is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit two's complement fraction with this implied radix point is -1.0 to $(1 - 2^{1-N})$. For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0 and has a precision of 3.01518x10⁻⁵. In Fractional mode, the 16 x 16 multiply operation generates a 1.31 product that has a precision of 4.65661 x 10⁻¹⁰.

The same multiplier is used to support the MCU multiply instructions, which include integer 16-bit signed, unsigned and mixed sign multiply operations.

The MUL instruction can be directed to use byte or word-sized operands. Byte operands direct a 16-bit result, and word operands direct a 32-bit result to the specified registers in the W array.

3.8.2 DATA ACCUMULATORS AND ADDER/SUBTRACTER

The data accumulator consists of a 40-bit adder/ subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its preaccumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled using the barrel shifter prior to accumulation.

3.8.2.1 Adder/Subtracter, Overflow and Saturation

The adder/subtracter is a 40-bit adder with an optional zero input into one side, and either true or complement data into the other input.

- In the case of addition, the Carry/Borrow input is active-high and the other input is true data (not complemented).
- In the case of subtraction, the Carry/Borrow input is active-low and the other input is complemented.

The adder/subtracter generates Overflow Status bits, SA/SB and OA/OB, which are latched and reflected in the STATUS register:

- Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed.
- Overflow into guard bits 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other.

The adder has an additional saturation block that controls accumulator data saturation, if selected. It uses the result of the adder, the Overflow Status bits described previously and the SAT<A:B> (CORCON<7:6>) and ACCSAT (CORCON<4>) mode control bits to determine when and to what value to saturate.

Six STATUS register bits support saturation and overflow:

- · OA: ACCA overflowed into guard bits
- · OB: ACCB overflowed into guard bits

or

• SA: ACCA saturated (bit 31 overflow and saturation)

ACCA overflowed into guard bits and saturated (bit 39 overflow and saturation)

 SB: ACCB saturated (bit 31 overflow and saturation) or

ACCB overflowed into guard bits and saturated (bit 39 overflow and saturation)

- OAB: Logical OR of OA and OB
- · SAB: Logical OR of SA and SB

The OA and OB bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). The OA and OB bits can also optionally generate an arithmetic warning trap when set and the corresponding Overflow Trap Flag Enable bits (OVATE, OVBTE) in the INTCON1 register are set (refer to **Section 7.0 "Interrupt Controller**"). This allows the user application to take immediate action, for example, to correct the system gain.

The SA and SB bits are modified each time data passes through the adder/subtracter, but can only be cleared by the user application. When set, they indicate that the accumulator has overflowed its maximum range (bit 31 for 32-bit saturation or bit 39 for 40-bit saturation) and is saturated (if saturation is enabled). When saturation is not enabled, SA and SB default to bit 39 overflow and thus indicate that a catastrophic overflow has occurred. If the COVTE bit in the INTCON1 register is set, the SA and SB bits generate an arithmetic warning trap when saturation is disabled.

TABLE 4-10: UART2 REGISTER MAP

SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
0230	UARTEN	-	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
0232	UTXISEL1	UTXINV	UTXISEL0		UTXBRK	UTXEN	UTXBF	TRMT	T URXISEL<1:0> ADDEN RIDLE PERR FERR OERR URXDA					0110			
0234	_	_	_	_	_	_	_	UTX8			U	ART Transm	nit Register				XXXX
0236	_	_	_	_	_	_	_	URX8	8 UART Receive Register								0000
0238	8 Baud Rate Generator Prescaler 0											0000					
	SFR Addr 0230 0232 0234 0236 0238	SFR Addr Bit 15 0230 UARTEN 0232 UTXISEL1 0234 — 0236 — 0238	SFR Addr Bit 15 Bit 14 0230 UARTEN — 0232 UTXISEL1 UTXINV 0234 — — 0236 — — 0238 — —	SFR Addr Bit 15 Bit 14 Bit 13 0230 UARTEN — USIDL 0232 UTXISEL1 UTXINV UTXISEL0 0234 — — — 0236 — — — 0238 — — —	SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 0230 UARTEN — USIDL IREN 0232 UTXISEL1 UTXINV UTXISEL0 — 0234 — — — — 0236 — — — — 0238 — — — —	SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 0230 UARTEN — USIDL IREN RTSMD 0232 UTXISEL1 UTXINV UTXISEL0 — UTXBRK 0234 — — — — — 0236 — — — — — 0238 — — — — —	SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 0230 UARTEN — USIDL IREN RTSMD — 0232 UTXISEL1 UTXINV UTXISEL0 — UTXBRK UTXEN 0234 — — — — — — — 0236 — — — — — — — 0238 — — — — — — —	SFR AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 90230UARTEN—USIDLIRENRTSMD—UEN10232UTXISEL1UTXINVUTXISEL0—UTXBRKUTXBRUTXBF0234———————0236———————0238UTUTUTUTUTUT	SFR AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 80230UARTEN—USIDLIRENRTSMD—UEN1UEN00232UTXISEL1UTXINVUTXISEL0—UTXBRKUTXENUTXBRTRMT0234———————UTX80236——————UTX80238UTUTUTUTUTX8UTX8	SFR AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 70230UARTEN—USIDLIRENRTSMD—UEN1UEN0WAKE0232UTXISEL1UTXINVUTXISEL0—UTXBRKUTXENUTXBFTRMURXIS0234———————UTXBUTXB0236———————URXB0238UTUTUSEL1UTUTUSEUTUTUSEUTUTUSEUTUTUSEUTUTUSE	SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 0230 UARTEN — USIDL IREN RTSMD — UEN1 UEN0 WAKE LPBACK 0230 UTXISEL UTXINV UTXISEL — UTXBRK UTXEN UTXBF TRMT URXSEL<1:> 0234 — — — — — — UTXBR UTXBF TRMT URXSEL<1:> 0236 — — — — — — — — ID I	SFR AddrBit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 70230UARTEN—USIDLIRENRTSMD—UEN1UEN0WAKELPBACKABAUD0232UTXISEL1UTXINVUTXISE0—UTXBRKUTXENUTXBFTRMTURXSEL1:0>ADDEN0234————————UTXBRUTXBRUTXBRUTXBRUTXBRUTXBR0236———————URXBUTXBRURXBUTXBRUTXBR0238UTUTUTUTIIIIIII	SFR AddrBit 13Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 9Bit 90230UARTEN—USIDLIRENRTSMD—UEN1UEN0WAKELPBACKABAUDURXINV0232UTXISELUTXINVUTXISEL—UTXBRKUTXENUTXBFTRMTURXISELADDENRIDLE0234———————UTXBUTXBTRMTUTXISELADDENRIDLE0236———————URXBUTXBUTXBUTXBUTXB0238UTUTUTUTUTUTUTUTUTUTUT	SFR AddrBit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 30230UARTEN—USIDLIRENRTSMD—UEN1UEN0WAKELPBACKABAUDURXINVBRGH0232UTXISE1UTXINVUTXISE0—UTXBRKUTXENUTXBFTRMTURXISE1-1:>ADDENRIDLEPERR0234———————UTXBUTXBUTXBUTXBUTXB0236———————URXBUTXBUTXBUTXB0238UTTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTU	SFR AddBit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 3Bit 3Bit 20230UARTEN-USDLIRENRTSMD-UEN1UEN0WAKELPBACKABAUDURXINVBRGHPDSE0230UTXISE1UTXINVUTXISE0-UTXBRKUTXENUTXBFTRMTURXISE1:1.>ADDENRIDLEPERRFERR0234UTXBUTXBUTXBUTXBUTXBUTXBUTXB0236URXBURXBUTXBUTXBUTXBUTXBUTXB0238UTXBUTXBUTXBUTXBUTXBUTXBUTXBUTXB0236UTXBUTXBUTXBUTXBUTXBUTXBUTXBUTXB0236UTXBUTXBUTXBUTXBUTXBUTXBUTXBUTXBUTXB0236UTXBUTXBUTXBUTXBUTXBUTXBUTXBUTXB0237UTXBUTXBUTXBUTXBUTXBUTXBUTXBUTXBUTXBUTXBUTXBUTXB<	SFR AddBit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 10230UARTEN-USDLIRENRTSMD-UEN1UEN0WAKELPBACKABAUDURXINVBRGHPDS \leftarrow 1.0>0230UTXISE1UTXINVUTXISE1-UTXBRKUTXNPUTXBFTRMTUTXRSABAUDURXINVBRGHPDS \leftarrow 1.0>0234UTXB	SFR AddrBit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 9Bit 90230UARTEN-USIDLIRENRTSMD-UEN1UEN0VMACLPBACKABAUDURXINVBRGHPDSE-1:0>STSEL0232UTXISE1UTXINVUTXISE0-UTXBRKUTXENUTXBRTMTUTXENADDENRIDLEPERRFERR0ERRURXDR0234UTXBR

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-11: SPI1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	_	SPISIDL	—	—	—	_	—	—	SPIROV	—	_	—		SPITBF	SPIRBF	0000
SPI1CON1	0242	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	_	_	_	_	_	_	FRMDLY	_	0000
SPI1BUF	0248	SPI1 Transmit and Receive Buffer Register 0000											0000					

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-12: SPI2 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI2STAT	0260	SPIEN	-	SPISIDL	—	—	-	—	-	—	SPIROV	—	—	_	-	SPITBF	SPIRBF	0000
SPI2CON1	0262	—	_	—	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI2CON2	0264	FRMEN	SPIFSD	FRMPOL	_	_	_	_		_	_	_	_	_	_	FRMDLY	_	0000
SPI2BUF	0268	SPI2 Transmit and Receive Buffer Register												0000				

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-19: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 1(FOR dsPIC33FJ128GP802/804 AND dsPIC33FJ64GP802/804) (CONTINUED)

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1RXF11EID	046E				EID<	:15:8>				EID<7:0>							XXXX	
C1RXF12SID	0470				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	XXXX
C1RXF12EID	0472				EID<	:15:8>							EID<	7:0>				XXXX
C1RXF13SID	0474				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<1	7:16>	XXXX
C1RXF13EID	0476				EID<	:15:8>							EID<	7:0>				XXXX
C1RXF14SID	0478				SID<	:10:3>					SID<2:0>		_	EXIDE	—	EID<1	7:16>	XXXX
C1RXF14EID	047A	EID<15:8>											EID<	7:0>				XXXX
C1RXF15SID	047C				SID<	:10:3>				SID<2:0> — EXIDE — EID<17:16>						7:16>	XXXX	
C1RXF15EID	047E				EID<	:15:8>				EID<7:0>							XXXX	

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-20: DCI REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
DCICON1	0280	DCIEN	_	DCISIDL	—	DLOOP	CSCKD	CSCKE	COFSD	UNFM	CSDOM	DJST	_	—	—	COFSM1	COFSM0	0000 0000 0000 0000
DCICON2	0282	—	_	_	—	BLEN1 BLEN0 — COFSG<3:0> — WS<3:0> 0								0000 0000 0000 0000				
DCICON3	0284	_	_	_	—		BCG<11:0>								0000 0000 0000 0000			
DCISTAT	0286	_	_	—	—	SLOT3 SLOT2 SLOT1 SLOT0 ROV RFUL TUNF TMPTY								0000 0000 0000 0000				
TSCON	0288	TSE15	TSE14	TSE13	TSE12	TSE11	TSE10	TSE9	TSE8	TSE7	TSE6	TSE5	TSE4	TSE3	TSE2	TSE1	TSE0	0000 0000 0000 0000
RSCON	028C	RSE15	RSE14	RSE13	RSE12	RSE11	RSE10	RSE9	RSE8	RSE7	RSE6	RSE5	RSE4	RSE3	RSE2	RSE1	RSE0	0000 0000 0000 0000
RXBUF0	0290							Receive I	Buffer 0 Da	ata Regis	ter							0000 0000 0000 0000
RXBUF1	0292							Receive I	Buffer 1 Da	ata Regis	ter							0000 0000 0000 0000
RXBUF2	0294							Receive I	Buffer 2 Da	ata Regis	ter							0000 0000 0000 0000
RXBUF3	0296							Receive I	Buffer 3 Da	ata Regis	ter							0000 0000 0000 0000
TXBUF0	0298							Transmit	Buffer 0 Da	ata Regis	ter							0000 0000 0000 0000
TXBUF1	029A					Transmit Buffer 1 Data Register									0000 0000 0000 0000			
TXBUF2	029C							Transmit	Buffer 2 Da	ata Regis	ter							0000 0000 0000 0000
TXBUF3	029E							Transmit	Buffer 3 Da	ata Regis	ter							0000 0000 0000 0000

Legend: — = unimplemented, read as '0'.

TABLE 4-22:PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ128GP202/802, dsPIC33FJ64GP202/802 AND
dsPIC33FJ32GP302

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06C0	_	—	_			RP1R<4:0	>		—	_	—			RP0R<4:0>			0000
RPOR1	06C2	_	_	_		RP3R<4:0> — — — RP2R<4:0>									0000			
RPOR2	06C4	_	_	_			RP5R<4:0	>		—	_	—			RP4R<4:0>			0000
RPOR3	06C6	_	—	—			RP7R<4:0	>		_	_	—			RP6R<4:0>			0000
RPOR4	06C8	_	_	—			RP9R<4:0	>		—	_	—			RP8R<4:0>			0000
RPOR5	06CA	_	_	—		RP11R<4:0>					_	—		I	RP10R<4:0>			0000
RPOR6	06CC	_	_	_	– RP13R<4:0> – – RP12R<4:0>							0000						
RPOR7	06CE	_	_	_			RP15R<4:0	>		_	_	_	RP14R<4:0>					0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-23:PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ128GP204/804, dsPIC33FJ64GP204/804 AND
dsPIC33FJ32GP304

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06C0	—	_	_			RP1R<4:0>	>		—	—	_			RP0R<4:0>			0000
RPOR1	06C2	_	_	_		RP3R<4:0> — — — RP2R<4:0>								0000				
RPOR2	06C4	_	_	_		RP5R<4:0> — — — RP4R<4:0>									0000			
RPOR3	06C6	_	_	_			RP7R<4:0>	>		_	_	_			RP6R<4:0>			0000
RPOR4	06C8	_	_	_			RP9R<4:0>	>		_	_	_			RP8R<4:0>			0000
RPOR5	06CA	_	_	_			RP11R<4:0	>		_	_	_			RP10R<4:0>	•		0000
RPOR6	06CC	_	_	_			RP13R<4:0	>		_	_	_			RP12R<4:0>	•		0000
RPOR7	06CE	_	_	_			RP15R<4:0	>		_	_	_		l	RP14R<4:0>	•		0000
RPOR8	06D0	_	_	_			RP17R<4:0	>		_	_	_			RP16R<4:0>	•		0000
RPOR9	06D2	_	_	_			RP19R<4:0	>		_	_	_			RP18R<4:0>	•		0000
RPOR10	06D4	_	_	_			RP21R<4:0	>		_	_	_			RP20R<4:0>	•		0000
RPOR11	06D6	_	_	_			RP23R<4:0	>		_	_	_			RP22R<4:0>	•		0000
RPOR12	06D8	_	_			RP25R<4:0> — — — RP24R<4:0>								0000				

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.6.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program one row of program Flash memory at a time. To do this, it is necessary to erase the 8-row erase page that contains the desired row. The general process is:

- 1. Read eight rows of program memory (512 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 5-1):
 - a) Set the NVMOP bits (NVMCON<3:0>) to ⁽⁰⁰¹⁰⁾ to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the page to be erased into the TBLPAG and W registers.
 - c) Write 0x55 to NVMKEY.
 - d) Write 0xAA to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-2).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOP bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 0x55 to NVMKEY.
 - c) Write 0xAA to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- Repeat steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-3.

EXAMPLE 5-1: ERASING A PROGRAM MEMORY PAGE

;	Set up NVMCO	N for block erase operation		
	MOV	#0x4042, W0	;	
	MOV	W0, NVMCON	;	Initialize NVMCON
;	Init pointer	to row to be ERASED		
	MOV	<pre>#tblpage(PROG ADDR), W0</pre>	;	
	MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR
	MOV	<pre>#tbloffset(PROG_ADDR), W0</pre>	;	Initialize in-page EA[15:0] pointer
	TBLWTL	WO, [WO]	;	Set base address of erase block
	DISI	#5	;	Block all interrupts with priority <7
			;	for next 5 instructions
	MOV	#0x55, W0		
	MOV	W0, NVMKEY	;	Write the 55 key
	MOV	#OxAA, W1	;	
	MOV	W1, NVMKEY	;	Write the AA key
	BSET	NVMCON, #WR	;	Start the erase sequence
	NOP		;	Insert two NOPs after the erase
	NOP		;	command is asserted

6.1 Reset Resources

Many useful resources related to Resets are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en532311

6.1.1 KEY RESOURCES

- Section 8. "Resets" (DS70192)
- Code Samples
- Application Notes
- Software Libraries
- · Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

						D/M/ 0	D/M/ 0
					R/W-0	R/W-0	
UZI XIE	UZRAIE	INTZIE	ISIE	141E	UC4IE	OC3IE	DIVIAZIE
DIL 15							DIL O
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC8IF	IC7IF	_	INT1IF	CNIE	CMIE	MI2C1IF	SI2C1IF
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown
bit 15	U2TXIE: UAF	RT2 Transmitte	r Interrupt Ena	able bit			
	1 = Interrupt r	request enable	d				
	0 = Interrupt r	request not ena	abled				
bit 14	U2RXIE: UAP	RI2 Receiver l	nterrupt Enab	le bit			
	1 = Interrupt r0 = Interrupt r	request enable	u abled				
bit 13	INT2IE: Exter	rnal Interrupt 2	Enable bit				
	1 = Interrupt r	request enable	d				
	0 = Interrupt r	request not ena	abled				
bit 12	T5IE: Timer5	Interrupt Enab	le bit				
	1 = Interrupt r	request enable	d abled				
bit 11	T4IE: Timer4	Interrupt Fnab	le bit				
	1 = Interrupt r	request enable	d				
	0 = Interrupt r	request not ena	abled				
bit 10	OC4IE: Output	ut Compare Ch	annel 4 Interi	rupt Enable bit			
	1 = Interrupt r	request enable	d abled				
bit 9	OC3IE: Outpu	ut Compare Ch	annel 3 Interi	upt Enable bit			
	1 = Interrupt r	request enable	d	· · · · · · ·			
	0 = Interrupt r	request not ena	abled				
bit 8	DMA2IE: DM	A Channel 2 D	ata Transfer (Complete Inter	rupt Enable bit		
	1 = Interrupt r	request enable	d abled				
bit 7		Capture Chann	el 8 Interrupt	Enable bit			
5 CT	1 = Interrupt r	request enable	d				
	0 = Interrupt r	request not ena	abled				
bit 6	IC7IE: Input C	Capture Chann	el 7 Interrupt	Enable bit			
	1 = Interrupt r	request enable	d				
hit 5		tod. Dead as '	o'				
bit 4		rnal Interrunt 1	∪ Enable bit				
Sit 1	1 = Interrupt r	request enable	d				
	0 = Interrupt r	request not ena	abled				
bit 3	CNIE: Input C	Change Notifica	ation Interrupt	Enable bit			
	1 = Interrupt r 0 = Interrupt r	request enable request not ena	d abled				

REGISTER	7-12: IEC2:	INTERRUPT	ENABLE CO	UN I ROL RE	GISTER 2							
U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0					
	DMA4IE	PMPIE		—		—	_					
bit 15							bit 8					
[
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
—		—	DMA3IE	C1IE ⁽¹⁾	C1RXIE ⁽¹⁾	SPI2IE	SPI2EIE					
bit 7							bit 0					
Legend:												
R = Readabl	le bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'						
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 15	Unimplemen	ted: Read as '	0'									
bit 14	DMA4IE: DM	IA Channel 4 D	ata Transfer C	complete Interi	rupt Enable bit							
	1 = Interrupt	request enable	d									
1.11.4.0	0 = Interrupt	request not ena	abled									
bit 13	PMPIE: Para	llel Master Port	Interrupt Ena	ble bit								
	$\perp = Interrupt I$ 0 = Interrupt I	request enable	u abled									
bit 12-5	Unimplemen	ited: Read as '	0'									
bit 4	DMA3IE: DM	IA Channel 3 D	ata Transfer C	complete Interi	rupt Enable bit							
	1 = Interrupt	equest enabled										
	0 = Interrupt	request has en	abled									
bit 3	C1IE: ECAN	C1IE: ECAN1 Event Interrupt Enable bit ⁽¹⁾										
	1 = Interrupt	1 = Interrupt request enabled										
h # 0		request not ena	abied etc. Decely lints	www.unt.Fin.ch.lo.l	ь:4(1)							
DIL Z		C1RXIE: ECAN1 Receive Data Ready Interrupt Enable bit ⁽¹⁾										
	0 = Interrupt I	request enable	abled									
bit 1	SPI2IE: SPI2	SPI2IE: SPI2 Event Interrupt Enable bit										
	1 = Interrupt	request enable	d									
	0 = Interrupt	request not ena	abled									
bit 0	SPI2EIE: SPI	12 Error Interru	ot Enable bit									
	1 = Interrupt	request enable	d									
	0 = Interrupt	request enable	abled									

7 4 2 ---

Note 1: Interrupts are disabled on devices without ECAN[™] modules.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

REGISTER	19-4: CiFC1	RL: ECAN™	FIFO CON	TROL REGIS	TER			
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
	DMABS<2:0>		_	_	_	_		
bit 15							bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		FSA<4:0>						
bit 7							bit 0	
Legend:		C = Writable I	oit, but only 'C)' can be writter	n to clear the b	it		
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'		
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unknown		
bit 15-13 bit 12-5	DMABS<2:0 111 = Reser 110 = 32 buf 101 = 24 buf 100 = 16 buf 011 = 12 buf 010 = 8 buffe 001 = 6 buffe 000 = 4 buffe	>: DMA Buffer : ved fers in DMA RA fers in DMA RA fers in DMA RA fers in DMA RAN ers in DMA RAN ers in DMA RAN ers in DMA RAN	Size bits M M M M M A A A D					
bit 4-0	FSA<4:0>: F 11111 = Rea 11110 = Rea • • • • • • •	IFO Area Starts ad buffer RB31 ad buffer RB30 RX buffer TRB ⁷	s with Buffer t	pits				

00000 = TX/RX buffer TRB0

REGISTER	19-6: CINTF	F: ECAN ™ IN	ITERRUPT	FLAG REGIS	STER						
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0				
_	_	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN				
bit 15				-			bit 8				
R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0				
IVRIF	WAKIF	ERRIF	—	FIFOIF	RBOVIF	RBIF	TBIF				
bit 7							bit 0				
Legend:		C = Writable	bit, but only '0	' can be writte	n to clear the bit						
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	Iown				
bit 15-14	Unimplemen	ted: Read as '	0'								
bit 13	TXBO: Transi	mitter in Error	State Bus Off	bit							
	1 = Transmitte	er is in Bus Of	state								
		ter is not in Bu	s Off state								
DIT 12	1 = Transmitte	mitter in Error : er is in Rus Pa	State Bus Pas	SIVE DIT							
	0 = Transmitte	er is not in Bus	Passive state	<u>ə</u>							
bit 11	RXBP: Recei	ver in Error Sta	ate Bus Passi	ve bit							
	1 = Receiver	is in Bus Pass	ive state								
	0 = Receiver	is not in Bus P	assive state								
bit 10	TXWAR: Trar	nsmitter in Erro	r State Warni	ng bit							
	1 = Transmitte	er is in Error W	arning state								
h # 0		er is not in Erro	or vvarning sta								
DIT 9	1 = Receiver	RAVVAR: Receiver in Error State Warning bit 1 = Receiver is in Error Warning state									
	0 = Receiver	is not in Error	Warning state								
bit 8	EWARN: Tran	nsmitter or Red	ceiver in Error	State Warning	a bit						
	1 = Transmitte	er or Receiver	is in Error Sta	te Warning sta	ate						
	0 = Transmitte	er or Receiver	is not in Error	State Warning	g state						
bit 7	IVRIF: Invalid	Message Rec	eived Interrup	ot Flag bit							
	1 = Interrupt F	Request has o	ccurred								
hit C				aa hit							
DILO	1 = Interrunt F	Request has o	curred	ag bit							
	0 = Interrupt F	Request has n	ot occurred								
bit 5	ERRIF: Error	Interrupt Flag	bit (multiple s	ources in CilN	TF<13:8> regist	er)					
	1 = Interrupt F	Request has o	ccurred		C C						
	0 = Interrupt F	Request has n	ot occurred								
bit 4	Unimplemen	ted: Read as '	0'								
bit 3	FIFOIF: FIFO	Almost Full In	terrupt Flag b	it							
	1 = Interrupt F	Request has o	ccurred								
h # 0		Request has no	ot occurred	I- :4							
DIT 2	1 = Interrunt E	Buffer Overflor	w Interrupt Fia	ag bit							
	0 = Interrupt F	Request has n	ot occurred								
bit 1	RBIF: RX But	ffer Interrupt Fl	ag bit								
-	1 = Interrupt F	Request has o	ccurred								
	0 = Interrupt F	Request has n	ot occurred								
bit 0	TBIF: TX Buff	fer Interrupt Fla	ag bit								
	1 = Interrupt F	Request has o	ccurred								
	0 = Interrupt H	kequest has h	or occurred								

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

REGISTER 19-22: CiRXFUL1: ECAN™ RECEIVE BUFFER FULL REGISTER 1

R/C-0	R/C-0 R/C-0		R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0
bit 7							bit 0
Legend:		C = Writable b	oit, but only '0'	can be writter	n to clear the bit		
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							

'0' = Bit is cleared

x = Bit is unknown

bit 15-0 **RXFUL<15:0>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

'1' = Bit is set

0 = Buffer is empty

-n = Value at POR

REGISTER 19-23: CIRXFUL2: ECAN™ RECEIVE BUFFER FULL REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL31 | RXFUL30 | RXFUL29 | RXFUL28 | RXFUL27 | RXFUL26 | RXFUL25 | RXFUL24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL23 | RXFUL22 | RXFUL21 | RXFUL20 | RXFUL19 | RXFUL18 | RXFUL17 | RXFUL16 |
| bit 7 | | | | | | | bit 0 |

Legend: C = Writable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 **RXFUL<31:16>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty

FIGURE 25-2: CRC GENERATOR RECONFIGURED FOR $x^{16} + x^{12} + x^5 + 1$

25.2 User Interface

25.2.1 DATA INTERFACE

To start serial shifting, a '1' must be written to the CRCGO bit.

The module incorporates a FIFO that is 8 deep when PLEN (PLEN<3:0>) > 7, and 16 deep, otherwise. The data for which the CRC is to be calculated must first be written into the FIFO. The smallest data element that can be written into the FIFO is one byte. For example, if PLEN = 5, then the size of the data is PLEN + 1 = 6. The data must be written as follows:

```
data[5:0] = crc_input[5:0]
data[7:6] = `bxx
```

Once data is written into the CRCWDAT MSb (as defined by PLEN), the value of VWORD (VWORD<4:0>) increments by one. The serial shifter starts shifting data into the CRC engine when CRCGO = 1 and VWORD > 0. When the MSb is shifted out, VWORD decrements by one. The serial shifter continues shifting until the VWORD reaches 0. Therefore, for a given value of PLEN, it will take (PLEN + 1) * VWORD number of clock cycles to complete the CRC calculations.

When VWORD reaches 8 (or 16), the CRCFUL bit will be set. When VWORD reaches 0, the CRCMPT bit will be set.

To continually feed data into the CRC engine, the recommended mode of operation is to initially "prime" the FIFO with a sufficient number of words so no interrupt is generated before the next word can be written. Once that is done, start the CRC by setting the CRCGO bit to '1'. From that point onward, the VWORD<4:0> bits should be polled. If they read less than 8 or 16, another word can be written into the FIFO. To empty words already written into a FIFO, the CRCGO bit must be set to '1' and the CRC shifter allowed to run until the CRCMPT bit is set.

Also, to get the correct CRC reading, it will be necessary to wait for the CRCMPT bit to go high before reading the CRCWDAT register.

If a word is written when the CRCFUL bit is set, the VWORD Pointer will roll over to 0. The hardware will then behave as if the FIFO is empty. However, the condition to generate an interrupt will not be met; therefore, no interrupt will be generated (See Section 25.2.2 "Interrupt Operation").

At least one instruction cycle must pass after a write to CRCWDAT before a read of the VWORD bits is done.

25.2.2 INTERRUPT OPERATION

When the VWORD<4:0> bits make a transition from a value of '1' to '0', an interrupt will be generated.

25.3 Operation in Power-Saving Modes

25.3.1 SLEEP MODE

If Sleep mode is entered while the module is operating, the module will be suspended in its current state until clock execution resumes.

25.3.2 IDLE MODE

To continue full module operation in Idle mode, the CSIDL bit must be cleared prior to entry into the mode.

If CSIDL = 1, the module will behave the same way as it does in Sleep mode; pending interrupt events will be passed on, even though the module clocks are not available.

SPIx MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING **FIGURE 30-12:**

TABLE 30-31: SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING REQUIREMENTS

АС СНА	RACTERIST	Standard (unless of Operating	Operatin otherwise temperation	g Conditi stated) ture -40 [°] -40°	ons: 3.0\ °C ≤Ta ≤+; °C ≤Ta ≤+	/ to 3.6V 85°C for Industrial 125°C for Extended	
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP10	TscP	Maximum SCK Frequency		—	9	MHz	-40°C to +125°C and see Note 3
SP20	TscF	SCKx Output Fall Time	_	—	_	ns	See parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	—	-	_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	-	_	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	-	_	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—		ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30			ns	_
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30		_	ns	_

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

Assumes 50 pF load on all SPIx pins. 4:

^{3:} The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.

TABLE 30-36:	12Cx BUS DATA TIMING REQUIREMENTS	(MASTER MODE)
		(

АС СНА	ARACTER	ISTICS		Standard Operatin (unless otherwise Operating tempera	ng Condit stated) ture -40 -40	ions: 3.0)°C ≤ TA ≤)°C ≤ TA ≤	V to 3.6V +85°C for Industrial +125°C for Extended
Param No.	Symbol	Charac	teristic	Min ⁽¹⁾	Max	Units	Conditions
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	—
			400 kHz mode	Tcy/2 (BRG + 1)	—	μs	_
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μs	_
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)		μs	—
			400 kHz mode	Tcy/2 (BRG + 1)		μs	—
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μs	—
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
			1 MHz mode ⁽²⁾	—	100	ns	
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
			1 MHz mode ⁽²⁾	—	300	ns	
IM25	TSU:DAT	Data Input	100 kHz mode	250	—	ns	—
		Setup Time	400 kHz mode	100	—	ns	
			1 MHz mode ⁽²⁾	40	—	ns	
IM26	THD:DAT	Data Input	100 kHz mode	0	—	μs	—
		Hold Time	400 kHz mode	0	0.9	μs	
			1 MHz mode ⁽²⁾	0.2	—	μs	
IM30	TSU:STA	Start Condition	100 kHz mode	TCY/2 (BRG + 1)	—	μs	Only relevant for
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	—	μs	Repeated Start
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs	condition
IM31	THD:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	After this period the
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	—	μs	first clock pulse is
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs	generated
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	—
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	—	μs	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs	
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	ns	—
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)		ns	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		ns	
IM40	TAA:SCL	Output Valid	100 kHz mode	—	3500	ns	—
		From Clock	400 kHz mode	—	1000	ns	—
			1 MHz mode ⁽²⁾	—	400	ns	—
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be
			400 kHz mode	1.3	—	μs	free before a new
			1 MHz mode ⁽²⁾	0.5		μs	transmission can start
IM50	Св	Bus Capacitive L	oading	_	400	pF	_
IM51	TPGD	Pulse Gobbler De	elay	65	390	ns	See Note 3

Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195) in the "*dsPIC33F/PIC24H Family Reference Manual*". Please see the Microchip website (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual chapters.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.

АС СНА	AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial			
						-40°C	$C \leq TA \leq +125^{\circ}C$ for Extended	
Param.	Symbol	Charac	teristic	Min	мах	Units	Conditions	
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	_	μs	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	1.3	-	μs	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.5		μs	—	
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	_	μs	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	—	μs	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.5		μs	—	
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	100	ns		
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	300	ns		
IS25	TSU:DAT	Data Input	100 kHz mode	250		ns	—	
	Setup Time	400 kHz mode	100		ns			
			1 MHz mode ⁽¹⁾	100		ns		
IS26	THD:DAT	Data Input Hold Time	100 kHz mode	0		μs	—	
			400 kHz mode	0	0.9	μs		
			1 MHz mode ⁽¹⁾	0	0.3	μs		
IS30	TSU:STA	Start Condition	100 kHz mode	4.7		μs	Only relevant for Repeated	
		Setup Time	400 kHz mode	0.6		μs	Start condition	
			1 MHz mode ⁽¹⁾	0.25		μs		
IS31	THD:STA	Start Condition	100 kHz mode	4.0		μs	After this period, the first	
		Hold Time	400 kHz mode	0.6		μs	clock pulse is generated	
			1 MHz mode ⁽¹⁾	0.25		μs		
IS33	TSU:STO	Stop Condition	100 kHz mode	4.7		μs	_	
		Setup Time	400 kHz mode	0.6		μs		
			1 MHz mode ⁽¹⁾	0.6		μs		
IS34	THD:ST	Stop Condition	100 kHz mode	4000		ns	_	
	0	Hold Time	400 kHz mode	600		ns		
			1 MHz mode ⁽¹⁾	250		ns		
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns	_	
		From Clock	400 kHz mode	0	1000	ns		
			1 MHz mode ⁽¹⁾	0	350	ns		
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μs	Time the bus must be free	
			400 kHz mode	1.3		μs	before a new transmission	
			1 MHz mode ⁽¹⁾	0.5	_	μs	Call Stall	
IS50	Св	Bus Capacitive Lo	ading	—	400	pF	_	

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature-40°C <ta <+150°c="" for="" high="" td="" temperature<=""></ta>						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Мах	Units	Conditions	
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		10	25	ns	_	
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	28		_	ns	_	
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	35	_	_	ns		

TABLE 31-10: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 31-11: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature-40°C ≤TA ≤+150°C for High Temperature						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions	
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	10	25	ns	_	
HSP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	35	_	_	ns	—	
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	28	_	_	ns	_	
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	35	—	—	ns	_	

Note 1: These parameters are characterized but not tested in manufacturing.

33.0 PACKAGING INFORMATION

28-Lead SPDIP

28-Lead SOIC

28-Lead QFN-S

44-Lead QFN

44-Lead TQFP

Example

Example

Example

Example

Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.		
Note:	If the full Microchip part number cannot be marked on one line, it is carried over to the next line, thus limiting the number of available characters for customer-specific information.			