

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DCI, DMA, I ² S, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x10b/12b; D/A 2x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128gp802-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.5 CPU Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en532311

3.5.1 KEY RESOURCES

- Section 2. "CPU" (DS70204)
- Code Samples
- Application Notes
- · Software Libraries
- · Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

Symbol	Parameter	Value	
VPOR	POR threshold	1.8V nominal	
TPOR	POR extension time	30 μs maximum	
VBOR	BOR threshold	2.5V nominal	
TBOR	BOR extension time	100 μs maximum	
TPWRT	Programmable power-up time delay	0-128 ms nominal	
TFSCM	Fail-Safe Clock Monitor Delay	900 μs maximum	

TABLE 6-2:	OSCILLATOR DELAY

When the device exits the Reset condi-Note: tion (begins normal operation), the device operating parameters (voltage, frequency, temperature, etc.) must be within their operating ranges, otherwise the device may not function correctly. The user application must ensure that the delay between the time power is first applied, and the time SYSRST becomes inactive, is long enough to get all operating parameters within specification.

6.4 Power-on Reset (POR)

A Power-on Reset (POR) circuit ensures the device is reset from power-on. The POR circuit is active until VDD crosses the VPOR threshold and the delay TPOR has elapsed. The delay TPOR ensures the internal device bias circuits become stable.

The device supply voltage characteristics must meet the specified starting voltage and rise rate requirements to generate the POR. Refer to Section 30.0 "Electrical Characteristics" for details.

The POR status bit (POR) in the Reset Control register (RCON<0>) is set to indicate the Power-on Reset.

6.4.1 Brown-out Reset (BOR) and Power-up timer (PWRT)

The on-chip regulator has a Brown-out Reset (BOR) circuit that resets the device when the VDD is too low (VDD < VBOR) for proper device operation. The BOR circuit keeps the device in Reset until VDD crosses VBOR threshold and the delay TBOR has elapsed. The delay TBOR ensures the voltage regulator output becomes stable.

The BOR status bit (BOR) in the Reset Control register (RCON<1>) is set to indicate the Brown-out Reset.

The device will not run at full speed after a BOR as the VDD should rise to acceptable levels for full-speed operation. The PWRT provides power-up time delay (TPWRT) to ensure that the system power supplies have stabilized at the appropriate levels for full-speed operation before the SYSRST is released.

The power-up timer delay (TPWRT) is programmed by the Power-on Reset Timer Value Select bits (FPWRT<2:0>) in the POR Configuration register (FPOR<2:0>), which provides eight settings (from 0 ms to 128 ms). Refer to **Section 27.0 "Special Features"** for further details.

Figure 6-3 shows the typical brown-out scenarios. The reset delay (TBOR + TPWRT) is initiated each time VDD rises above the VBOR trip point

Vector Number	IVT Address	AIVT Address	Interrupt Source	
0	0x000004	0x000104	Reserved	
1	0x000006	0x000106	Oscillator Failure	
2	0x000008	0x000108	Address Error	
3	0x00000A	0x00010A	Stack Error	
4	0x00000C	0x00010C	Math Error	
5	0x00000E	0x00010E	DMA Error	
6-7	0x000010-0x000012	0x000110-0x000112	Reserved	
8	0x000014	0x000114	INT0 – External Interrupt 0	
9	0x000016	0x000116	IC1 – Input Capture 1	
10	0x000018	0x000118	OC1 – Output Compare 1	
11	0x00001A	0x00011A	T1 – Timer1	
12	0x00001C	0x00011C	DMA0 – DMA Channel 0	
13	0x00001E	0x00011E	IC2 – Input Capture 2	
14	0x000020	0x000120	OC2 – Output Compare 2	
15	0x000022	0x000122	T2 – Timer2	
16	0x000024	0x000124	T3 – Timer3	
17	0x000026	0x000126	SPI1E – SPI1 Error	
18	0x000028	0x000128	SPI1 – SPI1 Transfer Done	
19	0x00002A	0x00012A	U1RX – UART1 Receiver	
20	0x00002C	0x00012C	U1TX – UART1 Transmitter	
21	0x00002E	0x00012E	ADC1 – ADC 1	
22	0x000030	0x000130	DMA1 – DMA Channel 1	
23	0x000032	0x000132	Reserved	
24	0x000034	0x000134	SI2C1 – I2C1 Slave Events	
25	0x000036	0x000136	MI2C1 – I2C1 Master Events	
26	0x000038	0x000138	CM – Comparator Interrupt	
27	0x00003A	0x00013A	CN – Change Notification Interrupt	
28	0x00003C	0x00013C	INT1 – External Interrupt 1	
29	0x00003E	0x00013E	Reserved	
30	0x000040	0x000140	IC7 – Input Capture 7	
31	0x000042	0x000142	IC8 – Input Capture 8	
32	0x000044	0x000144	DMA2 – DMA Channel 2	
33	0x000046	0x000146	OC3 – Output Compare 3	
34	0x000048	0x000148	OC4 – Output Compare 4	
35	0x00004A	0x00014A	T4 – Timer4	
36	0x00004C	0x00014C	T5 – Timer5	
37	0x00004E	0x00014E	IN12 – External Interrupt 2	
38	0x000050	0x000150	U2RX – UART2 Receiver	
39	0x000052	0x000152	U2TX – UART2 Transmitter	
40	0x000054	0x000154	SPIZE - SPIZ Error	
41	0x000056	0x000156	SPIZ - SPIZ Transfer Done	
42	0x000058	UXUUU158		
43	0x00005A	0x00015A		
44			DMA3 – DMA Channel 3	
45-52	0x00005E-0x00006C	0x00015E-0x00016C		
53	UXUUUU6E	UXUUU16E		
54	Ux000070	0x000170	UMA – DMA Channel 4	

TABLE 7-1:INTERRUPT VECTORS

REGISTER /	-9: 1FS4:1	NIERRUPII	LAG STAT	US REGISTI	ER 4		
R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
DAC1LIF ⁽²⁾	DAC1RIF ⁽²⁾	—	_	—	—	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
_	C1TXIF ⁽¹⁾	DMA7IF	DMA6IF	CRCIF	U2EIF	U1EIF	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit		mented bit, read	as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	iown
hit 15		C L off Channe	Linterrunt Ele	a Statua hit(2)			
DIL 15	1 = Interrupt r		urred	g Status bit.			
	0 = Interrupt r	equest has oct	occurred				
bit 14	DAC1RIF: DA	AC Right Chanr	nel Interrupt F	laq Status bit ⁽²	2)		
	1 = Interrupt r	equest has occ	curred	0			
	0 = Interrupt r	equest has not	occurred				
bit 13-7	Unimplemen	ted: Read as ')'				
bit 6	C1TXIF: ECA	N1 Transmit D	ata Request I	nterrupt Flag S	Status bit ⁽¹⁾		
	1 = Interrupt r	equest has occ	curred				
	0 = Interrupt r	request has not	occurred				
bit 5	DMA7IF: DM	A Channel 7 Da	ata Transfer C	complete Interr	rupt Flag Status	bit	
	1 = Interrupt r	equest has occ	concurred				
hit 4		A Channel 6 Da	ata Transfer (omolete Interr	runt Flag Status	bit	
bit i	1 = Interrupt r	request has occ	curred		upt i lug oluluo	bit	
	0 = Interrupt r	equest has not	occurred				
bit 3	CRCIF: CRC	Generator Inte	rrupt Flag Sta	tus bit			
	1 = Interrupt request has occurred						
	0 = Interrupt r	equest has not	occurred				
bit 2	U2EIF: UART	2 Error Interrup	ot Flag Status	bit			
	1 = Interrupt request has occurred						
L:1 4		equest has not		L:4			
DICI		T Error Interrup	or Flag Status	DIL			
	1 = 11100000000000000000000000000000000	equest has occ	occurred				
bit 0	Unimplemen	ted: Read as ')'				
			-				

-<u>____</u>

Note 1: Interrupts are disabled on devices without ECAN[™] modules.

2: Interrupts are disabled on devices without Audio DAC modules.

REGISTER	7-10: IEC0:	INTERRUPT	ENABLE CO	ONTROL RE	GISTER 0					
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE			
bit 15							bit 8			
DAMA		DAMA	DAMA	DAMA		D 444 0	DAMA			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	OCZIE	IC2IE	DIVIAULE	THE	OCTIE	ICTIE				
							DIL U			
l egend:										
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	iown			
			-				-			
bit 15	Unimplemer	ted: Read as	0'							
bit 14	DMA1IE: DM	IA Channel 1 D	ata Transfer C	Complete Inter	rupt Enable bit					
	1 = Interrupt	request enable	d							
	0 = Interrupt	request not en	abled							
bit 13	AD1IE: ADC	1 Conversion C	Complete Interi	rupt Enable bi	t					
	\perp = Interrupt 0 = Interrupt	request enable	a abled							
bit 12	U1TXIE: UAF	RT1 Transmitte	r Interrupt Ena	able bit						
	1 = Interrupt	request enable	d							
	0 = Interrupt	request not en	abled							
bit 11	1 U1RXIE: UART1 Receiver Interrupt Enable bit									
	1 = Interrupt	1 = Interrupt request enabled								
bit 10	SPI1IE: SPI1	Event Interrur	ot Enable bit							
	1 = Interrupt	request enable	d							
	0 = Interrupt	request not en	abled							
bit 9	SPI1EIE: SP	11 Error Interru	pt Enable bit							
	1 = Interrupt	request enable	d							
hit 8	T3IE: Timer3	Interrunt Enab	le hit							
bit o	1 = Interrupt	request enable	d							
	0 = Interrupt	request not en	abled							
bit 7	T2IE: Timer2	Interrupt Enab	le bit							
	1 = Interrupt	request enable	d							
bit 6		request not en ut Compare Ch	ableu	unt Enabla bit						
DILO	1 = Interrunt	request enable								
	0 = Interrupt	request not en	abled							
bit 5	IC2IE: Input (Capture Chanr	el 2 Interrupt E	Enable bit						
	1 = Interrupt	request enable	d							
L:1 4	0 = Interrupt	request not en	abled							
Dit 4	1 = Interrupt	IA Channel U L	ata Transfer C	complete inter	rupt Enable bit					
	0 = Interrupt	request not en	abled							
bit 3	T1IE: Timer1	Interrupt Enab	le bit							
	1 = Interrupt	request enable	d							
	0 = Interrupt	request not en	abled							

REGISTER 7-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)

bit 2	OC1IE: Output Compare Channel 1 Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 1	IC1IE: Input Capture Channel 1 Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 0	INTOIE: External Interrupt 0 Flag Status bit
	1 = Interrupt request enabled0 = Interrupt request not enabled

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		U1RXIP<2:0>		_		SPI1IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		SPITEIP<2:0>		—		131P<2:0>	bit 0
DIL 7							
Legend:							
R = Readabl	e bit	W = Writable I	bit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared				x = Bit is unkn	own		
bit 15	Unimpleme	ented: Read as '0)'				
bit 14-12	U1RXIP<2:	0>: UART1 Rece	iver Interrup	t Priority bits			
	111 = Interr	rupt is priority 7 (f	highest prior	ity interrupt)			
	•						
	•						
	001 = Interr	rupt is priority 1 rupt source is dis:	abled				
bit 11	Unimpleme	ented: Read as ')'				
bit 10-8	SPI1IP<2:0	>: SPI1 Event Int	terrupt Priori	ty bits			
	111 = Interr	rupt is priority 7 (ł	nighest prior	ity interrupt)			
	•						
	•						
	001 = Interr	rupt is priority 1					
	000 = Interr	rupt source is disa	abled				
bit 7	Unimpleme	ented: Read as '0)'				
bit 6-4	SPI1EIP<2:	:0>: SPI1 Error In	terrupt Prior	ity bits			
	111 = Interr	rupt is priority 7 (r	nignest prior	ity interrupt)			
	•						
	•						
	001 = Interr	rupt is priority 1 rupt source is disa	abled				
bit 3	Unimpleme	ented: Read as ')'				
bit 2-0	T3IP<2:0>:	Timer3 Interrupt	Priority bits				
	111 = Interr	rupt is priority 7 (I	nighest prior	ity interrupt)			
	•						
	•						
	001 = Interr	rupt is priority 1					
	000 = Interr	rupt source is dis	abled				

NOTES:

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

REGISTER 19-8: CIEC: ECAN™ TRANSMIT/RECEIVE ERROR COUNT REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
	IX U				10		IX U
			TERRO	CNT<7:0>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			RERRO	CNT<7:0>			
bit 7							bit 0
Legend:		C = Writable bi	it, but only 'C)' can be written to	clear the bi	t	
R = Readable bit		W = Writable b	oit	U = Unimplemented bit, read as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			

bit 15-8	TERRCNT<7:0>: Transmit Error Count bits
bit 7-0	RERRCNT<7:0>: Receive Error Count bits

REGISTER 19-9: CICFG1: ECAN™ BAUD RATE CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	_
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SJW	<1:0>			BRF	P<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'				
bit 7-6	SJW<1:0>: Synchronization Jump Width bits				
	11 = Length is 4 x TQ				
	$10 = \text{Length is } 3 \times \text{TQ}$				
	01 = Length is 2 x TQ				
	00 = Length is 1 x TQ				
bit 5-0	BRP<5:0>: Baud Rate Prescaler bits				
	11 1111 = TQ = 2 x 64 x 1/FCAN				
	•				
	•				
	•				
	00 0010 = Tq = 2 x 3 x 1/Fcan				
	00 0001 = Tq = 2 x 2 x 1/Fcan				
	00 0000 = Tq = 2 x 1 x 1/FCAN				

21.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. "Analog-to-Digital Converter (ADC)" (DS70183) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices have up to 13 ADC input channels.

The AD12B bit (AD1CON1<10>) allows each of the ADC modules to be configured by the user as either a 10-bit, 4-sample/hold ADC (default configuration) or a 12-bit, 1-sample/hold ADC.

Note: The ADC module needs to be disabled before modifying the AD12B bit.

21.1 Key Features

The 10-bit ADC configuration has the following key features:

- Successive Approximation (SAR) conversion
- Conversion speeds of up to 1.1 Msps
- Up to 13 analog input pins
- External voltage reference input pins
- Simultaneous sampling of up to four analog input pins
- Automatic Channel Scan mode
- Selectable conversion trigger source
- Selectable Buffer Fill modes
- Four result alignment options (signed/unsigned, fractional/integer)
- · Operation during CPU Sleep and Idle modes

The 12-bit ADC configuration supports all the above features, except:

- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only one sample/hold amplifier in the 12-bit configuration, so simultaneous sampling of multiple channels is not supported

Depending on the particular device pinout, the ADC can have up to 13 analog input pins, designated AN0 through AN12. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs can be shared with other analog input pins. The actual number of analog input pins and external voltage reference input configuration depends on the specific device.

Block diagrams of the ADC module are shown in Figure 21-1 and Figure 21-2.

21.2 ADC Initialization

The following configuration steps should be performed.

- 1. Configure the ADC module:
 - a) Select port pins as analog inputs (AD1PCFGH<15:0> or AD1PCFGL<15:0>)
 - b) Select voltage reference source to match expected range on analog inputs (AD1CON2<15:13>)
 - c) Select the analog conversion clock to match desired data rate with processor clock (AD1CON3<7:0>)
 - d) Determine how many S/H channels are used (AD1CON2<9:8> and AD1PCFGH<15:0> or AD1PCFGL<15:0>)
 - e) Select the appropriate sample/conversion sequence (AD1CON1<7:5> and AD1CON3<12:8>)
 - f) Select how conversion results are presented in the buffer (AD1CON1<9:8>)
 - g) Turn on ADC module (AD1CON1<15>)
- 2. Configure ADC interrupt (if required):
 - a) Clear the AD1IF bit
 - b) Select ADC interrupt priority

21.3 ADC and DMA

If more than one conversion result needs to be buffered before triggering an interrupt, DMA data transfers can be used. ADC1 can trigger a DMA data transfer. If ADC1 is selected as the DMA IRQ source, a DMA transfer occurs when the AD1IF bit gets set as a result of an ADC1 sample conversion sequence.

The SMPI<3:0> bits (AD1CON2<5:2>) are used to select how often the DMA RAM buffer pointer is incremented.

The ADDMABM bit (AD1CON1<12>) determines how the conversion results are filled in the DMA RAM buffer area being used for ADC. If this bit is set, DMA buffers are written in the order of conversion. The module provides an address to the DMA channel that is the same as the address used for the non-DMA standalone buffer. If the ADDMABM bit is cleared, then DMA buffers are written in Scatter/Gather mode. The module provides a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer.

REGISTER 2	2-2: DAC1	STAT: DAC S	IAIUS REG	JISTER			
R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R-0	R-0
LOEN	_	LMVOEN		_	LITYPE	LFULL	LEMPTY
bit 15							bit 8
R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R-0	R-0
ROEN	—	RMVOEN	—	—	RITYPE	RFULL	REMPTY
bit 7							bit 0
Legend:	L :4		L 14			-1 (0)	
R = Readable		vv = vvritable	DIT		mented bit, rea		
-n = Value at P	VOR	'1' = Bit is set		0° = Bit is cle	eared	x = Bit is unk	nown
bit 15	LOEN: Left C 1 = Positive 0 = DAC out	Channel DAC O and negative D puts are disable	utput Enable AC outputs a ed	bit re enabled			
bit 14	Unimplemen	ted: Read as '	0'				
bit 13	LMVOEN: Le	eft Channel Mid	point DAC Ou	utput Voltage E	Enable bit		
	1 = Midpoint 0 = Midpoint	DAC output is output is disab	enabled led				
bit 12-11	Unimplemen	ted: Read as '	0'				
bit 10	LITYPE: Left 1 = Interrupt 0 = Interrupt	Channel Type if FIFO is Emp if FIFO is not F	of Interrupt b ty [:] ull	it			
bit 9	LFULL: Statu 1 = FIFO is F 0 = FIFO is r	us, Left Channe ⁻ ull not full	I Data Input F	FIFO is Full bit			
bit 8	LEMPTY: Sta 1 = FIFO is E 0 = FIFO is r	atus, Left Chanı Empty not Empty	nel Data Inpu	t FIFO is Empt	y bit		
bit 7	ROEN: Right 1 = Positive 0 = DAC out	Channel DAC and negative D puts are disable	Output Enabl AC outputs a ed	le bit re enabled			
bit 6	Unimplemen	ted: Read as '	0'				
bit 5	RMVOEN: Ri 1 = Midpoint 0 = Midpoint	ight Channel M DAC output is output is disab	idpoint DAC (enabled led	Output Voltage	Enable bit		
bit 4-3	Unimplemen	ted: Read as '	0'				
bit 2	RITYPE: Rig	ht Channel Typ	e of Interrupt	bit			
	1 = Interrupt 0 = Interrupt	if FIFO is Emp if FIFO is not F	ty Full				
bit 1	RFULL: Statu 1 = FIFO is	us, Right Chanı Full	nel Data Inpu	t FIFO is Full b	bit		
hit O			nnal Data Isa				
DILU	1 = FIFO is E 0 = FIFO is r	aius, Right Cha Empty not Empty	nnei Data Inp	DUL FIFU IS EM	אין אונ		

~ ~~

24.2 RTCC Resources

Many useful resources related to RTCC are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en532311

24.2.1 KEY RESOURCES

- Section 37. "Real-Time Clock and Calendar (RTCC)" (DS70301)
- · Code Samples
- Application Notes
- Software Libraries
- · Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

Bit Field	Register	RTSP Effect	Description
BWRP	FBS	Immediate	Boot Segment Program Flash Write Protection 1 = Boot segment can be written 0 = Boot segment is write-protected
BSS<2:0>	FBS	Immediate	Boot Segment Program Flash Code Protection Size X11 = No Boot program Flash segment
			110 = Standard security; boot program Flash segment ends at 0x0007FE
			010 = High security; boot program Flash segment ends at 0x0007FE
			Boot space is 4K Instruction Words (except interrupt vectors) 101 = Standard security; boot program Flash segment, ends at 0x001FFE
			001 = High security; boot program Flash segment ends at 0x001FFE
			Boot space is 8K Instruction Words (except interrupt vectors) 100 = Standard security; boot program Flash segment ends at 0x003FFE
			000 = High security; boot program Flash segment ends at 0x003FFE
RBS<1:0> ⁽¹⁾	FBS	Immediate	Boot Segment RAM Code Protection Size
			10 = Boot RAM is 128 bytes 01 = Boot RAM is 256 bytes 00 = Boot RAM is 1024 bytes
SWRP ⁽¹⁾	FSS ⁽¹⁾	Immediate	Secure Segment Program Flash Write-Protect bit 1 = Secure Segment can bet written 0 = Secure Segment is write-protected
SSS<2:0> ⁽¹⁾	FSS ⁽¹⁾	Immediate	Secure Segment Program Flash Code Protection Size (Secure segment is not implemented on 32K devices) X11 = No Secure program flash segment
			Secure space is 4K IW less BS 110 = Standard security; secure program flash segment starts at End of BS, ends at 0x001FFE 010 = High security; secure program flash segment starts at
			End of BS, ends at 0x001FFE
			Secure space is 8K IW less BS 101 = Standard security; secure program flash segment starts at End of BS, ends at 0x003FFE
			001 = High security; secure program flash segment starts at End of BS, ends at 0x003FFE
			Secure space is 16K IW less BS 100 = Standard security; secure program flash segment starts at End of BS, ends at 007FFEh
			000 = High security; secure program flash segment starts at End of BS, ends at 0x007FFE

TARI E 27-2.	dePIC CONFIGURATION BITS DESCRIPTION
IADLL ZI-Z.	USFIC CONFIGURATION BITS DESCRIPTION

Note 1: This Configuration register is not available on dsPIC33FJ32GP302/304 devices.

28.0 INSTRUCTION SET SUMMARY

Note:	This da	ta sheet	t summ	arizes	the fea	tures
	of t	the	dsPIC	33FJ3	2GP302	/304,
	dsPIC3	3FJ64G	PX02/X	(04,		and
	dsPIC3	3FJ1280	GPX02/	'X04	families	s of
	devices	. It is no	t intend	led to	be a cor	npre-
	hensive	referen	ce sour	rce. To	comple	ment
	the info	rmation	in this	data s	heet, re	fer to
	the "dsl	PIC33F/	PIC24F	l Fam	ily Refei	rence
	Manual	". Pleas	e see	the M	icrochip	web
	site (w	ww.micr	ochip.c	<mark>om)</mark> f	or the	latest
	reference	ce manu	ial secti	ions.		

The dsPIC33F instruction set is identical to that of the dsPIC30F.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- · Word or byte-oriented operations
- · Bit-oriented operations
- Literal operations
- DSP operations
- Control operations

Table 28-1 shows the general symbols used in describing the instructions.

The dsPIC33F instruction set summary in Table 28-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- · The file register specified by the value 'f'
- The destination, which could be either the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The $\ensuremath{\mathtt{MAC}}$ class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- · The X and Y address space prefetch operations
- · The X and Y address space prefetch destinations
- · The accumulator write back destination

The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

The control instructions can use some of the following operands:

- · A program memory address
- The mode of the table read and table write instructions

30.1 DC Characteristics

TABLE 30-1: OPERATING MIPS VS. VOLTAGE

			Max MIPS		
Characteristic	VDD Range (in Volts)	Temp Range (in °C)	dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04		
—	3.0-3.6V ⁽¹⁾	-40°C to +85°C	40		
—	3.0-3.6V ⁽¹⁾	-40°C to +125°C	40		

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules such as the ADC will have degraded performance. Device functionality is tested but not characterized. Refer to parameter BO10 in Table 30-11 for the minimum and maximum BOR values.

TABLE 30-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+155	°C
Operating Ambient Temperature Range	TA	-40	_	+125	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$	PD	Pint + Pi/o			W
I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} \times IOH) + \Sigma (VOL \times IOL)$					
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJ	IA	W

TABLE 30-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Мах	Unit	Note
Package Thermal Resistance, 44-pin QFN	θja	30	—	°C/W	1
Package Thermal Resistance, 44-pin TFQP	θја	40	—	°C/W	1
Package Thermal Resistance, 28-pin SPDIP	θја	45		°C/W	1
Package Thermal Resistance, 28-pin SOIC	θја	50	_	°C/W	1
Package Thermal Resistance, 28-pin QFN-S	θја	30	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				3.6V 5°C for Industrial 25°C for Extended
Param No.	Symbol Characteristic		Min	Тур ⁽¹⁾	Мах	Units	Conditions
	VIL	Input Low Voltage					
DI10		I/O pins	Vss	—	0.2 Vdd	V	
DI11		PMP pins	Vss	—	0.15 Vdd	V	PMPTTL = 1
DI15		MCLR	Vss	—	0.2 VDD	V	
DI16		I/O Pins with OSC1 or SOSCI	Vss	—	0.2 VDD	V	
DI18		I/O Pins with SDAx, SCLx	Vss	—	0.3 VDD	V	SMBus disabled
DI19		I/O Pins with SDAx, SCLx	Vss	—	0.8 Vdd	V	SMBus enabled
	Vih	Input High Voltage					
DI20		I/O Pins Not 5V Tolerant ⁽⁴⁾	0.7 Vdd	—	Vdd	V	
		I/O Pins 5V Tolerant ⁽⁴⁾	0.7 VDD	—	5.5	V	
DI21		I/O Pins Not 5V Tolerant with PMP ⁽⁴⁾	0.24 VDD + 0.8	_	Vdd	V	
		I/O Pins 5V Tolerant with PMP ⁽⁴⁾	0.24 VDD + 0.8	—	5.5	V	
DI28		SDAx, SCLx	0.7 VDD	—	5.5	V	SMBus disabled
DI29		SDAx, SCLx	2.1	—	5.5	V	SMBus enabled
	ICNPU	CNx Pull-up Current					
DI30			50	250	400	μA	VDD = 3.3V, VPIN = VSS

TABLE 30-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: See the "Pin Diagrams" section for the 5V tolerant I/O pins.

5: VIL source < (Vss - 0.3). Characterized but not tested.

6: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.

7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.

8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

9: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

FIGURE 30-2: EXTERNAL CLOCK TIMING

TABLE 30-16: EXTERNAL CLOCK TIMING REQUIREMENTS

			Standard Operating Co (unless otherwise state Operating temperature		pnditions: 3.0V to 3.6V ed) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended		
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
OS10	FIN	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC		40	MHz	EC
		Oscillator Crystal Frequency	3.5		10	MHz	ХТ
			10	—	40	MHz	HS
				—	33	kHz	SOSC
			3.5		10	MHz	AUX_OSC_FIN
OS20	Tosc	Tosc = 1/Fosc	12.5	—	DC	ns	—
OS25	Тсү	Instruction Cycle Time ⁽²⁾	25	_	DC	ns	—
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.375 x Tosc		0.625 x Tosc	ns	EC
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	—		20	ns	EC
OS40	TckR	CLKO Rise Time ⁽³⁾	—	5.2		ns	—
OS41	TckF	CLKO Fall Time ⁽³⁾	—	5.2		ns	_
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	14	16	18	mA/V	VDD = 3.3V TA = +25°C

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: Instruction cycle period (TCY) equals two times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: Data for this parameter is Preliminary. This parameter is characterized, but not tested in manufacturing.

FIGURE 30-14: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

128:1

40