

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DCI, DMA, I ² S, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x10b/12b; D/A 2x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128gp802t-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04 PRODUCT **FAMILIES**

The device names, pin counts, memory sizes, and peripheral availability of each device are listed below. The following pages show their pinout diagrams.

TABLE 1: dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04 **CONTROLLER FAMILIES**

						Rem	appabl	e Peri	phera	al								r)			
Device	Pins	Program Flash Memory (Kbyte)	RAM (Kbyte) ⁽¹⁾	Remappable Pins	16-bit Timer ⁽²⁾	Input Capture	Output Compare Standard PWM	Data Converter Interface	UART	IdS	ECAN™	External Interrupts ⁽³⁾	RTCC	I ² C TM	CRC Generator	10-bit/12-bit ADC (Channels)	16-bit Audio DAC (Pins)	Analog Comparator (2 Channels/Voltage Regulator)	8-bit Parallel Master Port (Address Lines)	I/O Pins	Packages
dsPIC33FJ128GP804	44	128	16	26	5	4	4	1	2	2	1	3	1	1	1	13	6	1/1	11	35	QFN TQFP
dsPIC33FJ128GP802	28	128	16	16	5	4	4	1	2	2	1	3	1	1	1	10	4	1/0	2	21	SPDIP SOIC QFN-S
dsPIC33FJ128GP204	44	128	8	26	5	4	4	1	2	2	0	3	1	1	1	13	0	1/1	11	35	QFN TQFP
dsPIC33FJ128GP202	28	128	8	16	5	4	4	1	2	2	0	3	1	1	1	10	0	1/0	2	21	SPDIP SOIC QFN-S
dsPIC33FJ64GP804	44	64	16	26	5	4	4	1	2	2	1	3	1	1	1	13	6	1/1	11	35	QFN TQFP
dsPIC33FJ64GP802	28	64	16	16	5	4	4	1	2	2	1	3	1	1	1	10	4	1/0	2	21	SPDIP SOIC QFN-S
dsPIC33FJ64GP204	44	64	8	26	5	4	4	1	2	2	0	3	1	1	1	13	0	1/1	11	35	QFN TQFP
dsPIC33FJ64GP202	28	64	8	16	5	4	4	1	2	2	0	3	1	1	1	10	0	1/0	2	21	SPDIP SOIC QFN-S
dsPIC33FJ32GP304	44	32	4	26	5	4	4	1	2	2	0	3	1	1	1	13	0	1/1	11	35	QFN TQFP
dsPIC33FJ32GP302	28	32	4	16	5	4	4	1	2	2	0	3	1	1	1	10	0	1/0	2	21	SPDIP SOIC QFN-S

Note RAM size is inclusive of 2 Kbytes of DMA RAM for all devices except dsPIC33FJ32GP302/304, which include 1 Kbyte of DMA RAM. 1:

2: 3: Only four out of five timers are remappable.

Only two out of three interrupts are remappable.

1.0 DEVICE OVERVIEW

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device specific information for the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 Digital Signal Controller (DSC) Devices. The dsPIC33F devices contain extensive Digital Signal Processor (DSP) functionality with a high performance 16-bit microcontroller (MCU) architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules in the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

4.8.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access to stored constant data from the data space without the need to use special instructions (such as TBLRDL/H).

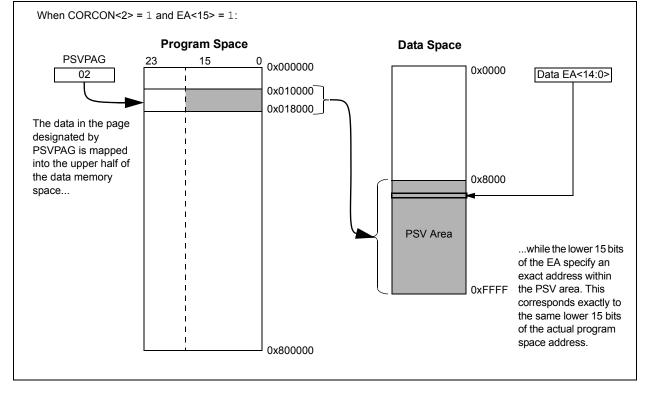
Program space access through the data space occurs if the Most Significant bit of the data space EA is '1' and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. By incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add a cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address 0x8000 and higher maps directly into a corresponding program memory address (see Figure 4-11), only the lower 16 bits of the

24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note: PSV access is temporarily disabled during table reads/writes.


For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time.

For operations that use PSV, and are executed inside a REPEAT loop, these instances require two instruction cycles in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop allows the instruction using PSV to access data, to execute in a single cycle.

FIGURE 7-1: dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/ X04 INTERRUPT VECTOR TABLE

		-	
	Reset – GOTO Instruction	0x000000	
	Reset – GOTO Address	0x000002	
	Reserved	0x000004	
	Oscillator Fail Trap Vector		
	Address Error Trap Vector	_	
	Stack Error Trap Vector		
	Math Error Trap Vector		
	DMA Error Trap Vector		
	Reserved		
	Reserved		
	Interrupt Vector 0	0x000014	
	Interrupt Vector 1		
	~		
	~		
	~		
	Interrupt Vector 52	0x00007C	Interrupt Vector Table (IVT) ⁽¹⁾
	Interrupt Vector 53	0x00007E	
ity	Interrupt Vector 54	0x000080	
Decreasing Natural Order Priority	~	7	
Ē.	~		
de	~		
ō	Interrupt Vector 116	0x0000FC	
a	Interrupt Vector 117	0x0000FE	
atu	Reserved	0x000100	
Ž	Reserved	0x000102	
ing	Reserved		
eas	Oscillator Fail Trap Vector		
SC	Address Error Trap Vector		
ĕ	Stack Error Trap Vector		
	Math Error Trap Vector		
	DMA Error Trap Vector		
	Reserved		7
	Reserved		
	Interrupt Vector 0	0x000114	
	Interrupt Vector 1		
	~		
	~	1	
	~		Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
	Interrupt Vector 52	0x00017C	
	Interrupt Vector 53	0x00017E	
	Interrupt Vector 54	0x000180	
	~		
	~	7	
	~]	
	Interrupt Vector 116]	
Ļ	Interrupt Vector 117	0x0001FE	
V	Start of Code	0x000200	
		_	
Note 1: Se	ee Table 7-1 for the list of impleme	ented interrupt	vectors.

7.5 CPU Registers

REGISTER 7-1:	SR: CPU STATUS REGISTER ⁽¹⁾
---------------	--

	5444.6	B 8 4 4 6				5444	-
bit 15							bit 8
OA	OB	SA	SB	OAB	SAB	DA	DC
R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R -0	R/W-0

R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	IPL<2:0> ^(2,3)		RA	N	OV	Z	С
bit 7							bit 0

Legend:			
C = Clear only bit	R = Readable bit	U = Unimplemented bit, read as '0'	
S = Set only bit	W = Writable bit	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits⁽²⁾

111 = CPU Interrupt Priority Level is 7 (15), user interrupts are disabled

- 110 = CPU Interrupt Priority Level is 6 (14)
- 101 = CPU Interrupt Priority Level is 5 (13)
- 100 = CPU Interrupt Priority Level is 4 (12)
- 011 = CPU Interrupt Priority Level is 3 (11)
- 010 = CPU Interrupt Priority Level is 2 (10)
- 001 = CPU Interrupt Priority Level is 1 (9)
- 000 = CPU Interrupt Priority Level is 0 (8)

Note 1: For complete register details, see Register 3-1.

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
- 3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0				
—	—	—	US	EDT		DL<2:0>					
bit 15							bit 8				
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0				
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF				
bit 7							bit 0				
											
Legend:		C = Clear only	y bit								
R = Readable	bit	W = Writable	bit	-n = Value at							
0' = Bit is clear	ed	'x = Bit is unk	nown	U = Unimpler	mented bit, read	as '0'					
				(2)							
bit 3	IPL3: CPU In	terrupt Priority	Level Status I	bit 3 ⁽²⁾							
	1 = CPU interrupt priority level is greater than 7										

0 = CPU interrupt priority level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0					
	DMA4IE	PMPIE										
 oit 15	DIVIAHIL						bit					
							DIL					
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
_		_	DMA3IE	C1IE ⁽¹⁾	C1RXIE ⁽¹⁾	SPI2IE	SPI2EIE					
bit 7							bit					
Legend:												
R = Readab		W = Writable		•	nented bit, read							
-n = Value a	it POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown					
L:4 / F												
bit 15	-	ited: Read as										
bit 14	DMA4IE: DMA Channel 4 Data Transfer Complete Interrupt Enable bit											
		 I = Interrupt request enabled Interrupt request not enabled 										
	•	•										
bit 13	PMPIE: Parallel Master Port Interrupt Enable bit											
		request enable										
		request not en	abled									
	Unimplemented: Read as '0'											
bit 12-5	Unimplemen	ted: Read as	ʻ0 '									
bit 12-5 bit 4	•		'0' Data Transfer C	complete Interr	upt Enable bit							
	DMA3IE: DM		ata Transfer C	complete Interr	upt Enable bit							
	DMA3IE: DM 1 = Interrupt	IA Channel 3 E	oata Transfer C d	Complete Interr	upt Enable bit							
bit 4	DMA3IE: DM 1 = Interrupt 0 = Interrupt	IA Channel 3 E request enable request has er	oata Transfer C d		upt Enable bit							
bit 4	DMA3IE: DM 1 = Interrupt 0 = Interrupt C1IE: ECAN	IA Channel 3 E request enable request has er	Data Transfer C ed habled pt Enable bit ⁽¹⁾		rupt Enable bit							
bit 4	DMA3IE: DM 1 = Interrupt 0 = Interrupt C1IE: ECAN 1 = Interrupt	IA Channel 3 E request enable request has er 1 Event Interru	Data Transfer C ed labled pt Enable bit ⁽¹⁾ ed		rupt Enable bit							
	DMA3IE: DM 1 = Interrupt 0 = Interrupt C1IE: ECAN 1 = Interrupt 0 = Interrupt	IA Channel 3 E request enable request has er 1 Event Interru request enable request not en	Data Transfer C ed labled pt Enable bit ⁽¹⁾ ed)								
bit 4	DMA3IE: DM 1 = Interrupt 0 = Interrupt C1IE: ECAN 1 = Interrupt 0 = Interrupt C1RXIE: ECA	IA Channel 3 E request enable request has er 1 Event Interru request enable request not en	Data Transfer C ed labled pt Enable bit ⁽¹⁾ ed abled Data Ready Inte)								
bit 4	DMA3IE: DM 1 = Interrupt 0 = Interrupt C1IE: ECAN 1 = Interrupt 0 = Interrupt C1RXIE: ECA 1 = Interrupt	IA Channel 3 E request enable request has er 1 Event Interru request enable request not en AN1 Receive E	Data Transfer C ed labled pt Enable bit ⁽¹⁾ ed abled Data Ready Inte)								
bit 4 bit 3 bit 2	DMA3IE: DM 1 = Interrupt 0 = Interrupt C1IE: ECAN 1 = Interrupt 0 = Interrupt 1 = Interrupt 1 = Interrupt 0 = Interrupt 0 = Interrupt	IA Channel 3 E request enable request has er 1 Event Interru request enable request not en AN1 Receive E request enable	Data Transfer C ed labled pt Enable bit ⁽¹⁾ ed abled Data Ready Inte ed abled)								
bit 4	DMA3IE: DM 1 = Interrupt 0 = Interrupt C1IE: ECAN 1 = Interrupt 0 = Interrupt C1RXIE: EC/ 1 = Interrupt 0 = Interrupt SPI2IE: SPI2	IA Channel 3 E request enable request has er 1 Event Interru request enable request not en AN1 Receive E request enable request not en	Data Transfer C ed labled pt Enable bit ⁽¹⁾ ed abled Data Ready Inte ed abled bit Enable bit)								
bit 4 bit 3 bit 2	DMA3IE: DM 1 = Interrupt 0 = Interrupt C1IE: ECAN 1 = Interrupt 0 = Interrupt C1RXIE: EC/ 1 = Interrupt 0 = Interrupt 0 = Interrupt 1 = Interrupt 1 = Interrupt 1 = Interrupt 1 = Interrupt	IA Channel 3 E request enable request has er 1 Event Interru request enable request not en AN1 Receive E request enable request not en	Data Transfer C ed labled pt Enable bit ⁽¹⁾ ed abled Data Ready Inte ed abled ot Enable bit ed)								
bit 4 bit 3 bit 2 bit 1	DMA3IE: DM 1 = Interrupt 0 = Interrupt C1IE: ECAN 1 = Interrupt 0 = Interrupt C1RXIE: ECA 1 = Interrupt 0 = Interrupt 1 = Interrupt 0 = Interrupt 0 = Interrupt 0 = Interrupt	IA Channel 3 E request enable request has er 1 Event Interru request enable request not en AN1 Receive E request enable request not en 2 Event Interrup request enable	Data Transfer C ed labled pt Enable bit ⁽¹⁾ ed abled Data Ready Inte ed abled ot Enable bit ed abled)								
bit 4 bit 3 bit 2	DMA3IE: DM 1 = Interrupt 0 = Interrupt 1 = Interrupt 0 = Interrupt 0 = Interrupt 1 = Interrupt 0 = Interrupt SPI2IE: SPI2 1 = Interrupt 0 = Interrupt 0 = Interrupt 0 = Interrupt	IA Channel 3 E request enable request has er 1 Event Interru request enable request not en AN1 Receive E request enable request not en Event Interrup request enable request not en	Data Transfer C ed labled pt Enable bit ⁽¹⁾ ed abled Data Ready Inte abled ot Enable bit ed abled pt Enable bit)								

7 4 2 ---

Note 1: Interrupts are disabled on devices without ECAN[™] modules.

REGISTER 8-7: DMACS0: DMA CONTROLLER STATUS REGISTER 0 (CONTINUED)

bit 3	XWCOL3: Channel 3 DMA RAM Write Collision Flag bit
	1 = Write collision detected
	0 = No write collision detected
bit 2	XWCOL2: Channel 2 DMA RAM Write Collision Flag bit
	1 = Write collision detected
	0 = No write collision detected
bit 1	XWCOL1: Channel 1 DMA RAM Write Collision Flag bit
	1 = Write collision detected
	0 = No write collision detected
bit 0	XWCOL0: Channel 0 DMA RAM Write Collision Flag bit
	1 = Write collision detected

0 = No write collision detected

REGISTER	R 9-3: PLLFE	BD: PLL FEE	DBACK DIV	ISOR REGIS	STER "							
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0					
	—	_	_	—	—	_	PLLDIV<8>					
bit 15							bit 8					
R/W-0	D/M/ O			R/W-0	R/W-0	R/W-0						
R/W-U	R/W-0	R/W-1	R/W-1		R/W-U	R/W-U	R/W-0					
			PLLD	IV<7:0>								
bit 7							bit C					
Legend:												
R = Readable bit		W = Writable	bit	U = Unimpler	mented bit, read	l as '0'						
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknown						
bit 15-9	Unimplemen	ted: Read as '	0'									
bit 8-0	PLLDIV<8:0>	>: PLL Feedba	ck Divisor bits	(also denoted	as 'M', PLL mu	ltiplier)						
	111111111	= 513										
	•											
	•											
	•											
	000110000=	000110000 = 50 (default)										
	•											
	•											
	•											
	000000010 =											

REGISTER 9-3-PLLEBD PLL FEEDBACK DIVISOR REGISTER⁽¹⁾

00000001 = 3 000000000 = 2

Note 1: This register is reset only on a Power-on Reset (POR).

REGISTERS	9-5: ACLI		ARY CONT	ROL REGIST	ER							
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
_	_	SELACLK	AOSCI	CMD<1:0> APSTSCLR<2:0>								
bit 15							bit 8					
R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
ASRCSEL	0-0	0-0	0-0	0-0	0-0	0-0	0-0					
bit 7	_	—				—	bit					
							DIL					
Legend:												
R = Readable	e bit	W = Writable I	oit	U = Unimpler	mented bit, read	d as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown					
bit 15-14	Unimpleme	ented: Read as '0)'									
bit 13	SELACLK: Select Auxiliary Clock Source for Auxiliary Clock Divider											
	•	y Oscillators prov			•							
bit 12-11	 0 = PLL output (Fosc) provides the source clock for the Auxiliary Clock Divider AOSCMD<1:0>: Auxiliary Oscillator Mode 											
	11 = EC External Clock Mode Select											
	10 = XT Oscillator Mode Select											
	01 = HS Oscillator Mode Select											
		00 = Auxiliary Oscillator Disabled APSTSCLR<2:0>: Auxiliary Clock Output Divider										
bit 10-8			Clock Output	Divider								
		111 = divided by 1										
	110 = divided by 2 101 = divided by 4											
	100 = divided by 8											
	011 = divided by 16											
	010 = divide	•										
	001 = divide	ed by 64 ed by 256 (defaul	t)									
bit 7		Select Reference	,	e for Auxiliary	Clock							
~		Oscillator is the		•	0.001							
		y Oscillator is the										
	-											

REGISTER 9-5: ACLKCON: AUXILIARY CONTROL REGISTER⁽¹⁾

Note 1: This register is reset only on a Power-on Reset (POR).

Unimplemented: Read as '0'

bit 6-0

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	—			IC2R<4:0>		
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	_	_			IC1R<4:0>		
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	x = Bit is unknown			
		1 Dit lo oot			arcu	X = Dit 15 unit	
							10111
bit 15-13		nted: Read as '					
	Unimpleme		0'				
bit 15-13	Unimplemei IC2R<4:0>: / 11111 = Inp	nted: Read as 'i Assign Input Ca ut tied to Vss	0'				
bit 15-13	Unimplemen IC2R<4:0>: . 11111 = Inp 11001 = Inp	n ted: Read as ' Assign Input Ca	0'				
bit 15-13	Unimplemei IC2R<4:0>: / 11111 = Inp	nted: Read as 'i Assign Input Ca ut tied to Vss	0'				
bit 15-13	Unimplemen IC2R<4:0>: . 11111 = Inp 11001 = Inp	nted: Read as 'i Assign Input Ca ut tied to Vss	0'				
bit 15-13	Unimplemen IC2R<4:0>: , 11111 = Inp 11001 = Inp •	nted: Read as ' Assign Input Ca ut tied to Vss ut tied to RP25	0'				
bit 15-13	Unimplemen IC2R<4:0>: , 11111 = Inp 11001 = Inp	nted: Read as ' Assign Input Ca ut tied to Vss ut tied to RP25 ut tied to RP1	0'				
bit 15-13 bit 12-8	Unimplemen IC2R<4:0>: . 11111 = Inp 11001 = Inp	nted: Read as ' Assign Input Ca ut tied to Vss ut tied to RP25 ut tied to RP1 ut tied to RP0	^{0'} pture 2 (IC2)				
bit 15-13 bit 12-8 bit 7-5	Unimplemen IC2R<4:0>: , 11111 = Inp 11001 = Inp • • • • 00001 = Inp 00000 = Inp	nted: Read as ' Assign Input Ca ut tied to Vss ut tied to RP25 ut tied to RP1 ut tied to RP0 nted: Read as '	₀ , pture 2 (IC2)	to the correspo	onding RPn pin		
bit 15-13 bit 12-8	Unimplemen IC2R<4:0>: , 11111 = Inp 11001 = Inp • • • • • • • • • • • • • • • • • • •	nted: Read as ' Assign Input Ca ut tied to Vss ut tied to RP25 ut tied to RP1 ut tied to RP0	₀ , pture 2 (IC2)	to the correspo	onding RPn pin		

00001 = Input tied to RP1 00000 = Input tied to RP0

REGISTER 11-13: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—			SS2R<4:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown

bit 15-5 Unimplemented: Read as '0'

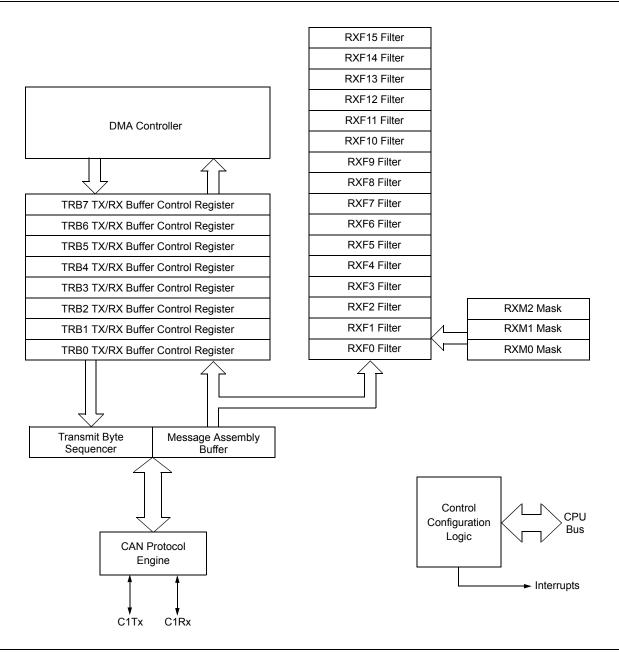
bit 4-0 SS2R<4:0>: Assign SPI2 Slave Select Input (SS2) to the corresponding RPn pin

	Input tied to Vss Input tied to RP25
•	

•

•

00001 = Input tied to RP1 00000 = Input tied to RP0


R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽²⁾	—	TSIDL ⁽¹⁾	_	—			_
bit 15							bit
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
—	TGATE ⁽²⁾	TCKPS	<1:0> ⁽²⁾	_	—	TCS ⁽²⁾	—
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkne	own
bit 15	TON: Timery	On bit ⁽²⁾					
	1 = Starts 16-						
L:1 1 1	0 = Stops 16-		<u>,</u> ,				
bit 14	-	ted: Read as '(
bit 13		in Idle Mode bit		vice enters Idle	modo		
		timer operation			moue		
bit 12-7	Unimplemen	ted: Read as ')'				
bit 6	TGATE: Time	erx Gated Time	Accumulatio	n Enable bit ⁽²⁾			
	When TCS =						
	This bit is igno						
	<u>When TCS =</u> 1 = Catod time	<u>0:</u> ne accumulatior	onablod				
		le accumulation					
bit 5-4	TCKPS<1:0>	: Timerx Input	Clock Presca	ale Select bits ⁽²⁾			
	11 = 1:256 pr						
	10 = 1:64 pre						
	01 = 1:8 pres 00 = 1:1 pres						
bit 3-2	-	ited: Read as ')'				
bit 1	•	Clock Source S					
		clock from TxCl					
	0 = Internal cl						
	Unimplemented: Read as '0'						

REGISTER 13-2: TxCON: TIMER CONTROL REGISTER (x = 3 OR 5)

Note 1: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

2: When the 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (TxCON<3>), these bits have no effect.

BUFFER 19-7: ECAN™ MESSAGE BUFFER WORD 6

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	rte 7			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	rte 6			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-8 Byte 7<15:8>: ECAN™ Message Byte 7

bit 7-0 Byte 6<7:0>: ECAN Message Byte 6

BUFFER 19-8: ECAN™ MESSAGE BUFFER WORD 7

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
_	_	_			FILHIT<4:0> ⁽¹)		
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—		—		—	_	—	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable b		bit U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **FILHIT<4:0>:** Filter Hit Code bits⁽¹⁾

Encodes number of filter that resulted in writing this buffer.

bit 7-0 Unimplemented: Read as '0'

Note 1: These bits are only written by the module for receive buffers, and are unused for transmit buffers.

21.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. "Analog-to-Digital Converter (ADC)" (DS70183) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices have up to 13 ADC input channels.

The AD12B bit (AD1CON1<10>) allows each of the ADC modules to be configured by the user as either a 10-bit, 4-sample/hold ADC (default configuration) or a 12-bit, 1-sample/hold ADC.

Note: The ADC module needs to be disabled before modifying the AD12B bit.

21.1 Key Features

The 10-bit ADC configuration has the following key features:

- Successive Approximation (SAR) conversion
- Conversion speeds of up to 1.1 Msps
- Up to 13 analog input pins
- External voltage reference input pins
- Simultaneous sampling of up to four analog input pins
- Automatic Channel Scan mode
- Selectable conversion trigger source
- Selectable Buffer Fill modes
- Four result alignment options (signed/unsigned, fractional/integer)
- · Operation during CPU Sleep and Idle modes

The 12-bit ADC configuration supports all the above features, except:

- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only one sample/hold amplifier in the 12-bit configuration, so simultaneous sampling of multiple channels is not supported

Depending on the particular device pinout, the ADC can have up to 13 analog input pins, designated AN0 through AN12. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs can be shared with other analog input pins. The actual number of analog input pins and external voltage reference input configuration depends on the specific device.

Block diagrams of the ADC module are shown in Figure 21-1 and Figure 21-2.

21.2 ADC Initialization

The following configuration steps should be performed.

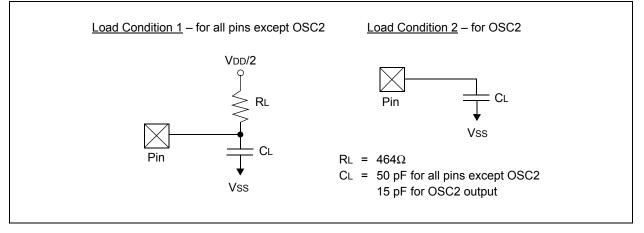
- 1. Configure the ADC module:
 - a) Select port pins as analog inputs (AD1PCFGH<15:0> or AD1PCFGL<15:0>)
 - b) Select voltage reference source to match expected range on analog inputs (AD1CON2<15:13>)
 - c) Select the analog conversion clock to match desired data rate with processor clock (AD1CON3<7:0>)
 - d) Determine how many S/H channels are used (AD1CON2<9:8> and AD1PCFGH<15:0> or AD1PCFGL<15:0>)
 - e) Select the appropriate sample/conversion sequence (AD1CON1<7:5> and AD1CON3<12:8>)
 - f) Select how conversion results are presented in the buffer (AD1CON1<9:8>)
 - g) Turn on ADC module (AD1CON1<15>)
- 2. Configure ADC interrupt (if required):
 - a) Clear the AD1IF bit
 - b) Select ADC interrupt priority

21.3 ADC and DMA

If more than one conversion result needs to be buffered before triggering an interrupt, DMA data transfers can be used. ADC1 can trigger a DMA data transfer. If ADC1 is selected as the DMA IRQ source, a DMA transfer occurs when the AD1IF bit gets set as a result of an ADC1 sample conversion sequence.

The SMPI<3:0> bits (AD1CON2<5:2>) are used to select how often the DMA RAM buffer pointer is incremented.

The ADDMABM bit (AD1CON1<12>) determines how the conversion results are filled in the DMA RAM buffer area being used for ADC. If this bit is set, DMA buffers are written in the order of conversion. The module provides an address to the DMA channel that is the same as the address used for the non-DMA standalone buffer. If the ADDMABM bit is cleared, then DMA buffers are written in Scatter/Gather mode. The module provides a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer.


30.2 AC Characteristics and Timing Parameters

This section defines dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 AC characteristics and timing parameters.

TABLE 30-14:	TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC
--------------	---

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial
	$-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended
	Operating voltage VDD range as described in Table 30-1.

FIGURE 30-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 30-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
DO50	Cosco	OSC2/SOSCO pin	_	-	15	pF	In XT and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O pins and OSC2	—	_	50	pF	EC mode
DO58	Св	SCLx, SDAx	—	_	400	pF	In l ² C™ mode

TABLE 30-33:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING
REQUIREMENTS

			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature-40°C ≤TA ≤+85°C for Industrial-40°C ≤TA ≤+125°C for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCK Input Frequency	_	_	11	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—	_	_	ns	See parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	_		ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	_		ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	—		ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_		ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	_	ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	—		ns	_
SP51	TssH2doZ	SSx	10	_	50	ns	—
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	_		ns	See Note 4
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	_	_	50	ns	_

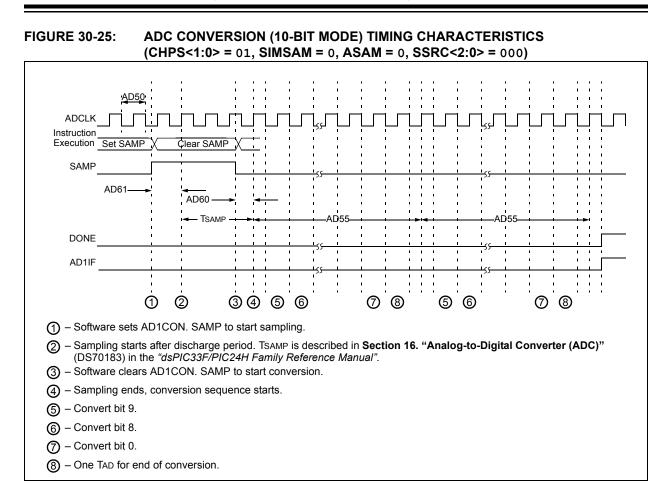
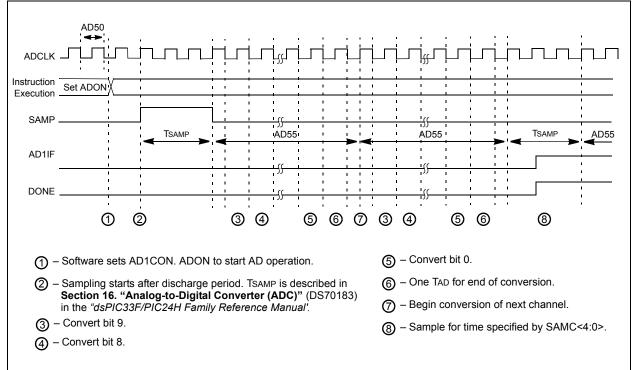
Note 1: These parameters are characterized, but are not tested in manufacturing.

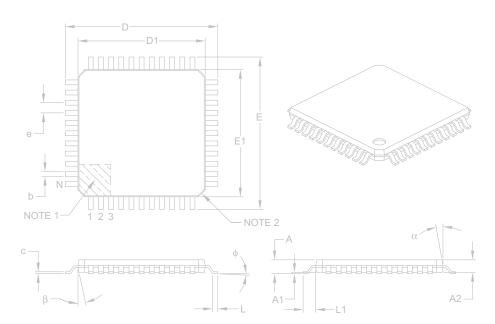
2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04


FIGURE 30-26:ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01,
SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)

© 2007-2012 Microchip Technology Inc.

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	6
0	Dimension Limits	MIN	NOM	MAX
Number of Leads	N		44	
Lead Pitch	е		0.80 BSC	
Overall Height	А	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1		1.00 REF	
Foot Angle	ф	0°	3.5°	7°
Overall Width	E		12.00 BSC	
Overall Length	D		12.00 BSC	
Molded Package Width	E1		10.00 BSC	
Molded Package Length	D1		10.00 BSC	
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.30	0.37	0.45
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

Dimensioning and tolerancing per ASME Y14.5M.
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

TABLE A-2: MAJOR SECTION Section Name	UPDATES (CONTINUED)
	Update Description
Section 10.0 "Power-Saving Features"	 Added the following registers: PMD1: Peripheral Module Disable Control Register 1 (Register 10-1) PMD2: Peripheral Module Disable Control Register 2 (Register 10-2) PMD3: Peripheral Module Disable Control Register 3 (Register 10-3)
Section 11.0 "I/O Ports"	Removed Table 11-1 and added reference to pin diagrams for I/O pin availability and functionality. Added paragraph on ADPCFG register default values to Section 11.3 "Configuring Analog Port Pins" . Added Note box regarding PPS functionality with input mapping to
	Section 11.6.2.1 "Input Mapping".
Section 16.0 "Serial Peripheral Interface (SPI)"	Added Note 2 and 3 to the SPIxCON1 register (see Register 16-2).
Section 18.0 "Universal Asynchronous Receiver Transmitter (UART)"	Updated the Notes in the UxMODE register (see Register 18-1). Updated the UTXINV bit settings in the UxSTA register and added Note 1 (see Register 18-2).
Section 19.0 "Enhanced CAN (ECAN™) Module"	Changed bit 11 in the ECAN Control Register 1 (CiCTRL1) to Reserved (see Register 19-1).
Section 21.0 "10-bit/12-bit Analog- to-Digital Converter (ADC)"	Replaced the ADC1 Module Block Diagrams with new diagrams (see Figure 21-1 and Figure 21-2).
	Updated bit values for ADCS<7:0> and added Notes 1 and 2 to the ADC1 Control Register 3 (AD1CON3) (see Register 21-3).
	Added Note 2 to the ADC1 Input Scan Select Register Low (AD1CSSL) (see Register 21-7).
	Added Note 2 to the ADC1 Port Configuration Register Low (AD1PCFGL) (see Register 21-8).
Section 22.0 "Audio Digital-to- Analog Converter (DAC)"	Updated the midpoint voltage in the last sentence of the first paragraph. Updated the voltage swing values in the last sentence of the last paragraph in Section 22.3 "DAC Output Format" .
Section 23.0 "Comparator Module"	Updated the Comparator Voltage Reference Block Diagram (see Figure 23-2).
Section 24.0 "Real-Time Clock and Calendar (RTCC)"	Updated the minimum positive adjust value for CAL<7:0> in the RTCC Calibration and Configuration (RCFGCAL) Register (see Register 24-1).
Section 27.0 "Special Features"	Added Note 1 to the Device Configuration Register Map (see Table 27-1). Updated Note 1 in the dsPIC33F Configuration Bits Description (see Table 27-2).

TABLE A-2: MAJOR SECTION UPDATES (CONTINUED)