

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8×8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128gp204-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

TABLE 4-26: REAL-TIME CLOCK AND CALENDAR REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ALRMVAL	0620						Alarr	m Value Regis	ter Window ba	sed on APT	R<1:0>							XXXX
ALCFGRPT	0622	ALRMEN	ALRMEN CHIME AMASK<3:0> ALRMPTR<1:0> ARPT<7:-0> 0								0000							
RTCVAL	0624						RTCC	Value Registe	er Window bas	ed on RTCF	PTR<1:0>							XXXX
RCFGCAL	0626	RTCEN	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPT	⁻ R<1:0>	> CAL<7:0>							0000	
PADCFG1	02FC	—	_	—	_	—	_	—	—	—	—	—	—	_		RTSECSEL	PMPTTL	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-27: CRC REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CRCCON	0640	—	_	CSIDL		VWORD<4:0>					CRCMPT	—	CRCGO		PLEN	<3:0>		0000
CRCXOR	0642		X<15:0>										0000					
CRCDAT	0644								CRC Data Ir	nput Register	r							0000
CRCWDAT	0646		CRC Result Register 0000										0000					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-28: DUAL COMPARATOR REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMCON	0630	CMIDL	—	C2EVT	C1EVT	C2EN	C1EN	C2OUTEN	C1OUTEN	C2OUT	C1OUT	C2INV	C1INV	C2NEG	C2POS	C1NEG	C1POS	0000
CVRCON	0632	—	-	-	_		-	_	_	CVREN	CVROE	CVRR	CVRSS		CVR	<3:0>		0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-29: PORTA REGISTER MAP FOR dsPIC33FJ128GP202/802, dsPIC33FJ64GP202/802 AND dsPIC33FJ32GP302

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	-	—	_	-	-	—	-	—	-	-	—	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	001F
PORTA	02C2	—	—	_	-	—	_	_	_	_	-	—	RA4	RA3	RA2	RA1	RA0	XXXX
LATA	02C4	—	_	_	—	—	—	_	_	_	—	—	LATA4	LATA3	LATA2	LATA1	LATA0	XXXX
ODCA	02C6	_	_		_	_	_			_	_	_	_	_	_	_	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

© 2007-2012 Microchip Technology Inc.

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

bit 2	OC1IF: Output Compare Channel 1	1 Interrupt Flag Status bit
-------	---------------------------------	-----------------------------

- 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 1 IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 INTOIF: External Interrupt 0 Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		T4IP<2:0>		_		OC4IP<2:0>	
bit 15							bit 8
		DAVA	DAALO			DAVA	DAMA
0-0	R/W-1	R/VV-U	R/W-0	0-0	R/W-1		R/W-0
— h:+ 7		0031P<2:0>				DIVIAZIP<2:0>	h:t 0
DIL 7							DILU
Legend:							
R = Readab	le bit	W = Writable I	bit	U = Unimple	emented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkr	nown
bit 15	Unimpleme	ented: Read as '0)'				
bit 14-12	T4IP<2:0>:	Timer4 Interrupt	Priority bits				
	111 = Interr	rupt is priority 7 (I	nighest prior	ity interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1					
	000 = Interr	upt source is dis	abled				
bit 11	Unimpleme	ented: Read as '0)'				
bit 10-8	OC4IP<2:0	>: Output Compa	re Channel	4 Interrupt Prio	rity bits		
	111 = Interr	rupt is priority 7 (f	highest prior	ity interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1					
L:1 7		upt source is dis					
	Unimpleme	ented: Read as 1					
DIT 6-4		>: Output Compa	ire Channel	3 Interrupt Prio	rity dits		
	•		lighest phon	ity interrupt)			
	•						
	•						
	001 = Interr	rupt is priority 1	abled				
hit 3		anted: Read as '	מטוכט ז'				
bit 2_0) al 2 Data Tra	unsfer Complet	e Interrunt Prio	rity bite	
DIL 2-0	111 = Interr	unt is priority 7 (b	nighest prior	ity interrunt)	e interrupt Filo	They bits	
	•		iighteet phon				
	•						
	•	unt in priority d					
	001 = Interr	upt is priority 1	ablad				

DECISTED 7-21. IDCA- INTERDURT DRIOPITY CONTROL DECISTER A

REGISTER	7-28: IPC1	6: INTERRUPT	PRIORITY	CONTROL	REGISTER 1	6	
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		CRCIP<2:0>				U2EIP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
		U1EIP<2:0>			—	—	—
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own
bit 15	Unimpleme	ented: Read as '0)'				
bit 14-12	CRCIP<2:0	>: CRC Generate	or Error Inter	rupt Flag Priori ⁻	ty bits		
	111 = Interr	rupt is priority 7 (ł	nighest priori	ty interrupt)			
	•						
	•						
	•	unt in priority 1					
	001 - Interior 000 = 1	upt is priority i rupt source is disa	abled				
bit 11	Unimpleme	ented: Read as '0)'				
bit 10-8	U2EIP<2:0>	>: UART2 Error Ir	nterrupt Prio	ritv bits			
	111 = Interr	rupt is priority 7 (ł	niahest priori	tv interrupt)			
	•			·) ······			
	•						
	•						
	001 = Interr	rupt is priority 1					
	000 = Interr	rupt source is disa	abled				
bit 7	Unimpleme	ented: Read as '0)'				
bit 6-4	U1EIP<2:0>	: UART1 Error Ir	nterrupt Prio	rity bits			
	111 = Interr	rupt is priority 7 (ł	nighest priori	ty interrupt)			
	•						
	•						
	• 001 = Interr	unt is priority 1					
	000 = Interr	rupt source is dis	abled				

_ _ . . _ _

bit 3-0 Unimplemented: Read as '0'

7.6 Interrupt Setup Procedures

7.6.1 INITIALIZATION

To configure an interrupt source at initialization:

- 1. Set the NSTDIS bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level depends on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources can be programmed to the same non-zero value.

Note: At a device Reset, the IPCx registers are initialized such that all user interrupt sources are assigned to priority level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

7.6.2 INTERRUPT SERVICE ROUTINE

The method used to declare an ISR and initialize the IVT with the correct vector address depends on the programming language (C or assembler) and the language development tool suite used to develop the application.

In general, the user application must clear the interrupt flag in the appropriate IFSx register for the source of interrupt that the ISR handles. Otherwise, the program re-enters the ISR immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

7.6.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

7.6.4 INTERRUPT DISABLE

All user interrupts can be disabled using this procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to priority level 7 by inclusive ORing the value OEh with SRL.

To enable user interrupts, the POP instruction can be used to restore the previous SR value.

Note:	Only user interrupts with a priority level of
	7 or lower can be disabled. Trap sources
	(level 8-level 15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of priority levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
FORCE ⁽¹⁾	—	—	_	_	—	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				RQSEL6<6:0>	_{>} (2)		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	FORCE: Force	e DMA Transfe	er bit ⁽¹⁾				
	1 = Force a si 0 = Automatic	ingle DMA tran DMA transfer	sfer (Manual ı initiation by D	mode) MA request			
bit 14-7	Unimplemen	ted: Read as ')'				
bit 6-0	IRQSEL<6:0>	-: DMA Periphe	eral IRQ Num	ber Select bits	(2)		
	1111111 = D	MAIRQ127 sel	ected to be C	hannel DMAR	EQ		
	•						
	0000000 = D	MAIRQ0 selec	ted to be Cha	nnel DMAREC	2		

REGISTER 8-2: DMAxREQ: DMA CHANNEL x IRQ SELECT REGISTER

- **Note 1:** The FORCE bit cannot be cleared by the user. The FORCE bit is cleared by hardware when the forced DMA transfer is complete.
 - 2: Refer to Table 7-1 for a complete listing of IRQ numbers for all interrupt sources.

NOTES:

14.2 Input Capture Registers

REGISTER 14-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER (x = 1, 2, 7 OR 8)

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
—	—	ICSIDL	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R-0, HC	R-0, HC	R/W-0	R/W-0	R/W-0
ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	ICSIDL: Input Capture Module Stop in Idle Control bit
	 1 = Input capture module halts in CPU Idle mode 0 = Input capture module continues to operate in CPU Idle mode
bit 12-8	Unimplemented: Read as '0'
bit 7	ICTMR: Input Capture Timer Select bits
	 1 = TMR2 contents are captured on capture event 0 = TMR3 contents are captured on capture event
bit 6-5	ICI<1:0>: Select Number of Captures per Interrupt bits
	 11 = Interrupt on every fourth capture event 10 = Interrupt on every third capture event 01 = Interrupt on every second capture event 00 = Interrupt on every capture event
bit 4	ICOV: Input Capture Overflow Status Flag bit (read-only)
	 1 = Input capture overflow occurred 0 = No input capture overflow occurred
bit 3	ICBNE: Input Capture Buffer Empty Status bit (read-only)
	 1 = Input capture buffer is not empty, at least one more capture value can be read 0 = Input capture buffer is empty
bit 2-0	ICM<2:0>: Input Capture Mode Select bits
	 111 = Input capture functions as interrupt pin only when device is in Sleep or Idle mode (Rising edge detect only, all other control bits are not applicable.) 110 = Unused (module disabled) 101 = Capture mode, every 16th rising edge 100 = Capture mode, every 4th rising edge 011 = Capture mode, every rising edge 010 = Capture mode, every falling edge 010 = Capture mode, every falling edge 011 = Capture mode, every edge (rising and falling) (ICI<10> bits do not control interrupt generation for this mode.)
	000 = Input capture module turned off

REGISTER 19	9-2: CiCTR	RL2: ECAN™	CONTROL	REGISTER 2	2			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	_	_	_	_	_	—		
bit 15							bit 8	
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0	
—	_	_	DNCNT<4:0>					
bit 7							bit 0	
Legend:		C = Writable bit, but only '0' can be written to clear the bit						
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	eared	x = Bit is unkr	nown	

bit 15-5 bit 4-0	Unimplemented: Read as '0' DNCNT<4:0>: DeviceNet™ Filter Bit Number bits
	10010-11111 = Invalid selection 10001 = Compare up to data byte 3, bit 6 with EID<17>
	•
	•
	•
	00001 = Compare up to data byte 1, bit 7 with EID<0> 00000 = Do not compare data bytes

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F15BI	P<3:0>		F14BP<3:0>				
bit 15				•			bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F13BI	P<3:0>			F12B	P<3:0>		
bit 7							bit 0	
Legend:		C = Writable	bit, but only '0	' can be writter	to clear the bi	t		
R = Readab	le bit	W = Writable	V = Writable bit U = Unimplemented bit, read a			d as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown	
bit 15-12	F15BP<3:0> 1111 = Filte 1110 = Filte • • • • • • •	RX Buffer ma r hits received in r hits received in r hits received in r hits received in	sk for Filter 15 n RX FIFO but n RX Buffer 14 n RX Buffer 1	ifer I				
bit 11-8	F14BP<3:0>	: RX Buffer ma	sk for Filter 14	(same values	as bit 15-12)			
bit 7-4	F13BP<3:0>	RX Buffer ma	sk for Filter 13	(same values	as bit 15-12)			

REGISTER 19-15: CiBUFPNT4: ECAN™ FILTER 12-15 BUFFER POINTER REGISTER

bit 3-0	F12BP<3:0>: RX Buffer mask for Filter 12 (same values as bit 15-12)

REGISTER	REGISTER 19-24: CIRAOVET: ECAN THE RECEIVE BUFFER OVERFLOW REGISTER T							
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	
RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8	
bit 15							bit 8	
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	
RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	
bit 7							bit 0	
Legend: C = Writable bit, but only '0' can be written to clear the bit								
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								

'0' = Bit is cleared

x = Bit is unknown

DECIOTED 40.04. CODVOVE4. FOANIM DECENCE DUFFED OVEDELOW DECIOTED 4

bit 15-0

-n = Value at POR

RXOVF<15:0>: Receive Buffer n Overflow bits

'1' = Bit is set

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition

REGISTER 19-25: CIRXOVF2: ECAN™ RECEIVE BUFFER OVERFLOW REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF31 | RXOVF30 | RXOVF29 | RXOVF28 | RXOVF27 | RXOVF26 | RXOVF25 | RXOVF24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF23 | RXOVF22 | RXOVF21 | RXOVF20 | RXOVF19 | RXOVF18 | RXOVF17 | RXOVF16 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Writable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0

RXOVF<31:16>: Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition

REGISTER 21-1: AD1CON1: ADC1 CONTROL REGISTER 1 (CONTINUED)

bit 3	SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or 1x)
	<pre>When AD12B = 1, SIMSAM is: U-0, Unimplemented, Read as '0' 1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or Samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01) 0 = Samples multiple channels individually in sequence</pre>
bit 2	ASAM: ADC Sample Auto-Start bit
	 1 = Sampling begins immediately after last conversion. SAMP bit is auto-set 0 = Sampling begins when SAMP bit is set
bit 1	SAMP: ADC Sample Enable bit
	 1 = ADC sample/hold amplifiers are sampling 0 = ADC sample/hold amplifiers are holding If ASAM = 0, software can write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC = 000, software can write '0' to end sampling and start conversion. If SSRC ≠ 000, automatically cleared by hardware to end sampling and start conversion.
bit 0	DONE: ADC Conversion Status bit
	 1 = ADC conversion cycle is completed. 0 = ADC conversion not started or in progress Automatically set by hardware when ADC conversion is complete. Software can write '0' to clear DONE status (software not allowed to write '1'). Clearing this bit does NOT affect any operation in progress. Automatically cleared by hardware at start of a new conversion.

REGISTER 2	2-2: DAC1	STAT: DAC S	IAIUS REG	JISTER						
R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R-0	R-0			
LOEN	_	LMVOEN		_	LITYPE	LFULL	LEMPTY			
bit 15							bit 8			
R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R-0	R-0			
ROEN	—	RMVOEN	—	—	RITYPE	RFULL	REMPTY			
bit 7							bit 0			
Legend:	L :4		L 14			-1 (0)				
R = Readable		vv = vvritable	DIT		mented bit, rea					
-n = Value at P	VOR	'1' = Bit is set		0° = Bit is cle	eared	x = Bit is unk	nown			
bit 15	LOEN: Left C 1 = Positive 0 = DAC out	Channel DAC O and negative D puts are disable	utput Enable AC outputs a ed	bit re enabled						
bit 14	Unimplemen	ted: Read as '	0'							
bit 13	LMVOEN: Le	eft Channel Mid	point DAC Ou	utput Voltage E	Enable bit					
	1 = Midpoint 0 = Midpoint	DAC output is output is disab	enabled led							
bit 12-11	Unimplemen	ted: Read as '	0'							
bit 10	LITYPE: Left 1 = Interrupt 0 = Interrupt	Channel Type if FIFO is Emp if FIFO is not F	of Interrupt b ty [:] ull	it						
bit 9	LFULL: Statu 1 = FIFO is F 0 = FIFO is r	us, Left Channe ⁻ ull not full	l Data Input F	FIFO is Full bit						
bit 8	LEMPTY: Sta 1 = FIFO is E 0 = FIFO is r	atus, Left Chanı Empty not Empty	nel Data Inpu	t FIFO is Empt	y bit					
bit 7	ROEN: Right 1 = Positive 0 = DAC out	Channel DAC and negative D puts are disable	Output Enabl AC outputs a ed	le bit re enabled						
bit 6	Unimplemen	ted: Read as '	0'							
bit 5	RMVOEN: Ri 1 = Midpoint 0 = Midpoint	ight Channel M DAC output is output is disab	idpoint DAC (enabled led	Output Voltage	Enable bit					
bit 4-3	Unimplemen	ted: Read as '	0'							
bit 2	RITYPE: Rig	RITYPE: Right Channel Type of Interrupt bit								
	1 = Interrupt 0 = Interrupt	if FIFO is Emp if FIFO is not F	ty Full							
bit 1	RFULL: Statu 1 = FIFO is	us, Right Chanı Full	nel Data Inpu	t FIFO is Full b	bit					
hit O			nnal Data Isa							
DILU	1 = FIFO is E 0 = FIFO is r	aius, Right Cha Empty not Empty	nnei Data Inp	DUL FIFU IS EM	אין אונ					

~ ~~

REGISTER	26-5: PMSTA	T: PARALL	EL PORT ST	ATUS REGI	STER		
R-0	R/W-0, HS	U-0	U-0	R-0	R-0	R-0	R-0
IBF	IBOV		_	IB3F	IB2F	IB1F	IB0F
bit 15							bit 8
R-1	R/W-0. HS	U-0	U-0	R-1	R-1	R-1	R-1

bit 7			bit 0
Legend:	HS = Hardware Set bit		
R = Readable bit	W = Writable bit	U = Unimplemented bi	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

OB3E

OB2E

bit 15	 IBF: Input Buffer Full Status bit 1 = All writable input buffer registers are full 0 = Some or all of the writable input buffer registers are empty
bit 14	IBOV: Input Buffer Overflow Status bit 1 = A write attempt to a full input byte register occurred (must be cleared in software)
	0 = No overflow occurred
bit 13-12	Unimplemented: Read as '0'
bit 11-8	IB3F:IB0F: Input Buffer x Status Full bits
	 1 = Input buffer contains data that has not been read (reading buffer will clear this bit) 0 = Input buffer does not contain any unread data
bit 7	OBE: Output Buffer Empty Status bit
	 1 = All readable output buffer registers are empty 0 = Some or all of the readable output buffer registers are full
bit 6	OBUF: Output Buffer Underflow Status bits
	1 = A read occurred from an empty output byte register (must be cleared in software)0 = No underflow occurred
bit 5-4	Unimplemented: Read as '0'
bit 3-0	OB3E:OB0E: Output Buffer x Status Empty bit
	 1 = Output buffer is empty (writing data to the buffer will clear this bit) 0 = Output buffer contains data that has not been transmitted

OBE

OBUF

OB0E

OB1E

Field	Description		
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}		
Wm*Wn	Multiplicand and Multiplier working register pair for DSP instructions ∈ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}		
Wn	One of 16 working registers ∈ {W0W15}		
Wnd	One of 16 destination working registers ∈ {W0W15}		
Wns	One of 16 source working registers ∈ {W0W15}		
WREG	W0 (working register used in file register instructions)		
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }		
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }		
Wx	X data space prefetch address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}		
Wxd	X data space prefetch destination register for DSP instructions ∈ {W4W7}		
Wy	Y data space prefetch address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}		
Wyd	Y data space prefetch destination register for DSP instructions ∈ {W4W7}		

TABLE 28-1: SYN	MBOLS USED IN OPCODE DESCRIPTIO	NS (CONTINUED)
-----------------	---------------------------------	----------------

FIGURE 30-8: OC/PWM MODULE TIMING CHARACTERISTICS

TABLE 30-27: SIMPLE OC/PWM MODE TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Мах	Units	Conditions
OC15	Tfd	Fault Input to PWM I/O Change	_		Tcy + 20	ns	_
OC20	TFLT	Fault Input Pulse-Width	Tcy + 20	_	_	ns	—

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 30-29: PARALLEL MASTER PORT WRITE TIMING DIAGRAM

TABLE 30-53: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Characteristic	Min.	Тур	Max.	Units	Conditions
PM11	PMWR Pulse-Width	_	0.5 TCY	_	ns	_
PM12	Data Out Valid before PMWR or PMENB goes Inactive (data setup time)	—	_	—	ns	_
PM13	PMWR or PMEMB Invalid to Data Out Invalid (data hold time)	—	_	—	ns	
PM16	PMCSx Pulse-Width	TCY - 5	_	_	ns	_

TABLE 30-54: DMA READ/WRITE TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended				
Param No.	Characteristic	Min.	Тур	Max.	Units	Conditions
DM1	DMA Read/Write Cycle Time	—	—	1 Tcy	ns	

Section Name	Update Description
Section 31.0 "High Temperature Electrical Characteristics"	Updated all ambient temperature end range values to +150°C throughout the chapter.
	Updated the storage temperature end range to +160°C.
	Updated the maximum junction temperature from +145°C to +155°C.
	Updated the maximum values for High Temperature Devices in the Thermal Operating Conditions (see Table 31-2).
	Updated the ADC Module Specifications (12-bit Mode) (see Table 31-14).
	Updated the ADC Module Specifications (10-bit Mode) (see Table 31-15).
"Product Identification System"	Updated the end range temperature value for H (High) devices.

TABLE A-4: MAJOR SECTION UPDATES (CONTINUED)