

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DCI, DMA, I ² S, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x10b/12b; D/A 2x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128gp802-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPIC33F/PIC24H Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note 1: To access the documents listed below, browse to the documentation section of the dsPIC33FJ64GP804 product page of the Microchip web site (www.microchip.com) or select a family reference manual section from the following list.

In addition to parameters, features, and other documentation, the resulting page provides links to the related family reference manual sections.

- Section 1. "Introduction" (DS70197)
- Section 2. "CPU" (DS70204)
- Section 3. "Data Memory" (DS70202)
- Section 4. "Program Memory" (DS70203)
- Section 5. "Flash Programming" (DS70191)
- Section 8. "Reset" (DS70192)
- Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196)
- Section 11. "Timers" (DS70205)
- Section 12. "Input Capture" (DS70198)
- Section 13. "Output Compare" (DS70209)
- Section 16. "Analog-to-Digital Converter (ADC)" (DS70183)
- Section 17. "UART" (DS70188)
- Section 18. "Serial Peripheral Interface (SPI)" (DS70206)
- Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195)
- Section 23. "CodeGuard™ Security" (DS70199)
- Section 24. "Programming and Diagnostics" (DS70207)
- Section 25. "Device Configuration" (DS70194)
- Section 30. "I/O Ports with Peripheral Pin Select (PPS)" (DS70190)
- Section 32. "Interrupts (Part III)" (DS70214)
- Section 33. "Audio Digital-to-Analog Converter (DAC)" (DS70211)
- Section 34. "Comparator" (DS70212)
- Section 35. "Parallel Master Port (PMP)" (DS70299)
- Section 36. "Programmable Cyclic Redundancy Check (CRC)" (DS70298)
- Section 37. "Real-Time Clock and Calendar (RTCC)" (DS70301)
- Section 38. "Direct Memory Access (DMA) (Part III)" (DS70215)
- Section 39. "Oscillator (Part III)" (DS70216)

The Overflow and Saturation Status bits can optionally be viewed in the STATUS Register (SR) as the logical OR of OA and OB (in bit OAB) and the logical OR of SA and SB (in bit SAB). Programmers can check one bit in the STATUS register to determine if either accumulator has overflowed, or one bit to determine if either accumulator has saturated. This is useful for complex number arithmetic, which typically uses both accumulators.

The device supports three Saturation and Overflow modes:

• Bit 39 Overflow and Saturation:

When bit 39 overflow and saturation occurs, the saturation logic loads the maximally positive 9.31 (0x7FFFFFFFFF) or maximally negative 9.31 value (0x800000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user application. This condition is referred to as 'super saturation' and provides protection against erroneous data or unexpected algorithm problems (such as gain calculations).

- Bit 31 Overflow and Saturation: When bit 31 overflow and saturation occurs, the saturation logic then loads the maximally positive 1.31 value (0x007FFFFFFF) or maximally negative 1.31 value (0x008000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user application. When this Saturation mode is in effect, the guard bits are not used, so the OA, OB or OAB bits are never set.
- Bit 39 Catastrophic Overflow: The bit 39 Overflow Status bit from the adder is used to set the SA or SB bit, which remains set until cleared by the user application. No saturation operation is performed, and the accumulator is allowed to overflow, destroying its sign. If the COVTE bit in the INTCON1 register is set, a catastrophic overflow can initiate a trap exception.

3.8.3 ACCUMULATOR 'WRITE BACK'

The MAC class of instructions (with the exception of MPY, MPY.N, ED and EDAC) can optionally write a rounded version of the high word (bits 31 through 16) of the accumulator that is not targeted by the instruction into data space memory. The write is performed across the X bus into combined X and Y address space. The following addressing modes are supported:

- W13, Register Direct: The rounded contents of the non-target accumulator are written into W13 as a 1.15 fraction.
- [W13] + = 2, Register Indirect with Post-Increment: The rounded contents of the non-target accumulator are written into the address pointed to by W13 as a 1.15 fraction. W13 is then incremented by 2 (for a word write).

3.8.3.1 Round Logic

The round logic is a combinational block that performs a conventional (biased) or convergent (unbiased) round function during an accumulator write (store). The Round mode is determined by the state of the RND bit in the CORCON register. It generates a 16-bit, 1.15 data value that is passed to the data space write saturation logic. If rounding is not indicated by the instruction, a truncated 1.15 data value is stored and the least significant word is simply discarded.

Conventional rounding zero-extends bit 15 of the accumulator and adds it to the ACCxH word (bits 16 through 31 of the accumulator).

- If the ACCxL word (bits 0 through 15 of the accumulator) is between 0x8000 and 0xFFFF (0x8000 included), ACCxH is incremented.
- If ACCxL is between 0x0000 and 0x7FFF, ACCxH is left unchanged.

A consequence of this algorithm is that over a succession of random rounding operations, the value tends to be biased slightly positive.

Convergent (or unbiased) rounding operates in the same manner as conventional rounding, except when ACCxL equals 0x8000. In this case, the Least Significant bit (bit 16 of the accumulator) of ACCxH is examined:

- If it is '1', ACCxH is incremented.
- If it is '0', ACCxH is not modified.

Assuming that bit 16 is effectively random in nature, this scheme removes any rounding bias that may accumulate.

The SAC and SAC.R instructions store either a truncated (SAC), or rounded (SAC.R) version of the contents of the target accumulator to data memory via the X bus, subject to data saturation (see **Section 3.8.3.2 "Data Space Write Saturation**"). For the MAC class of instructions, the accumulator writeback operation functions in the same manner, addressing combined MCU (X and Y) data space though the X bus. For this class of instructions, the data is always subject to rounding.

IADEE						LOIOILI		-	-									
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	0082	ALTIVT	DISI	_	_	_	_	_	_	_	_	_		_	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	—	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	IC8IF	IC7IF	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0088	_	DMA4IF	PMPIF	_	_	_	_	_	_	_	_	DMA3IF	C1IF ⁽¹⁾	C1RXIF ⁽¹⁾	SPI2IF	SPI2EIF	0000
IFS3	008A	_	RTCIF	DMA5IF	DCIIF	DCIEIF	_	_	_	_	_	_	_	_	_	_	—	0000
IFS4	008C	DAC1LIF ⁽²⁾	DAC1RIF ⁽²⁾	_	_	_	_	—	—	_	C1TXIF ⁽¹⁾	DMA7IF	DMA6IF	CRCIF	U2EIF	U1EIF	—	0000
IEC0	0094	_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	IC8IE	IC7IE	—	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0098	_	DMA4IE	PMPIE	_	—		—	—	_	—	—	DMA3IE	C1IE ⁽¹⁾	C1RXIE ⁽¹⁾	SPI2IE	SPI2EIE	0000
IEC3	009A	_	RTCIE	DMA5IE	DCIIE	DCIEIE	_	_	_	_	_	_	_	_	_	_	—	0000
IEC4	009C	DAC1LIE ⁽²⁾	DAC1RIE ⁽²⁾	_	_	_	_	_	_	_	C1TXIE ⁽¹⁾	DMA7IE	DMA6IE	CRCIE	U2EIE	U1EIE	—	0000
IPC0	00A4	_		T1IP<2:0>		_	(OC1IP<2:0)>	—		IC1IP<2:0>		_	11	NT0IP<2:0>	•	4444
IPC1	00A6	_		T2IP<2:0>		_	(OC2IP<2:0)>	—		IC2IP<2:0>		_	DI	MA0IP<2:0	>	4444
IPC2	00A8	_	U	1RXIP<2:0)>	_	Ş	SPI1IP<2:0)>	_		SPI1EIP<2:0	>	—	-	T3IP<2:0>		4444
IPC3	00AA	_	_	—	_	—	D)MA1IP<2:	0>	_		AD1IP<2:0>	>	—	U	1TXIP<2:0	>	0444
IPC4	00AC	_		CNIP<2:0>		_		CMIP<2:0	>	_		MI2C1IP<2:0)>	—	SI	2C1IP<2:0	>	4444
IPC5	00AE	_		IC8IP<2:0>	•	_		IC7IP<2:0	>	_	—	—	_	—	II	NT1IP<2:0>	•	4404
IPC6	00B0	—		T4IP<2:0>		—	(OC4IP<2:0)>	—		OC3IP<2:0>	>	—	DI	MA2IP<2:0	>	4444
IPC7	00B2	—	U	2TXIP<2:0	>	—	L	J2RXIP<2:	0>	—		INT2IP<2:0	>	—	-	T5IP<2:0>		4444
IPC8	00B4	—	C	011P<2:0>(1	1)	—	C,	1RXIP<2:0	>(1)	—		SPI2IP<2:0	>	—	SF	PI2EIP<2:0	>	4444
IPC9	00B6	—	—	—	—	—	—	—	—	—	—	—	—	—	DI	MA3IP<2:0	>	0004
IPC11	00BA	—	—	—	—	—	D)MA4IP<2:	0>	—		PMPIP<2:0	>	—	—	—	—	0440
IPC14	00C0	—	D	CIEIP<2:0	>	—	—	—	—	—	—	—	—	—	—	—	—	4000
IPC15	00C2	—	—	—	—	—		RTCIP<2:0)>	—		DMA5IP<2:0	>	—		OCIIP<2:0>		0444
IPC16	00C4	—	C	CRCIP<2:0	>	—		U2EIP<2:0)>	—		U1EIP<2:0>	>	—	—	—	—	4440
IPC17	00C6	—	-	_	_	-	C.	1TXIP<2:0	>(1)	—		DMA7IP<2:0	>	—	DI	MA6IP<2:0	>	0444
IPC19	00CA	—	DA	C1LIP<2:0	>(2)	_	DA	C1RIP<2:	_{)>(2)}	—	_	-	—	-	_	—	_	4400
INTTREG	00E0	_	_	_	_		ILR<3	3:0>>		_			VE	CNUM<6:0>				4444

TABLE 4-4. INTERRUPT CONTROLLER REGISTER MAP

Legend:

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1:

Interrupts disabled on devices without ECAN™ modules. Interrupts disabled on devices without Audio DAC modules. 2:

TABLE 4-10: UART2 REGISTER MAP

SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
0230	UARTEN	-	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
0232	UTXISEL1	UTXINV	UTXISEL0		UTXBRK	UTXEN	UTXBF	TRMT	URXISI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
0234	_	_	_	_	_	_	_	UTX8			U	ART Transm	nit Register				XXXX
0236	_	_	_	_	_	_	_	URX8			ι	IART Receiv	e Register				0000
0238	Baud Rate Generator Prescaler 00										0000						
	SFR Addr 0230 0232 0234 0236 0238	SFR Addr Bit 15 0230 UARTEN 0232 UTXISEL1 0234 — 0236 — 0238	SFR Addr Bit 15 Bit 14 0230 UARTEN — 0232 UTXISEL1 UTXINV 0234 — — 0236 — — 0238 — —	SFR Addr Bit 15 Bit 14 Bit 13 0230 UARTEN — USIDL 0232 UTXISEL1 UTXINV UTXISEL0 0234 — — — 0236 — — — 0238 — — —	SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 0230 UARTEN — USIDL IREN 0232 UTXISEL1 UTXINV UTXISEL0 — 0234 — — — — 0236 — — — — 0238 — — — —	SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 0230 UARTEN — USIDL IREN RTSMD 0232 UTXISEL1 UTXINV UTXISEL0 — UTXBRK 0234 — — — — — 0236 — — — — — 0238 — — — — —	SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 0230 UARTEN — USIDL IREN RTSMD — 0232 UTXISEL1 UTXINV UTXISEL0 — UTXBRK UTXEN 0234 — — — — — — — 0236 — — — — — — — 0238 — — — — — — —	SFR AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 90230UARTEN—USIDLIRENRTSMD—UEN10232UTXISEL1UTXINVUTXISEL0—UTXBRKUTXBRUTXBF0234———————0236———————0238UTUTUTUTUTUT	SFR AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 80230UARTEN—USIDLIRENRTSMD—UEN1UEN00232UTXISEL1UTXINVUTXISEL0—UTXBRKUTXENUTXBRTRMT0234———————UTX80236——————UTX80238UTUTUTUTUTX8UTX8	SFR AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 70230UARTEN—USIDLIRENRTSMD—UEN1UEN0WAKE0232UTXISEL1UTXINVUTXISEL0—UTXBRKUTXENUTXBFTRMURXIS0234———————UTXBUTXB0236———————URXB0238UTUTUSELUTUTUSEUTUTUSEUTUTUSEUTUTUSEUTUTUSE	SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 0230 UARTEN — USIDL IREN RTSMD — UEN1 UEN0 WAKE LPBACK 0230 UTXISEL UTXINV UTXISEL — UTXBRK UTXEN UTXBF TRMT URXSEL<1:> 0234 — — — — — — UTXBR UTXBF TRMT URXSEL<1:> 0236 — — — — — — — — ID I	SFR AddrBit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 70230UARTEN—USIDLIRENRTSMD—UEN1UEN0WAKELPBACKABAUD0232UTXISEL1UTXINVUTXISE0—UTXBRKUTXENUTXBFTRMTURXSEL1:0>ADDEN0234————————UTXBRUTXBRUTXBRUTXBRUTXBRUTXBR0236———————URXBUTXBRURXBUTXBRUTXBR0238UTUTUTUTIIIIIII	SFR AddrBit 13Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 9Bit 90230UARTEN—USIDLIRENRTSMD—UEN1UEN0WAKELPBACKABAUDURXINV0232UTXISELUTXINVUTXISEL—UTXBRKUTXENUTXBFTRMTURXISELADDENRIDLE0234———————UTXBUTXBTRMTUTXISELADDENRIDLE0236———————URXBUTXBUTXBUTXBUTXB0238UTUTUTUTUTUTUTUTUTUTUT	SFR AddrBit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 30230UARTEN—USIDLIRENRTSMD—UEN1UEN0WAKELPBACKABAUDURXINVBRGH0232UTXISE1UTXINVUTXISE0—UTXBRKUTXENUTXBFTRMTURXISE1-1:>ADDENRIDLEPERR0234———————UTXBUTXBUTXBUTXBUTXB0236———————URXBUTXBUTXBUTXB0238UTTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTU	SFR AddBit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 3Bit 3Bit 20230UARTEN-USDLIRENRTSMD-UEN1UEN0WAKELPBACKABAUDURXINVBRGHPDSE0230UTXISE1UTXINVUTXISE0-UTXBRKUTXENUTXBFTRMTURXISE1:1.>ADDENRIDLEPERRFERR0234UTXBUTXBUTXBUTXBUTXBUTXBUTXB0236URXBURXBUTXBUTXBUTXBUTXBUTXB0238UTXBUTXBUTXBUTXBUTXBUTXBUTXBUTXB0236UTXBUTXBUTXBUTXBUTXBUTXBUTXBUTXB0236UTXBUTXBUTXBUTXBUTXBUTXBUTXBUTXBUTXB0236UTXBUTXBUTXBUTXBUTXBUTXBUTXBUTXB0237UTXBUTXBUTXBUTXBUTXBUTXBUTXBUTXBUTXBUTXBUTXBUTXB<	SFR AddBit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 10230UARTEN-USDLIRENRTSMD-UEN1UEN0WAKELPBACKABAUDURXINVBRGHPDS \leftarrow 1.0>0230UTXISE1UTXINVUTXISE1-UTXBRKUTXRNUTXBFTRMTUTXRSABAUDURXINVBRGHPDS \leftarrow 1.0>0234UTXB	SFR AddrBit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 9Bit 90230UARTEN-USIDLIRENRTSMD-UEN1UEN0VMACLPBACKABAUDURXINVBRGHPDSE-1:0>STSEL0232UTXISE1UTXINVUTXISE0-UTXBRKUTXENUTXBRTMTUTXENADDENRIDLEPERRFERR0ERRURXDR0234UTXBR

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-11: SPI1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	_	SPISIDL	—	—	—	_	—	—	SPIROV	—	_	—		SPITBF	SPIRBF	0000
SPI1CON1	0242	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	_	_	_	_	_	_	FRMDLY	_	0000
SPI1BUF	0248		SPI1 Transmit and Receive Buffer Register 0000										0000					

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-12: SPI2 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI2STAT	0260	SPIEN	-	SPISIDL	—	—	-	—	-	—	SPIROV	—	—	_	-	SPITBF	SPIRBF	0000
SPI2CON1	0262	—	_	—	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI2CON2	0264	FRMEN	SPIFSD	FRMPOL	_	_	_	_		_	_	_	_	_	_	FRMDLY	_	0000
SPI2BUF	0268	SPI2 Transmit and Receive Buffer Register 0										0000						

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.6.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

It is important to realize that the address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected effective address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the effective address. When an address offset (such as [W7 + W2]) is used, Modulo Address correction is performed but the contents of the register remain unchanged.

4.7 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.7.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled in any of these situations:

- BWM bits (W register selection) in the MODCON register are any value other than '15' (the stack cannot be accessed using Bit-Reversed Addressing)
- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the Bit-Reversed Address modifier, or 'pivot point,' which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note: All bit-reversed EA calculations assume word-sized data (LSb of every EA is always clear). The XB value is scaled accordingly to generate compatible (byte) addresses.

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It does not function for any other addressing mode or for byte-sized data, and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB), and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note: Modulo Addressing and Bit-Reversed Addressing should not be enabled together. If an application attempts to do so, Bit-Reversed Addressing assumes priority when active for the X WAGU and X WAGU, Modulo Addressing is disabled. However, Modulo Addressing continues to function in the X RAGU.

If Bit-Reversed Addressing has already been enabled by setting the BREN bit (XBREV<15>), a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the bit-reversed pointer.

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP302/304 dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Programming" (DS70191) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows any of the following devices, dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04, to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and three other lines for power (VDD), ground (Vss) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user application can write program memory data either in blocks or 'rows' of 64 instructions (192 bytes) at a time or a single program memory word, and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.

5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits <7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits <15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits <23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF
bit 15							bit 8
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC8IF	IC7IF		INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF
bit 7							bit 0
<u> </u>							
Legend:	L 14		L :4			(0)	
R = Readable		vv = vvritable	DIT	U = Unimple	mented bit, read	a = Ditio upkr	
	OR	I = DILIS SEL			aleu	X = DILIS UNKI	IOWI
bit 15	U2TXIF: UAR	RT2 Transmitter	Interrupt Fla	a Status bit			
	1 = Interrupt r	request has occ	curred	g clatac bit			
	0 = Interrupt r	equest has not	occurred				
bit 14	U2RXIF: UAF	RT2 Receiver Ir	nterrupt Flag	Status bit			
	1 = Interrupt r	equest has occ	curred				
bit 13	INT2IF: Exter	nal Interrupt 2	Flag Status b	it			
	1 = Interrupt r	request has occ	curred				
	0 = Interrupt r	equest has not	occurred				
bit 12	T5IF: Timer5	Interrupt Flag S	Status bit				
	1 = Interrupt r	equest has occ	curred				
bit 11	T4IF: Timer4	Interrupt Flag S	Status bit				
2	1 = Interrupt r	request has occ	curred				
	0 = Interrupt r	equest has not	occurred				
bit 10	OC4IF: Outpu	ut Compare Ch	annel 4 Interr	upt Flag Status	s bit		
	1 = Interrupt r 0 = Interrupt r	equest has occ request has not	curred				
bit 9	OC3IF: Outpu	ut Compare Ch	annel 3 Interr	upt Flag Status	s bit		
	1 = Interrupt r	equest has oc	curred	1 0			
	0 = Interrupt r	request has not	occurred				
bit 8	DMA2IF: DM	A Channel 2 Da	ata Transfer (Complete Interi	rupt Flag Status	bit	
	\perp = Interrupt r 0 = Interrupt r	request has occ	currea t occurred				
bit 7	IC8IF: Input C	Capture Channe	el 8 Interrupt	Flag Status bit			
	1 = Interrupt r	equest has occ	curred .	0			
	0 = Interrupt r	request has not	occurred				
bit 6	IC7IF: Input C	Capture Channe	el 7 Interrupt	Flag Status bit			
	1 = Interrupt r 0 = Interrupt r	request has occ request has not	curred				
bit 5	Unimplemen	ted: Read as ')'				
hit 4	INT1IF: Exter	nal Interrupt 1	Flag Status b	it			
	1 = Interrupt r	equest has occ	curred				
	1 = Interrupt r 0 = Interrupt r	equest has occ equest has not	curred t occurred				
bit 3	1 = Interrupt r 0 = Interrupt r CNIF: Input C	request has occ request has not change Notifica	curred toccurred tion Interrupt	Flag Status bit	:		

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

11.6 Peripheral Pin Select

Peripheral pin select configuration enables peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, programmers can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The peripheral pin select configuration feature operates over a fixed subset of digital I/O pins. Programmers can independently map the input and/or output of most digital peripherals to any one of these I/O pins. Peripheral pin select is performed in software, and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping, once it has been established.

11.6.1 AVAILABLE PINS

The peripheral pin select feature is used with a range of up to 26 pins. The number of available pins depends on the particular device and its pin count. Pins that support the peripheral pin select feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable pin number.

11.6.2 CONTROLLING PERIPHERAL PIN SELECT

Peripheral pin select features are controlled through two sets of special function registers: one to map peripheral inputs, and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral selectable pin is handled in two different ways, depending on whether an input or output is being mapped.

11.6.2.1 Input Mapping

The inputs of the peripheral pin select options are mapped on the basis of the peripheral. A control register associated with a peripheral dictates the pin it is mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 11-1 through Register 11-16). Each register contains sets of 5-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 5-bit value maps the RPn pin with that value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of peripheral pin selections supported by the device.

Figure 11-2 illustrates remappable pin selection for U1RX input.

FIGURE 11-2: REMAPPABLE MUX INPUT FOR U1RX

REGISTER 1	1-5: RPINR	7: PERIPHE	RAL PIN SE	ELECT INPU	T REGISTER	7	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	_	_			IC2R<4:0>		
bit 15		•					bit 8
				— • • • • •	-	—	5 .444.4
<u> </u>	<u> </u>	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	—			IC1R<4:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkı	nown
bit 15-13	Unimplemen	ted: Read as ')'				
bit 12-8	IC2R<4:0>: A	ssign Input Ca	pture 2 (IC2)	to the corresp	onding RPn pin	I	
	11111 = Inpu	t tied to Vss					
	11001 = Inpu	it tied to RP25					
	•						
	•						
	•						
	00001 = Inpu	it tied to RP1					
	00000 = Inpu	it tied to RP0					
bit 7-5	Unimplemen	ted: Read as '0)'				
bit 4-0	IC1R<4:0>: A	ssign Input Ca	pture 1 (IC1)	to the corresp	onding RPn pin	l	
	11111 = Inpu 11001 = Inpu	it tied to Vss ut tied to RP25.					

00001 = Input tied to RP1 00000 = Input tied to RP0

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	_	—			SCK1R<4:0>	>	
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
		—			SDI1R<4:0>		
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-13	Unimpleme	nted: Read as '0)'				
bit 12-8	SCK1R<4:0	>: Assign SPI1 (Clock Input (S	CK1) to the co	prresponding R	Pn pin	
	11111 = Inp	ut tied to Vss					
	11001 = Inp	ut tied to RP25					
	•						
	•						
	•	ut fied to PD1					
	000001 = Inp	out tied to RP1					
bit 7-5	Unimpleme	nted: Read as 'd)'				
bit 4-0	SDI1R<4:0>	: Assign SPI1 D	ata Input (SD	11) to the corre	esponding RPn	pin	
	11111 = Inp	ut tied to Vss					
	11001 = Inp	ut tied to RP25					
	•						
	•						
	•						

REGISTER 11-10: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

00001 = Input tied to RP1 00000 = Input tied to RP0

19.0 ENHANCED CAN (ECAN™) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Enhanced Controller Area Network (ECAN™)" (DS70185) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

19.1 Overview

The Enhanced Controller Area Network (ECAN[™]) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices contain up to two ECAN modules.

The ECAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH CAN specification. The module supports CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader can refer to the BOSCH CAN specification for further details.

The module features are as follows:

- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- Standard and extended data frames
- 0-8 bytes data length
- Programmable bit rate up to 1 Mbit/sec
- Automatic response to remote transmission requests
- Up to eight transmit buffers with application specified prioritization and abort capability (each buffer can contain up to 8 bytes of data)
- Up to 32 receive buffers (each buffer can contain up to 8 bytes of data)
- Up to 16 full (standard/extended identifier)
 acceptance filters
- Three full acceptance filter masks
- DeviceNet[™] addressing support
- Programmable wake-up functionality with integrated low-pass filter
- Programmable Loopback mode supports self-test operation
- Signaling via interrupt capabilities for all CAN receiver and transmitter error states
- · Programmable clock source
- Programmable link to input capture module (IC2 for CAN1) for time-stamping and network synchronization
- · Low-power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

20.0 DATA CONVERTER INTERFACE (DCI) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 20. "Data Converter Interface (DCI)" (DS70288) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

20.1 Module Introduction

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 Data Converter Interface (DCI) module allows simple interfacing of devices, such as audio coder/decoders (Codecs), ADC and D/A converters. The following interfaces are supported:

- Framed Synchronous Serial Transfer (Single or Multi-Channel)
- Inter-IC Sound (I²S) Interface
- · AC-Link Compliant mode
- The DCI module provides the following general features:
- · Programmable word size up to 16 bits
- Supports up to 16 time slots, for a maximum frame size of 256 bits
- Data buffering for up to 4 samples without CPU overhead

20.2 DCI Resources

Many useful resources related to DCI are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en532311

20.2.1 KEY RESOURCES

- Section 20. "Data Converter Interface (DCI)" (DS70288)
- Code Samples
- Application Notes
- Software Libraries
- · Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

REGISTER 26-6:	PADCFG1: PAD CONFIGURATION CONTROL REGISTER
----------------	---

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	_			—	—			
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0		
	—	—	_	_	—	RTSECSEL ⁽¹⁾	PMPTTL		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable I	U = Unimpler	U = Unimplemented bit, read as '0'					
-n = Value at F	n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						wn		

bit 1	RTSECSEL: RTCC Seconds Clock Output Select bit ⁽¹⁾
	 1 = RTCC seconds clock is selected for the RTCC pin 0 = RTCC alarm pulse is selected for the RTCC pin
bit 0	PMPTTL: PMP Module TTL Input Buffer Select bit
	1 = PMP module uses TTL input buffers
	0 = PMP module uses Schmitt Trigger input buffers

Note 1: To enable the actual RTCC output, the RTCOE bit (RCFGCAL<10>) needs to be set.

TABLE 27-3: CODE FLASH SECURITY SEGMENT SIZES FOR 32 KB DEVICES

CONFIG BITS	BSS<2:0> = x11 0K	BSS<2:0> = x10 1K	BSS<2:0> = x01 4K	BSS<2:0> = x00 8K
SSS<2:0> = x11 0K	VS = 256 IW 0x000000h 0x0001FEh 0x000200h 0x0007FEh 0x000800h 0x001FFEh 0x00200h 0x003FFEh 0x00400h 0x0057FEh GS = 11008 IW 0x0157FEh 0x0157FEh	VS = 256 IW 0x00000h 0x0001FEh BS = 768 IW 0x000200h 0x0007FEh 0x000200h 0x000800h 0x001FFEh 0x003FFEh 0x002000h 0x003FFEh 0x004000h 0x0057FEh 0x0057FEh 0x004000h 0x0057FEh 0x0057FEh	VS = 256 IW 0x00000h 0x0001FEh 0x000200h 0x0007FEh 0x000800h 0x001FFEh 0x00800h 0x001FFEh 0x002000h 0x003FFEh 0x004000h 0x0057FEh GS = 7168 IW 0x0057FEh 0x0157FEh	VS = 256 IW 0x00000h 0x0001FEh BS = 7936 IW 0x000200h 0x0007FEh 0x00000h 0x0007FEh 0x000200h 0x001FFEh 0x00200h 0x001FFEh 0x00200h 0x001FFEh 0x00200h 0x00200h 0x00200h 0x003FFEh 0x004000h 0x0057FEh 0x0157FEh 0x0157FEh

Base Instr #	Assembly Mnemonic		Assembly Syntax Description				Status Flags Affected
66	RRNC	RRNC f		f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
67	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
68	SE	SE	Ws,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z
69	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
70	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB
71	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
72	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C,DC,N,OV,Z
73	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
74	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
75	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG - f - (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
76	SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None
		SWAP	Wn	Wn = byte swap Wn	1	1	None
77	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
78	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
79	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
80	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
81	ULNK	ULNK		Unlink Frame Pointer	1	1	None
82	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
83	ZE	ZE	Ws, Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N

30.2 AC Characteristics and Timing Parameters

This section defines dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 AC characteristics and timing parameters.

TABLE 30-14: 1	TEMPERATURE AND	VOLTAGE SPECIFICATIONS – /	AC
----------------	-----------------	----------------------------	----

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)				
AC CHARACTERISTICS	Operating temperature -40°C ≤TA ≤+85°C for Industrial				
	-40°C ≤TA ≤+125°C for Extended				
	Operating voltage VDD range as described in Table 30-1.				

FIGURE 30-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 30-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
DO50	Cosco	OSC2/SOSCO pin	_		15	pF	In XT and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	—	—	400	pF	In l ² C™ mode

FIGURE 30-14: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature-40°C ≤TA ≤+150°C for High Temperature					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Мах	Units	Conditions
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		10	25	ns	_
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	28		_	ns	_
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	35	_	_	ns	

TABLE 31-10: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 31-11: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature-40°C ≤TA ≤+150°C for High Temperature					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	10	25	ns	_
HSP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	35	_	_	ns	—
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	28	_	_	ns	_
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	35	—	—	ns	_

Note 1: These parameters are characterized but not tested in manufacturing.

Revision F (August 2011)

This revision includes typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in the following table.

TABLE A-5: MAJOR SECTION UPDATES

Section Name	Update Description
Section 2.0 "Guidelines for Getting Started with 16-bit Digital Signal Controllers"	Updated the Recommendation Minimum Connection (see Figure 2-1).
Section 27.0 "Special Features"	Added Note 3 to the Connections for the On-chip Voltage Regulator diagram (see Figure 27-1).
Section 30.0 "Electrical Characteristics"	Removed Voltage on VCAP with respect to Vss from the Absolute Maximum Ratings.
	Removed Note 3 and parameter DC10 (VCORE) from the DC Temperature and Voltage Specifications (see Table 30-4).
	Updated the Characteristics definition and Conditions for parameter BO10 in the Electrical Characteristics: BOR (see Table 30-11).
	Added Note 1 to the Internal Voltage Regulator Specifications (see Table 30-13).

Revision G (April 2012)

This revision includes typographical and formatting changes throughout the data sheet text.

In addition, where applicable, new sections were added to each peripheral chapter that provide information and links to related resources, as well as helpful tips. For examples, see Section 9.2 "Oscillator Resources" and Section 21.4 "ADC Helpful Tips".

All other major changes are referenced by their respective section in the following table.

TABLE A-6: MAJOR SECTION UPDATES

Section Name	Update Description
Section 2.0 "Guidelines for Getting Started	Added two new tables:
with 16-bit Digital Signal Controllers"	 Crystal Recommendations (see Table 2-1)
	 Resonator Recommendations (see Table 2-2)
Section 30.0 "Electrical Characteristics"	Updated parameters DO10 and DO20 and removed parameters DO16 and DO26 in the DC Characteristics: I/O Pin Output Specifications (see Table 30-10)