

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XEI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128gp204t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
_	_		US	EDT ⁽¹⁾		DL<2:0>	
pit 15		·					bit 8
R/W-0	D/M/ O		R/W-0			R/W-0	
SATA	R/W-0 SATB	R/W-1 SATDW	ACCSAT	R/C-0 IPL3 ⁽²⁾	R/W-0 PSV	R/W-0	R/W-0 IF
bit 7	SAID	SAIDW	ACCSAT	IFL3' /	F3V	RND	bit
Legend:		C = Clear on	y bit				
R = Readable	e bit	W = Writable	bit	-n = Value at	-	'1' = Bit is set	
0' = Bit is cle	ared	ʻx = Bit is unk	nown	U = Unimplen	nented bit, rea	ad as '0'	
bit 15-13	Unimplemer	nted: Read as	0'				
bit 12	•	Itiply Unsigned		ol bit			
		ine multiplies a	-				
	•	ine multiplies a	•				
bit 11	EDT: Early D	O Loop Termina	ation Control b	it ⁽¹⁾			
	1 = Terminate 0 = No effect	e executing DO	loop at end of	current loop ite	eration		
bit 10-8	DL<2:0>: DO	Loop Nesting	Level Status bi	its			
	111 = 7 do k	oops active					
	•						
	• 001 = 1 DO lo	oon active					
	000 = 0 DO lo	•					
bit 7	SATA: ACCA	Saturation En	able bit				
		ator A saturatio ator A saturatio					
bit 6	SATB: ACCE	3 Saturation En	able bit				
		ator B saturatio ator B saturatio					
bit 5	SATDW: Dat	a Space Write	from DSP Eng	ine Saturation	Enable bit		
		ce write satura ce write satura					
bit 4	ACCSAT: Ac	cumulator Satu	ration Mode S	elect bit			
		iration (super s iration (normal					
bit 3		nterrupt Priority					
		rrupt priority le rrupt priority le	0				
bit 2	PSV: Program	m Space Visibil	ity in Data Spa	ice Enable bit			
		space visible in					
L:1 1	•	space not visit	•	ce			
bit 1		ing Mode Sele		d			
	0 = Unbiased	conventional) ro d (convergent)	rounding enab	led			
bit 0	-	Fractional Mu	-				
	1 = Integer m	node enabled for	or DSP multiply d for DSP mult				

Note 1: This bit is always read as '0'.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

TABLE 4-16: DMA REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA0CON	0380	CHEN	SIZE	DIR	HALF	NULLW		_	—	_		AMOD	E<1:0>	—	_	MODE	<1:0>	0000
DMA0REQ	0382	FORCE	_			_			—				I	IRQSEL<6:0>	>			0000
DMA0STA	0384								S	TA<15:0>								0000
DMA0STB	0386								S	TB<15:0>								0000
DMA0PAD	0388								P	AD<15:0>								0000
DMA0CNT	038A	_	_			_						CN	<9:0>					0000
DMA1CON	038C	CHEN	SIZE	DIR	HALF	NULLW			—			AMOD	E<1:0>	—		MODE	=<1:0>	0000
DMA1REQ	038E	FORCE	_			_			—				I	IRQSEL<6:0>	>			0000
DMA1STA	0390								S	TA<15:0>								0000
DMA1STB	0392		STB<15:0>							0000								
DMA1PAD	0394								P	AD<15:0>								0000
DMA1CNT	0396	_	Ι	_	_	_	_					CN	<9:0>					0000
DMA2CON	0398	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	—	_	AMOD	E<1:0>	—	_	MODE	<1:0>	0000
DMA2REQ	039A	FORCE	_	_	_	_	_	_	_	_			I	IRQSEL<6:0	>			0000
DMA2STA	039C		STA<15:0>							0000								
DMA2STB	039E		STB<15:0>							0000								
DMA2PAD	03A0	PAD<15:0>							0000									
DMA2CNT	03A2	_	Ι	_	_	_	_					CN	<9:0>					0000
DMA3CON	03A4	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	_	AMOD	E<1:0>	_	_	MODE	<1:0>	0000
DMA3REQ	03A6	FORCE	Ι	_	_	_	_	_	_	_			I	IRQSEL<6:0	>			0000
DMA3STA	03A8								S	TA<15:0>								0000
DMA3STB	03AA								S	TB<15:0>								0000
DMA3PAD	03AC								P	AD<15:0>								0000
DMA3CNT	03AE	_	Ι	_	_	_	_					CN	<9:0>					0000
DMA4CON	03B0	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	—	_	AMOD	E<1:0>	—	_	MODE	<1:0>	0000
DMA4REQ	03B2	FORCE	Ι	_	_	_	_	_	_	_			I	IRQSEL<6:0	>			0000
DMA4STA	03B4								S	TA<15:0>								0000
DMA4STB	03B6								S	TB<15:0>								0000
DMA4PAD	03B8								P	AD<15:0>								0000
DMA4CNT	03BA	_	_	_	_	_	_					CN	[<9:0>					0000
DMA5CON	03BC	CHEN	SIZE	DIR	HALF	NULLW	_	—	_	—	—	AMOD	E<1:0>	—	_	MODE	<1:0>	0000
DMA5REQ	03BE	FORCE	_	—	_		_	_	_	_			I	IRQSEL<6:0	>			0000
DMA5STA	03C0	ľ							S	TA<15:0>								0000
DMA5STB	03C2								S	TB<15:0>								0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-16: DMA REGISTER MAP (CONTINUED)

					(0011		/											
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA5PAD	03C4			PAD<15:0>							0000							
DMA5CNT	03C6	_	_	_		_	_	— CNT<9:0>						0000				
DMA6CON	03C8	CHEN	SIZE	DIR	HALF	NULLW	—	_	_	_	_	AMOD	E<1:0>	_	_	MODE	<1:0>	0000
DMA6REQ	03CA	FORCE	_	_		_	—	_	_	_			I	RQSEL<6:0	>			0000
DMA6STA	03CC		STA<15:0> 00							0000								
DMA6STB	03CE		STB<15:0>						0000									
DMA6PAD	03D0						PAD<15:0>						0000					
DMA6CNT	03D2	_	_	_		_	—					CNT	<9:0>					0000
DMA7CON	03D4	CHEN	SIZE	DIR	HALF	NULLW	—	_	_	_	_	AMOD	E<1:0>	_	_	MODE	<1:0>	0000
DMA7REQ	03D6	FORCE	_	_		_	—	_	_	_			I	RQSEL<6:0	>			0000
DMA7STA	03D8								S	TA<15:0>								0000
DMA7STB	03DA								S	TB<15:0>								0000
DMA7PAD	03DC								P	AD<15:0>								0000
DMA7CNT	03DE	_	_	_		_	—					CNT	<9:0>					0000
DMACS0	03E0	PWCOL7	PWCOL6	PWCOL5	PWCOL4	PWCOL3	PWCOL2	PWCOL1	PWCOL0	XWCOL7	XWCOL6	XWCOL5	XWCOL4	XWCOL3	XWCOL2	XWCOL1	XWCOL0	0000
DMACS1	03E2		_		—		LSTCH	1<3:0>		PPST7	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPST0	0000
DSADR	03E4								DS	ADR<15:0>								0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.6 Modulo Addressing

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or program space (since the data pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

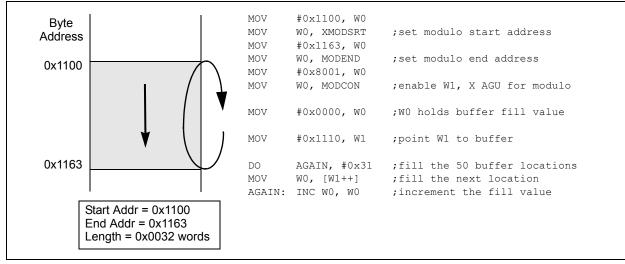
4.6.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note: Y space Modulo Addressing EA calculations assume word-sized data (LSb of every EA is always clear).

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.6.2 W ADDRESS REGISTER SELECTION


The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that operate with Modulo Addressing:

- If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled.
- If YWM = 15, Y AGU Modulo Addressing is disabled.

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>.

FIGURE 4-7: MODULO ADDRESSING OPERATION EXAMPLE

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 1
 BOR: Brown-out Reset Flag bit

 1 = A Brown-out Reset has occurred

 0 = A Brown-out Reset has not occurred

 bit 0
 POR: Power-on Reset Flag bit

 1 = A Power-on Reset has occurred
 - 0 = A Power-on Reset has not occurred
- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

FIGURE 7-1: dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/ X04 INTERRUPT VECTOR TABLE

		-	
	Reset – GOTO Instruction	0x000000	
	Reset – GOTO Address	0x000002	
	Reserved	0x000004	
	Oscillator Fail Trap Vector		
	Address Error Trap Vector	_	
	Stack Error Trap Vector		
	Math Error Trap Vector		
	DMA Error Trap Vector		
	Reserved		
	Reserved		
	Interrupt Vector 0	0x000014	
	Interrupt Vector 1		
	~		
	~		
	~		
	Interrupt Vector 52	0x00007C	Interrupt Vector Table (IVT) ⁽¹⁾
	Interrupt Vector 53	0x00007E	
ity	Interrupt Vector 54	0x000080	
Decreasing Natural Order Priority	~	7	
Ē.	~		
de	~		
ō	Interrupt Vector 116	0x0000FC	
a	Interrupt Vector 117	0x0000FE	
atu	Reserved	0x000100	
Ž	Reserved	0x000102	
ing	Reserved		
eas	Oscillator Fail Trap Vector		
SC	Address Error Trap Vector		
ĕ	Stack Error Trap Vector		
	Math Error Trap Vector		
	DMA Error Trap Vector		
	Reserved		7
	Reserved		
	Interrupt Vector 0	0x000114	
	Interrupt Vector 1		
	~		
	~	1	
	~		Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
	Interrupt Vector 52	0x00017C	
	Interrupt Vector 53	0x00017E	
	Interrupt Vector 54	0x000180	
	~		
	~	7	
	~]	
	Interrupt Vector 116]	
Ļ	Interrupt Vector 117	0x0001FE	
V	Start of Code	0x000200	
		_	
Note 1: Se	ee Table 7-1 for the list of impleme	ented interrupt	vectors.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_		T4IP<2:0>		—		OC4IP<2:0>					
bit 15							bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
	N/W-1	OC3IP<2:0>	N/W-0		N/W-1	DMA2IP<2:0>	N/ VV-U				
bit 7							bit (
Logondi											
Legend: R = Readabl	le bit	W = Writable t	oit	U = Unimple	mented bit, rea	ad as '0'					
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkno	own				
bit 15	Unimpleme	ented: Read as '0)'								
bit 14-12	T4IP<2:0>:	Timer4 Interrupt	Priority bits								
	111 = Interr	upt is priority 7 (h	nighest priori	ity interrupt)							
	•										
	•										
	001 = Interr	upt is priority 1									
	000 = Interr	upt source is disa	abled								
bit 11	Unimpleme	ented: Read as '0)'								
bit 10-8	OC4IP<2:0>: Output Compare Channel 4 Interrupt Priority bits										
	111 = Interr	rupt is priority 7 (h	nighest priori	ity interrupt)							
	•										
	•										
		upt is priority 1									
L:1 7		upt source is disa									
bit 7	-	ented: Read as '0									
bit 6-4	OC3IP<2:0>: Output Compare Channel 3 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)										
	•	upt is phonity 7 (i	lighest priori	ity interrupt)							
	•										
	•										
		upt is priority 1 upt source is disa	abled								
bit 3		ented: Read as '0									
bit 2-0	-	0>: DMA Channe		unsfer Complete	e Interrupt Prio	ritv bits					
		rupt is priority 7 (h				,					
	•										
	•										
	• 001 = Interr	upt is priority 1									
		upt source is disa									

DECISTED 7-21. IDCA- INTERDURT DRIOPITY CONTROL DECISTER A

U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1					
_	_	_	_		LSTC	H<3:0>						
oit 15	·						bit					
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
PPST7	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPST0					
pit 7							bit					
_egend:												
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'						
n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is clea		x = Bit is unki	nown					
bit 15-12	Unimplemen											
oit 11-8			nannel Active I									
	1111 = No DI 1110-1000 =		as occurred sir	ice system Res	et							
			as by DMA Cl	nannel 7								
	0111 = Last data transfer was by DMA Channel 7 0110 = Last data transfer was by DMA Channel 6											
	0101 = Last data transfer was by DMA Channel 5											
	0100 = Last data transfer was by DMA Channel 4											
	0011 = Last data transfer was by DMA Channel 3 0010 = Last data transfer was by DMA Channel 2											
	0010 = Last data transfer was by DMA Channel 2 0001 = Last data transfer was by DMA Channel 1											
	0000 = Last data transfer was by DMA Channel 0											
oit 7			-									
		PPST7: Channel 7 Ping-Pong Mode Status Flag bit 1 = DMA7STB register selected										
	0 = DMA7STA	•										
oit 6	PPST6: Chan	ST6: Channel 6 Ping-Pong Mode Status Flag bit										
	1 = DMA6STE 0 = DMA6STA	U U										
bit 5	PPST5: Chan	inel 5 Ping-Po	ng Mode Statu	is Flag bit								
		PPST5: Channel 5 Ping-Pong Mode Status Flag bit 1 = DMA5STB register selected										
	0 = DMA5STA											
oit 4	PPST4: Chan	inel 4 Ping-Po	ng Mode Statu	ıs Flag bit								
	1 = DMA4STE	•										
	0 = DMA4STA	-										
oit 3		-	ng Mode Statu	is Flag bit								
		1 = DMA3STB register selected										
oit 2		 DMA3STA register selected PPST2: Channel 2 Ping-Pong Mode Status Flag bit 										
		-	-	is Flag bit								
	1 = DMA2STE 0 = DMA2STA	•										
oit 1		ST1: Channel 1 Ping-Pong Mode Status Flag bit										
	1 = DMA1STE	-	-	ie i i i g i i i								
	0 = DMA1STA	-										
bit 0	PPST0: Chan	-		e Elaa bit								
			ng moue olait	IS Flay DIL								
JILU	1 = DMA0STE	-	-	is Flag bit								

TABLE 9-1. CONFIGURATION	BIT VALUES FOR C		·	
Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Note
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	XX	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	XX	110	1
Low-Power RC Oscillator (LPRC)	Internal	XX	101	1
Secondary (Timer1) Oscillator (SOSC)	Secondary	XX	100	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	-
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	-
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	_
Primary Oscillator (XT)	Primary	01	010	-
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator with PLL (FRCPLL)	Internal	XX	001	1
Fast RC Oscillator (FRC)	Internal	XX	000	1

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

9.2 Oscillator Resources

Many useful resources related to the Oscillator are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en532311

9.2.1 KEY RESOURCES

- Section 39. "Oscillator (Part III)" (DS70216)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
—	_	_			CSCKR<4:0	>			
pit 15							bit 8		
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
_	— — — CSDIR<4:0>								
oit 7							bit (
Legend:									
R = Readab	le bit	W = Writable I	oit	U = Unimplen	nented bit, rea	d as '0'			
-n = Value a	n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unki					
	11001 = Inpu • • • 00001 = Inpu	ut tied to RP25 ut tied to RP1							
	•	ut tied to RP0							
bit 4-0	CSDIR<4:0> 11111 = Inpu 11001 = Inpu		erial Data Inpu	ut (CSDI) to the	e correspondin	g RPn pin			

REGISTER 11-14: RPINR24: PERIPHERAL PIN SELECT INPUT REGISTER 24

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON ⁽²⁾	_	TSIDL ⁽¹⁾	_		_	_	_				
bit 15							bit				
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0				
	TGATE ⁽²⁾	TCKPS	<1:0> ⁽²⁾	—		TCS ⁽²⁾					
bit 7							bit				
Legend:											
R = Readab	ole bit	W = Writable I	bit	U = Unimplen	nented bit, rea	d as '0'					
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own				
		o (2)									
bit 15	TON: Timery										
	1 = Starts 16-bit Timerx 0 = Stops 16-bit Timerx										
bit 14	•	Unimplemented: Read as '0'									
bit 13	TSIDL: Stop i	n Idle Mode bit	(1)								
		ue timer operat timer operation		vice enters Idle i e	mode						
bit 12-7	Unimplemen	ted: Read as ')'								
bit 6	TGATE: Timerx Gated Time Accumulation Enable bit ⁽²⁾										
	When TCS = 1:										
	This bit is ignored.										
	$\frac{\text{When TCS} = 0}{1 = \text{Gated time accumulation enabled}}$										
		e accumulation									
bit 5-4	TCKPS<1:0>	: Timerx Input	Clock Presca	ale Select bits ⁽²⁾							
		11 = 1:256 prescale value									
	10 = 1:64 pre										
	01 = 1:8 pres 00 = 1:1 pres										
bit 3-2	•	ted: Read as '()'								
bit 1	•	Clock Source S									
	1 = External o	clock from TxCl	< pin								
	0 = Internal cl	lock (Fosc/2)									
bit 0	Unimplemen	tod: Dood on '	·'								

REGISTER 13-2: TxCON: TIMER CONTROL REGISTER (x = 3 OR 5)

Note 1: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

2: When the 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (TxCON<3>), these bits have no effect.

REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected.
bit 2	R_W: Read/Write Information bit (when operating as I^2C slave)
	1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I^2C device address byte.
bit 1	RBF: Receive Buffer Full Status bit 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit 1 = Transmit in progress, I2CxTRN is full 0 = Transmit complete, I2CxTRN is empty Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

18.3 UART Control Registers

REGISTER 18-1: UXMODE: UARTX MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN ⁽¹⁾	—	USIDL	IREN ⁽²⁾	RTSMD	—	UEN	<1:0>
bit 15							bit 8

R/W-0 HC	R/W-0	R/W-0 HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL	<1:0>	STSEL
bit 7							bit 0

Legend:	HC = Hardware cleared		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	UARTEN: UARTx Enable bit ⁽¹⁾
	1 = UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN<1:0>
	 UARTx is disabled; all UARTx pins are controlled by port latches; UARTx power consumption minimal
bit 14	Unimplemented: Read as '0'
bit 13	USIDL: Stop in Idle Mode bit
	 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode
bit 12	IREN: IrDA [®] Encoder and Decoder Enable bit ⁽²⁾
	1 = IrDA [®] encoder and decoder enabled
	$0 = IrDA^{\textcircled{R}}$ encoder and decoder disabled
bit 11	RTSMD: Mode Selection for UxRTS Pin bit
	$1 = \overline{\text{UxRTS}}$ pin in Simplex mode
	0 = UxRTS pin in Flow Control mode
bit 10	Unimplemented: Read as '0'
bit 9-8	UEN<1:0>: UARTx Enable bits
	11 = UxTX, UxRX and BCLK pins are enabled and used; UxCTS pin controlled by port latches
	10 = UxTX, UxRX, UxCTS and UxRTS pins are enabled and used 01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin controlled by port latches
	00 = UxTX, out X and UxRX pins are enabled and used; UxCTS and UxRTS/BCLK pins controlled by
	port latches
bit 7	WAKE: Wake-up on Start bit Detect During Sleep Mode Enable bit
	 1 = UARTx continues to sample the UxRX pin; interrupt generated on falling edge; bit cleared in hardware on following rising edge
	0 = No wake-up enabled
bit 6	LPBACK: UARTx Loopback Mode Select bit
	1 = Enable Loopback mode
	0 = Loopback mode is disabled
bit 5	ABAUD: Auto-Baud Enable bit
	 1 = Enable baud rate measurement on the next character – requires reception of a Sync field (55h) before other data; cleared in hardware upon completion
	0 = Baud rate measurement disabled or completed
Note 1:	Refer to Section 17. "UART" (DS70188) in the <i>"dsPIC33F/PIC24H Family Reference Manual"</i> for
	information on enabling the UART module for receive or transmit operation.

2: This feature is only available for the 16x BRG mode (BRGH = 0).

REGISTER 18-1: UxMODE: UARTx MODE REGISTER (CONTINUED)

bit 4	URXINV: Receive Polarity Inversion bit 1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	 BRGH: High Baud Rate Enable bit 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit 1 = Two Stop bits 0 = One Stop bit

- **Note 1:** Refer to **Section 17. "UART**" (DS70188) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for receive or transmit operation.
 - 2: This feature is only available for the 16x BRG mode (BRGH = 0).

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0								
_	_	_	_		SL01	<3:0>									
bit 15							bit								
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0								
—	—	—	—	ROV	RFUL	TUNF	TMPTY								
bit 7							bit								
<u> </u>															
Legend:	1. 1.4					1									
R = Readab		W = Writable b	Dit	-	nented bit, read										
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown								
h:+ 45 40		tod. Dood on fr	. 3												
bit 15-12	Unimplemented: Read as '0'														
bit 11-8	SLOT<3:0>: DCI Slot Status bits 1111 = Slot 15 is currently active														
	•														
	•	•													
	0010 = Slot 2	is currently act	ive												
		is currently act													
	0000 = Slot 0	is currently act	ive												
bit 7-4	Unimplemen	ted: Read as '0)'												
bit 3	ROV: Receive	ROV: Receive Overflow Status bit													
	1 = A receive overflow has occurred for at least one receive register														
0 = A receive overflow has not occurred															
	RFUL: Receive Buffer Full Status bit														
bit 2							 1 = New data is available in the receive registers 0 = The receive registers have old data 								
bit 2	1 = New data	is available in t	he receive re	egisters											
	1 = New data 0 = The recei	is available in t ve registers hav	he receive re ve old data	•											
bit 2 bit 1	1 = New data 0 = The recei TUNF: Transi	is available in t ve registers hav mit Buffer Unde	he receive re ve old data rflow Status t	oit	ansmit register										
	1 = New data 0 = The recei TUNF: Transi 1 = A transmi	is available in t ve registers hav	he receive re ve old data rflow Status t occurred for	oit at least one tra	ansmit register										
	1 = New data 0 = The recei TUNF: Transı 1 = A transmi 0 = A transmi	is available in t ve registers hav mit Buffer Unde t underflow has	he receive re ve old data rflow Status to occurred for not occurrec	oit at least one tra	ansmit register										
bit 1	 1 = New data 0 = The recei TUNF: Transi 1 = A transmi 0 = A transmi TMPTY: Transi 	is available in t ve registers hav nit Buffer Unde t underflow has t underflow has	he receive re ve old data rflow Status to occurred for not occurrec oty Status bit	oit at least one tra	ansmit register										

DS70292G-page 260

			-	INEL 0 SELI		-	
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NB		_			CH0SB<4:0>		
bit 15							bit
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NA	—	—			CH0SA<4:0>		
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable I	bit	U = Unimple	emented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is c	leared	x = Bit is unkr	nown
bit 15		nnel 0 Negative	e Input Select	for Sample B	bit		
	Same definitio						
bit 14-13	-	ed: Read as '					
bit 12-8		Channel 0 Po	-	-	ole B bits		
		nnel 0 positive nnel 0 positive					
	•	iner o positive	input is ANTT				
	•						
	• 01000 = Char	nnel 0 positive	input is $\Delta N8^{(1)}$	l)			
		nnel 0 positive					
	00110 = Cha r						
	OOTTO ONU	iner o positive	input is Alvov	·)			
	•		Input IS ANO	· /			
	•		INPUT IS AINO'	,			
	• • 00010 = Char	nnel 0 positive	input is AN2	,			
	• • 00010 = Char 00001 = Char	nnel 0 positive nnel 0 positive	input is AN2 input is AN1	,			
hit 7	• • • 00010 = Char 00001 = Char 00000 = Char	nnel 0 positive nnel 0 positive nnel 0 positive	input is AN2 input is AN1 input is AN0		bit		
bit 7	• • • • • • • • • • • • • • • • • • •	nnel 0 positive nnel 0 positive nnel 0 positive nnel 0 Negative	input is AN2 input is AN1 input is AN0 e Input Select		bit		
bit 7	• • • • • • • • • • • • • • • • • • •	nnel 0 positive nnel 0 positive nnel 0 positive nnel 0 Negative negative input	input is AN2 input is AN1 input is AN0 e Input Select t is AN1		bit		
	• • • • • • • • • • • • • • • • • • •	nnel 0 positive nnel 0 positive nnel 0 positive nnel 0 Negative negative input	input is AN2 input is AN1 input is AN0 e Input Select t is AN1 t is VREF-		bit		
bit 6-5	• • • • • • • • • • • • • • • • • • •	nnel 0 positive nnel 0 positive nnel 0 positive nnel 0 Negative negative input negative input ted: Read as (0	input is AN2 input is AN1 input is AN0 Input Select t is AN1 t is VREF- o'	for Sample A			
	• • • • • • • • • • • • • • • • • • •	nnel 0 positive nnel 0 positive nnel 0 positive negative input negative input negative input negative oput negative oput negative oput negative oput	input is AN2 input is AN1 input is AN0 e Input Select t is AN1 t is VREF- o' sitive Input Se	for Sample A elect for Samp			
bit 6-5	• • • • • • • • • • • • • • • • • • •	nnel 0 positive nnel 0 positive nnel 0 positive nnel 0 Negative negative input negative input ted: Read as (0	input is AN2 input is AN1 input is AN0 Input Select t is AN1 t is VREF- o' sitive Input Se input is AN12	for Sample A elect for Samp			
bit 6-5	• • • • • • • • • • • • • • • • • • •	nnel 0 positive nnel 0 positive nnel 0 positive negative input negative input negative input ted: Read as '0 Channel 0 Po nnel 0 positive	input is AN2 input is AN1 input is AN0 Input Select t is AN1 t is VREF- o' sitive Input Se input is AN12	for Sample A elect for Samp			
bit 6-5	• • • • • • • • • • • • • • • • • • •	nnel 0 positive nnel 0 positive nnel 0 positive negative input negative input negative input ted: Read as '0 Channel 0 Po nnel 0 positive	input is AN2 input is AN1 input is AN0 Input Select t is AN1 t is VREF- o' sitive Input Se input is AN12	for Sample A elect for Samp			
bit 6-5	• • • • • • • • • • • • • •	anel 0 positive anel 0 positive anel 0 Negative negative input negative input ed: Read as '0 Channel 0 Po anel 0 positive anel 0 positive	input is AN2 input is AN1 input is AN0 e Input Select t is AN1 t is VREF- o' sitive Input Se input is AN12 input is AN11	for Sample A elect for Samp			
bit 6-5	• • • • • • • • • • • • • •	anel 0 positive anel 0 positive anel 0 positive negative input negative input ed: Read as '0 Channel 0 Po anel 0 positive anel 0 positive anel 0 positive	input is AN2 input is AN1 input is AN0 e Input Select t is AN1 t is VREF- o' sitive Input Se input is AN12 input is AN8 ⁽⁷⁾	for Sample A elect for Samp			
bit 6-5	• • • • • • • • • • • • • •	anel 0 positive anel 0 positive anel 0 Negative negative input negative input ed: Read as '0 Channel 0 Po anel 0 positive anel 0 positive	input is AN2 input is AN1 input is AN0 e Input Select t is AN1 t is VREF- o' sitive Input Se input is AN12 input is AN8 ⁽⁷⁾	for Sample A elect for Samp			
bit 6-5	• • • • • • • • • • • • • •	anel 0 positive anel 0 positive anel 0 positive negative input negative input ed: Read as '0 Channel 0 Po anel 0 positive anel 0 positive anel 0 positive	input is AN2 input is AN1 input is AN0 e Input Select t is AN1 t is VREF- o' sitive Input Se input is AN12 input is AN8 ⁽⁷⁾	for Sample A elect for Samp			
bit 6-5	• • • • • • • • • • • • • •	anel 0 positive anel 0 positive anel 0 positive negative input enclative input enclative input enclative input enclative input enclative input enclative input enclative input enclative anel 0 positive anel 0 positive anel 0 positive anel 0 positive anel 0 positive	input is AN2 input is AN1 input is AN0 e Input Select t is AN1 t is VREF- o' sitive Input So input is AN12 input is AN11 input is AN8 ⁽⁷⁾ input is AN8 ⁽⁷⁾	for Sample A elect for Samp			
bit 6-5	• • • • • • • • • • • • • • • • • • •	anel 0 positive anel 0 positive anel 0 positive negative input negative input ed: Read as '0 Channel 0 Po anel 0 positive anel 0 positive anel 0 positive	input is AN2 input is AN1 input is AN0 e Input Select t is AN1 t is VREF- o' sitive Input Se input is AN12 input is AN11 input is AN8 ⁽⁷⁾ input is AN8 ⁽⁷⁾	for Sample A elect for Samp			

REGISTER 21-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER

Note 1: These bit settings are reserved on dsPIC33FJ128GPX02, dsPIC33FJ64GPX02 and dsPIC33FJ32GPX02 (28-pin) devices.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
30	DIVF	DIVF	Wm,Wn	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV
31	DO	DO	#lit14,Expr	Do code to PC + Expr, lit14 + 1 times	2	2	None
		DO	Wn,Expr	Do code to PC + Expr, (Wn) + 1 times	2	2	None
32	ED	ED Wm*Wm, Acc, Wx, Wy, Wxd Euclidean Distance (no accumulate)		1	1	OA,OB,OAB, SA,SB,SAB	
33	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB
34	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
35	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
36	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
37	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
38	GOTO	GOTO	Expr	Go to address	2	2	None
		GOTO	Wn	Go to indirect	1	2	None
39	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
40	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
41 I	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	None
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
45	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd , AWB	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
		MAC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	N,Z
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
47	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB	Prefetch and store accumulator	1	1	None

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

29.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

29.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

29.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

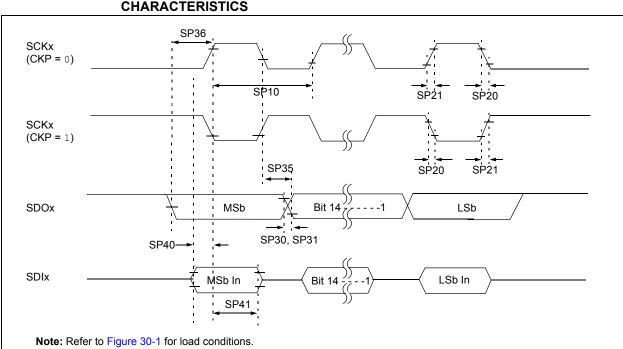
The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

29.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.


The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

29.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- · Command line interface
- · Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

FIGURE 30-11: SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 30-30:SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING
REQUIREMENTS

АС СНА	RACTERIST	ICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions		
SP10	TscP	Maximum SCK Frequency	_	_	9	MHz	See Note 3		
SP20	TscF	SCKx Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4		
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4		
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4		
SP31	TdoR	SDOx Data Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	_		
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	—	ns	_		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	_	ns	_		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—		ns	—		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

Revision C (May 2009)

This revision includes minor typographical and formatting changes throughout the data sheet text.

Global changes include:

- Changed all instances of OSCI to OSC1 and OSCO to OSC2
- Changed all instances of VDDCORE and VDDCORE/ VCAP to VCAP/VDDCORE

The other changes are referenced by their respective section in the following table.

TABLE A-2: MAJOR SECTION UPDATES

Section Name	Update Description
High-Performance, 16-bit Digital Signal Controllers	Updated all pin diagrams to denote the pin voltage tolerance (see " Pin Diagrams ").
	Added Note 2 to the 28-Pin QFN-S and 44-Pin QFN pin diagrams, which references pin connections to Vss.
Section 1.0 "Device Overview"	Updated AVDD in the PINOUT I/O Descriptions (see Table 1-1).
	Added Peripheral Pin Select (PPS) capability column to Pinout I/O Descriptions (see Table 1-1).
Section 2.0 "Guidelines for Getting Started with 16-bit Digital Signal Controllers"	Added new section to the data sheet that provides guidelines on getting started with 16-bit Digital Signal Controllers.
Section 3.0 "CPU"	Updated CPU Core Block Diagram with a connection from the DSP Engine to the Y Data Bus (see Figure 3-1).
	Vertically extended the X and Y Data Bus lines in the DSP Engine Block Diagram (see Figure 3-3).
Section 4.0 "Memory Organization"	Updated Reset value for CORCON in the CPU Core Register Map (see Table 4-1).
	Updated the Reset values for IPC14 and IPC15 and removed the FLTA1IE bit (IEC3) from the Interrupt Controller Register Map (see Table 4-4).
	Updated bit locations for RPINR25 in the Peripheral Pin Select Input Register Map (see Table 4-21).
	Updated the Reset value for CLKDIV in the System Control Register Map (see Table 4-33).
Section 5.0 "Flash Program Memory"	Updated Section 5.3 "Programming Operations" with programming time formula.
Section 9.0 "Oscillator Configuration"	Updated the Oscillator System Diagram and added Note 2 (see Figure 9-1).
Comgulation	Added Note 1 and Note 2 to the OSCON register (see Register 9-1).
	Updated default bit values for DOZE<2:0> and FRCDIV<2:0> in the Clock Divisor (CLKDIV) Register (see Register 9-2).
	Added a paragraph regarding FRC accuracy at the end of Section 9.1.1 "System Clock Sources" .
	Added Note 3 to Section 9.2.2 "Oscillator Switching Sequence".
	Added Note 1 to the FRC Oscillator Tuning (OSCTUN) Register (see Register 9-4).