

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DCI, DMA, I ² S, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 13x10b/12b; D/A 2x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128gp804-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-26: REAL-TIME CLOCK AND CALENDAR REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ALRMVAL	0620		Alarm Value Register Window based on APTR<1:0>							XXXX								
ALCFGRPT	0622	ALRMEN CHIME AMASK<3:0> ALRMPTR<1:0> ARPT<7:-0>								0000								
RTCVAL	0624						RTCC	Value Registe	er Window bas	ed on RTCF	PTR<1:0>							XXXX
RCFGCAL	0626	RTCEN	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPT	R<1:0> CAL<7:0>						0000			
PADCFG1	02FC	—	_	—	_	—	_	—	—	—	—	—	—	_		RTSECSEL	PMPTTL	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-27: CRC REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CRCCON	0640	—	_	CSIDL		VWORD<4:0> CR					CRCMPT	—	CRCGO	PLEN<3:0>				0000
CRCXOR	0642					X<15:0>										0000		
CRCDAT	0644				CRC Data Input Register									0000				
CRCWDAT	0646		CRC Result Register										0000					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-28: DUAL COMPARATOR REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMCON	0630	CMIDL	—	C2EVT	C1EVT	C2EN	C1EN	C2OUTEN	C1OUTEN	C2OUT	C1OUT	C2INV	C1INV	C2NEG	C2POS	C1NEG	C1POS	0000
CVRCON	0632	—	-	-	_		-	_	_	CVREN	CVROE	CVRR	CVRSS		CVR	<3:0>		0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-29: PORTA REGISTER MAP FOR dsPIC33FJ128GP202/802, dsPIC33FJ64GP202/802 AND dsPIC33FJ32GP302

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	-	—	_	-	-	—	-	—	-	-	—	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	001F
PORTA	02C2	—	—	_	-	—	—	_	_	_	-	—	RA4	RA3	RA2	RA1	RA0	XXXX
LATA	02C4	—	_	_	—	—	—	_	_	_	—	—	LATA4	LATA3	LATA2	LATA1	LATA0	XXXX
ODCA	02C6	_	_		_	_	_			_	_	_	_	_	_	_	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

© 2007-2012 Microchip Technology Inc.

External Reset (EXTR) 6.5

The external Reset is generated by driving the MCLR pin low. The MCLR pin is a Schmitt trigger input with an additional glitch filter. Reset pulses that are longer than the minimum pulse-width will generate a Reset. Refer to Section 30.0 "Electrical Characteristics" for minimum pulse-width specifications. The External Reset (MCLR) Pin (EXTR) bit in the Reset Control register (RCON) is set to indicate the MCLR Reset.

6.5.0.1 EXTERNAL SUPERVISORY CIRCUIT

Many systems have external supervisory circuits that generate reset signals to Reset multiple devices in the system. This external Reset signal can be directly connected to the MCLR pin to Reset the device when the rest of system is Reset.

6.5.0.2 INTERNAL SUPERVISORY CIRCUIT

When using the internal power supervisory circuit to Reset the device, the external reset pin (MCLR) should be tied directly or resistively to VDD. In this case, the MCLR pin will not be used to generate a Reset. The external reset pin (MCLR) does not have an internal pull-up and must not be left unconnected.

6.6 Software RESET Instruction (SWR)

Whenever the RESET instruction is executed, the device will assert SYSRST, placing the device in a special Reset state. This Reset state will not reinitialize the clock. The clock source in effect prior to the RESET instruction will remain. SYSRST is released at the next instruction cycle, and the reset vector fetch will commence.

The Software Reset (Instruction) Flag (SWR) bit in the Reset Control (RCON<6>) register is set to indicate the software Reset.

6.7 Watchdog Time-out Reset (WDTO)

Whenever a Watchdog time-out occurs, the device will asynchronously assert SYSRST. The clock source will remain unchanged. A WDT time-out during Sleep or Idle mode will wake-up the processor, but will not reset the processor.

The Watchdog Timer Time-out Flag (WDTO) bit in the Reset Control register (RCON<4>) is set to indicate the Watchdog Reset. Refer to Section 27.4 "Watchdog Timer (WDT)" for more information on Watchdog Reset.

6.8 Trap Conflict Reset

If a lower-priority hard trap occurs while a higher-priority trap is being processed, a hard trap conflict Reset occurs. The hard traps include exceptions of priority level 13 through level 15, inclusive. The address error (level 13) and oscillator error (level 14) traps fall into this category.

The Trap Reset Flag (TRAPR) bit in the Reset Control register (RCON<15>) is set to indicate the Trap Conflict Reset. Refer to Section 7.0 "Interrupt Controller" for more information on trap conflict Resets.

6.9 Configuration Mismatch Reset

To maintain the integrity of the peripheral pin select control registers, they are constantly monitored with shadow registers in hardware. If an unexpected change in any of the registers occur (such as cell disturbances caused by ESD or other external events), a configuration mismatch Reset occurs.

The Configuration Mismatch Flag (CM) bit in the Reset Control register (RCON<9>) is set to indicate the configuration mismatch Reset. Refer to Section 11.0 "I/O Ports" for more information on the configuration mismatch Reset.

Note: The configuration mismatch feature and associated reset flag is not available on all devices.

6.10 Illegal Condition Device Reset

An illegal condition device Reset occurs due to the following sources:

- Illegal Opcode Reset
- Uninitialized W Register Reset
- · Security Reset

The Illegal Opcode or Uninitialized W Access Reset Flag (IOPUWR) bit in the Reset Control register (RCON<14>) is set to indicate the illegal condition device Reset.

6.10.1 ILLEGAL OPCODE RESET

A device Reset is generated if the device attempts to execute an illegal opcode value that is fetched from program memory.

The illegal opcode Reset function can prevent the device from executing program memory sections that are used to store constant data. To take advantage of the illegal opcode Reset, use only the lower 16 bits of

each program memory section to store the data values. The upper 8 bits should be programmed with 0x3F, which is an illegal opcode value.

6.10.2 UNINITIALIZED W REGISTER RESET

Any attempts to use the uninitialized W register as an address pointer will Reset the device. The W register array (with the exception of W15) is cleared during all resets and is considered uninitialized until written to.

6.10.3 SECURITY RESET

If a Program Flow Change (PFC) or Vector Flow Change (VFC) targets a restricted location in a protected segment (Boot and Secure Segment), that operation will cause a security Reset.

The PFC occurs when the Program Counter is reloaded as a result of a Call, Jump, Computed Jump, Return, Return from Subroutine, or other form of branch instruction.

The VFC occurs when the Program Counter is reloaded with an Interrupt or Trap vector.

Refer to Section 27.8 "Code Protection and CodeGuard™ Security" for more information on Security Reset.

6.11 Using the RCON Status Bits

The user application can read the Reset Control register (RCON) after any device Reset to determine the cause of the reset.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.

Table 6-3 provides a summary of the reset flag bit operation.

Flag Bit	Set by:	Cleared by:
TRAPR (RCON<15>)	Trap conflict event	POR, BOR
IOPWR (RCON<14>)	Illegal opcode or uninitialized W register access or Security Reset	POR, BOR
CM (RCON<9>)	Configuration Mismatch	POR, BOR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET instruction	POR, BOR
WDTO (RCON<4>)	WDT time-out	PWRSAV instruction, CLRWDT instruction, POR, BOR
SLEEP (RCON<3>)	PWRSAV #SLEEP instruction	POR, BOR
IDLE (RCON<2>)	PWRSAV #IDLE instruction	POR, BOR
BOR (RCON<1>)	POR, BOR	—
POR (RCON<0>)	POR	—

Note: All Reset flag bits can be set or cleared by user software.

TABLE 6-3: RESET FLAG BIT OPERATION

U-U							K/W-0
	DMA11F	AD1IF	UTIXIE	UIRXIE	SPITIF	SPI1EIF	1315
DIT 15							DIT 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF
bit 7							bit 0
Legena: R = Readable	bit	M = M/ritable	hit	II = I Inimplei	mented hit rear	1 26 '0'	
-n = Value at F		'1' = Bit is set		$0^{\circ} = \text{Bit is cle}$	ared	x = Bit is unkn	own
		1 Dit lo oct				X Bit lo unitin	
bit 15	Unimplemen	ted: Read as '	0'				
bit 14	DMA1IF: DM	A Channel 1 D	ata Transfer C	complete Interr	rupt Flag Status	bit	
	1 = Interrupt r	equest has oc	curred				
	0 = Interrupt r	equest has no	toccurred				
bit 13	AD1IF: ADC1	Conversion C	omplete Interr	rupt Flag Statu	is bit		
	1 = Interrupt r 0 = Interrupt r	equest has oc equest has no	t occurred				
bit 12	U1TXIF: UAR	T1 Transmitte	r Interrupt Flag	g Status bit			
	1 = Interrupt r	equest has oc	curred				
	0 = Interrupt r	equest has no	t occurred				
bit 11	U1RXIF: UAF	RT1 Receiver I	nterrupt Flag S	Status bit			
	1 = Interrupt r	equest has oc equest has no	curred t occurred				
bit 10	SPI1IF: SPI1	Event Interrup	t Flag Status b	bit			
	1 = Interrupt r	equest has oc	curred				
	0 = Interrupt r	equest has no	t occurred				
bit 9	SPI1EIF: SPI	1 Error Interru	ot Flag Status	bit			
	1 = Interrupt r	equest has oc equest has no	curred				
bit 8	T3IF: Timer3	Interrupt Flag	Status bit				
	1 = Interrupt r	equest has oc	curred				
	0 = Interrupt r	equest has no	t occurred				
bit 7	T2IF: Timer2	Interrupt Flag	Status bit				
	1 = Interrupt r	equest has oc	curred				
bit 6	OC2IF: Outpu	it Compare Ch	annel 2 Interri	upt Flag Status	s bit		
Sit 0	1 = Interrupt r	request has oc	curred	apt i lag olalat	5 510		
	0 = Interrupt r	equest has no	t occurred				
bit 5	IC2IF: Input C	Capture Chann	el 2 Interrupt F	-lag Status bit			
	1 = Interrupt r	equest has oc	curred				
hit 1			ata Transfor C	`omplete Interr	runt Elag Status	bit	
DIL 4	1 = Interrupt r	equest has oc	ala mansier C curred		upi riag Status	bit	
	0 = Interrupt r	equest has no	toccurred				
bit 3	T1IF: Timer1	Interrupt Flag	Status bit				
	1 = Interrupt r 0 = Interrupt r	equest has oc equest has no	curred t occurred				

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

REGISTER	7-27: IPC1	5: INTERRUPT	PRIORITY	CONTROL I	REGISTER 1	5	
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
	—	—		—		RTCIP<2:0>	
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		DMA5IP<2:0>		_		DCIIP<2:0>	
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable I	bit	U = Unimplei	mented bit, rea	id as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own
	111 = Intern	upt is priority 7 (function of the second seco	nighest priori	ty interrupt)			
bit 7	Unimpleme	nted: Read as '0)'				
bit 6-4	DMA5IP<2:0 111 = Intern • • • • • • • • • • • • • • • • • • •	0>: DMA Channe upt is priority 7 (f upt is priority 1 upt source is disa	el 5 Data Tra nighest priori abled	nsfer Complete ty interrupt)	e Interrupt Prior	rity bits	
bit 3-0	DCIIP<2:0>:	DCI Event Inter	rupt Priority	bits			
	111 = Interru •	upt is priority 7 (ł	nighest priori	ty interrupt)			
	• 001 = Interru 000 = Interru	upt is priority 1 upt source is disa	abled				

8.1 DMA Resources

Many useful resources related to the CPU are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en532311

8.1.1 KEY RESOURCES

- Section 38. "Direct Memory Access (DMA) (Part III)" (DS70215)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

8.2 DMAC Registers

Each DMAC Channel x (x = 0, 1, 2, 3, 4, 5, 6 or 7) contains the following registers:

- A 16-bit DMA Channel Control register (DMAxCON)
- A 16-bit DMA Channel IRQ Select register (DMAxREQ)
- A 16-bit DMA RAM Primary Start Address register (DMAxSTA)
- A 16-bit DMA RAM Secondary Start Address register (DMAxSTB)
- A 16-bit DMA Peripheral Address register (DMAxPAD)
- A 10-bit DMA Transfer Count register (DMAxCNT)

An additional pair of status registers, DMACS0 and DMACS1, are common to all DMAC channels. DMACS0 contains the DMA RAM and SFR write collision flags, XWCOLx and PWCOLx, respectively. DMACS1 indicates DMA channel and Ping-Pong mode status.

The DMAxCON, DMAxREQ, DMAxPAD and DMAxCNT are all conventional read/write registers. Reads of DMAxSTA or DMAxSTB reads the contents of the DMA RAM Address register. Writes to DMAx-STA or DMAxSTB write to the registers. This allows the user to determine the DMA buffer pointer value (address) at any time.

The interrupt flags (DMAxIF) are located in an IFSx register in the interrupt controller. The corresponding interrupt enable control bits (DMAxIE) are located in an IECx register in the interrupt controller, and the corresponding interrupt priority control bits (DMAxIP) are located in an IPCx register in the interrupt controller.

REGISTER 11-17: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			RP1R<4:0>		
bit 15		•					bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP0R<4:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown

bit 15-13	Unimplemented: Read as '0'
-----------	----------------------------

bit 12-8 **RP1R<4:0>:** Peripheral Output Function is Assigned to RP1 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP0R<4:0>:** Peripheral Output Function is Assigned to RP0 Output Pin bits (see Table 11-2 for peripheral function numbers)

REGISTER 11-18: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP3R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP2R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP3R<4:0>:** Peripheral Output Function is Assigned to RP3 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP2R<4:0>:** Peripheral Output Function is Assigned to RP2 Output Pin bits (see Table 11-2 for peripheral function numbers)

11.0	11.0	11.0	11.0	11.0	11.0		
0-0	0-0	0-0	0-0	0-0	0-0	R/W-U	R/W-U
	_	_	—	_	—	AMSK9	AMSK8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			iown

bit 15-10 Unimplemented: Read as '0'

bit 9-0 AMSKx: Mask for Address Bit x Select bit

1 = Enable masking for bit x of incoming message address; bit match not required in this position

0 = Disable masking for bit x; bit match required in this position

REGISTER 18-1: UxMODE: UARTx MODE REGISTER (CONTINUED)

bit 4	URXINV: Receive Polarity Inversion bit 1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	 BRGH: High Baud Rate Enable bit 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit 1 = Two Stop bits 0 = One Stop bit

- **Note 1:** Refer to **Section 17. "UART**" (DS70188) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for receive or transmit operation.
 - 2: This feature is only available for the 16x BRG mode (BRGH = 0).

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

REGISTER 19-11: CiFE	EN1: ECAN™ ACCEP	TANCE FILTER ENA	ABLE REGISTER
----------------------	------------------	------------------	---------------

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8
bit 15							bit 8

| R/W-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| FLTEN7 | FLTEN6 | FLTEN5 | FLTEN4 | FLTEN3 | FLTEN2 | FLTEN1 | FLTEN0 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Writable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0

FLTENn: Enable Filter n to Accept Messages bits

1 = Enable Filter n

0 = Disable Filter n

REGISTER 19-12: CIBUFPNT1: ECAN™ FILTER 0-3 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	F3BF	P<3:0>			F2B	P<3:0>			
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	F1BF	P<3:0>			F0B	P<3:0>			
bit 7							bit 0		
Legend:		C = Writable	bit, but only '0	' can be writter	n to clear the b	it			
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-12	F3BP<3:0>:	RX Buffer mas	k for Filter 3						
	1111 = Filte	1111 = Filter hits received in RX FIFO buffer							
	1110 = Filte	1110 = Filter hits received in RX Buffer 14							
	•								
•									
	•								
	0001 = Filte	r hits received i	n RX Buffer 1						
	0000 = Filte	r hits received in	n RX Buffer 0						

bit 7-4 **F1BP<3:0>:** RX Buffer mask for Filter 1 (same values as bit 15-12)

bit 3-0 F0BP<3:0>: RX Buffer mask for Filter 0 (same values as bit 15-12)

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

REGISTER	CEGISTER 19-24. CIRROVFT. ECAN TRECEIVE BUFFER OVERFLOW REGISTER T								
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0		
RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8		
bit 15							bit 8		
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0		
RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0		
bit 7							bit 0		
Legend: C = Writable bit, but only '0' can be written to clear the bit									
R = Readable bit W = Writable bit			U = Unimpler	mented bit, read	as '0'				

'0' = Bit is cleared

x = Bit is unknown

DECIOTED 40.04. CODVOVE4. FOANIM DECENCE DUFFED OVEDELOW DECIOTED 4

bit 15-0

-n = Value at POR

RXOVF<15:0>: Receive Buffer n Overflow bits

'1' = Bit is set

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition

REGISTER 19-25: CIRXOVF2: ECAN™ RECEIVE BUFFER OVERFLOW REGISTER 2

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24
bit 15 bit							

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF23 | RXOVF22 | RXOVF21 | RXOVF20 | RXOVF19 | RXOVF18 | RXOVF17 | RXOVF16 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Writable bit, but only '0'	can be written to clear the bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

RXOVF<31:16>: Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition

	1-0. AD101	ISU. ADOT II				N	
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NB	—				CH0SB<4:0>		
bit 15							bit 8
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CHUNA	—				CH0SA<4:0>		
DIL 7							DIL U
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
				0 2000 000			
bit 15	CH0NB: Cha	nnel 0 Negative	e Input Select	for Sample B t	bit		
	Same definition	on as bit 7.					
bit 14-13	Unimplemen	ted: Read as '	כי				
bit 12-8	CH0SB<4:0>	: Channel 0 Po	sitive Input S	elect for Sampl	e B bits		
	01100 = Cha	nnel 0 positive	input is AN12	2			
	01011 = Cha	nnel 0 positive	input is AN11				
	•						
	•	nnol 0 nositivo	input in ANR(1)			
	00111 = Cha	nnel 0 positive	input is AN7 ⁽	1)			
	00110 = Cha	nnel 0 positive	input is AN6 ⁽	1)			
	•						
	•						
	00010 = Cha	nnel 0 positive	input is AN2				
	00001 = Cha	nnel 0 positive	input is AN1				
bit 7	CH0NA: Cha	nnel 0 Negative	e Input Select	for Sample A b	bit		
	1 = Channel () negative inpu	t is AN1				
	0 = Channel () negative inpu	t is VREF-				
bit 6-5	Unimplemen	ted: Read as '	כ'				
bit 4-0	CH0SA<4:0>	: Channel 0 Po	sitive Input S	elect for Sampl	e A bits		
	01100 = Cha	nnel 0 positive	input is AN12	2			
	•		input is ANT				
	•						
	• 01000 = Cha	nnel 0 positive	input is AN8 ⁽	1)			
	00111 = Cha	nnel 0 positive	input is AN7(1)			
	00110 = Cha	nnel 0 positive	input is AN6 ⁽	1)			
	•						
	•	nnal ()'''					
	00010 = Cha	nnel 0 positive	input is AN2				
	00000 = Cha	nnel 0 positive	input is AN0				

REGISTER 21-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER

Note 1: These bit settings are reserved on dsPIC33FJ128GPX02, dsPIC33FJ64GPX02 and dsPIC33FJ32GPX02 (28-pin) devices.

REGISTER 22-3: DAC1DFLT: DAC DEFAULT DATA REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DACDF	LT<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DACD	FLT<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable b	it	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 DACDFLT<15:0>: DAC Default Value bits

REGISTER 22-4: DAC1LDAT: DAC LEFT DATA REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DACLD	AT<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DACL	DAT<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 DACLDAT<15:0>: Left Channel Data Port bits

REGISTER 22-5: DAC1RDAT: DAC RIGHT DATA REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DACRD	AT<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DACRD	AT<7:0>			
bit 7							bit 0
l egend:							

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

DACRDAT<15:0>: Right Channel Data Port bits bit 15-0

FIGURE 25-2: CRC GENERATOR RECONFIGURED FOR $x^{16} + x^{12} + x^5 + 1$

25.2 User Interface

25.2.1 DATA INTERFACE

To start serial shifting, a '1' must be written to the CRCGO bit.

The module incorporates a FIFO that is 8 deep when PLEN (PLEN<3:0>) > 7, and 16 deep, otherwise. The data for which the CRC is to be calculated must first be written into the FIFO. The smallest data element that can be written into the FIFO is one byte. For example, if PLEN = 5, then the size of the data is PLEN + 1 = 6. The data must be written as follows:

```
data[5:0] = crc_input[5:0]
data[7:6] = `bxx
```

Once data is written into the CRCWDAT MSb (as defined by PLEN), the value of VWORD (VWORD<4:0>) increments by one. The serial shifter starts shifting data into the CRC engine when CRCGO = 1 and VWORD > 0. When the MSb is shifted out, VWORD decrements by one. The serial shifter continues shifting until the VWORD reaches 0. Therefore, for a given value of PLEN, it will take (PLEN + 1) * VWORD number of clock cycles to complete the CRC calculations.

When VWORD reaches 8 (or 16), the CRCFUL bit will be set. When VWORD reaches 0, the CRCMPT bit will be set.

To continually feed data into the CRC engine, the recommended mode of operation is to initially "prime" the FIFO with a sufficient number of words so no interrupt is generated before the next word can be written. Once that is done, start the CRC by setting the CRCGO bit to '1'. From that point onward, the VWORD<4:0> bits should be polled. If they read less than 8 or 16, another word can be written into the FIFO. To empty words already written into a FIFO, the CRCGO bit must be set to '1' and the CRC shifter allowed to run until the CRCMPT bit is set.

Also, to get the correct CRC reading, it will be necessary to wait for the CRCMPT bit to go high before reading the CRCWDAT register.

If a word is written when the CRCFUL bit is set, the VWORD Pointer will roll over to 0. The hardware will then behave as if the FIFO is empty. However, the condition to generate an interrupt will not be met; therefore, no interrupt will be generated (See Section 25.2.2 "Interrupt Operation").

At least one instruction cycle must pass after a write to CRCWDAT before a read of the VWORD bits is done.

25.2.2 INTERRUPT OPERATION

When the VWORD<4:0> bits make a transition from a value of '1' to '0', an interrupt will be generated.

25.3 Operation in Power-Saving Modes

25.3.1 SLEEP MODE

If Sleep mode is entered while the module is operating, the module will be suspended in its current state until clock execution resumes.

25.3.2 IDLE MODE

To continue full module operation in Idle mode, the CSIDL bit must be cleared prior to entry into the mode.

If CSIDL = 1, the module will behave the same way as it does in Sleep mode; pending interrupt events will be passed on, even though the module clocks are not available.

R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUSY	IRQI	M<1:0>	INCM	/<1:0>	MODE16	MODE	E<1:0>
bit 15	·					·	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAIT	B<1:0> ⁽¹⁾		WAIT	M<3:0>		WAITE	<1:0> ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readabl	e hit	W = Writable	hit	II = I Inimple	mented hit read	l as 'O'	
n = Value at		'1' = Bit is set		0 - ΟΠΠηριο 0' = Bit is cl	eared	v = Bitis unkr	
		1 - Dit 13 361	•		eared		
bit 15	BUSY: Busy	bit (Master mo	de only)				
	1 = Port is b	usy (not useful y	when the proc	essor stall is a	active)		
	0 = Port is n	ot busy					
bit 14-13	IRQM<1:0>:	Interrupt Requ	est Mode bits	0.			
	11 = Interrup	ot generated wh	en Read Buffe	$PM\Delta < 1.0 > =$	Write Buffer 3 is	PSP mode on	ed PSP mode)
	10 = No inte	rrupt generated	, processor st	all activated			'y)
	01 = Interrup	ot generated at	the end of the	read/write cyc	cle		
	00 = No inte	rrupt generated					
bit 12-11	INCM<1:0>:	Increment Mod	le bits				
	11 = PSP re	ad and write bu	ffers auto-incr	ement (Legac	y PSP mode onl	y)	
		ent ADDR<10:	U> by 1 every	read/write cyc			
	00 = No incr	ement or decre	ment of addre	SS			
bit 10	MODE16: 8-	bit/16-bit Mode	bit				
	1 = 16-bit mo 0 = 8-bit mod	ode: data registe de: data registe	er is 16 bits, a r is 8 bits, a re	read or write t ad or write to	to the data regist the data register	er invokes two ⁻ invokes one 8	8-bit transfers -bit transfer
bit 9-8	MODE<1:0>	: Parallel Port N	Aode Select b	its			
	11 = Master	mode 1 (PMCS	61, PMRD/PM	WR, PMENB,	PMBE, PMA <x:< td=""><td>0> and PMD<7</td><td>':0>)</td></x:<>	0> and PMD<7	':0>)
	10 = Master	mode 2 (PMCS	31, PMRD <u>, PM</u>	IWR, PMBE, F	PMA <x:0> and P</x:0>	MD<7:0>)	
	01 = Enhance	ced PSP, contro	l signals (PMF Port_control s	RD, PMWR, P ignals (PMRD	MCS1, PMD<7:0)> and PMA<1: 1 and PMD<7:	:()>) ()>)
hit 7-6		Data Setun to	N Read/Write \	Vait State Cor	figuration hits ⁽¹⁾		0-)
	11 = Data w	ait of 4 Tcy: mu	Itiplexed addre	ess phase of 4	TCY		
	10 = Data w	ait of 3 Tcy; mu	Itiplexed addre	ess phase of 3	3 Тсү		
	01 = Data w a	ait of 2 Tcy; mu	Itiplexed addre	ess phase of 2			
	00 = Data w	alt of 1 ICY; mu	Itiplexed addre	ess phase of 1			
bit 5-2	WAITM<3:0	>: Read to Byte	Enable Strob	e Wait State C	Configuration bits		
	1111 = Wait	of additional 15	D ICY				
	•						
	•	of additional 1	Тоу				
	0001 – Wait 0000 = No a	dditional wait c	vcles (operation	on forced into	one TCY)		
bit 1-0	WAITE<1:0>	: Data Hold Aff	er Strobe Wai	t State Config	uration bits ⁽¹⁾		
	11 = Wait of	4 TCY		g			
	10 = Wait of	3 Тсү					
	01 = Wait of	2 TCY					
	00 = Wait of	1 TCY					

DMMODE, DADALLEL DODT MODE DECISTED

Note 1: WAITB and WAITE bits are ignored whenever WAITM3:WAITM0 = 0000.

Base Instr #	Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
66	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
67	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
68	SE	SE	Ws,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z
69	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
70	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB
71	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
72	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C,DC,N,OV,Z
73	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
74	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
75	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG - f - (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
76	SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None
		SWAP	Wn	Wn = byte swap Wn	1	1	None
77	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
78	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
79	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
80	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
81	ULNK	ULNK		Unlink Frame Pointer	1	1	None
82	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR Wb,Ws,Wd		Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
83	ZE	ZE	Ws, Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N

TABLE 20-2. INSTRUCTION SET OVERVIEW (CONTINUED	TABLE 28-2:	INSTRUCTION SET	OVERVIEW	(CONTINUED
---	-------------	-----------------	-----------------	------------

FIGURE 30-14: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+150°C for High Temperature							
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions		
Clock Parameters									
HAD50	TAD	ADC Clock Period ⁽¹⁾	147	_	—	ns	—		
Conversion Rate									
	-	T_{1}			400	Kana			

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 31-18: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature-40°C ≤TA ≤+150°C for High Temperature							
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions		
Clock Parameters									
HAD50	TAD	ADC Clock Period ⁽¹⁾	104	—	—	ns	—		
Conversion Rate									
HAD56	FCNV	Throughput Rate ⁽¹⁾	_		800	Ksps	_		

Note 1: These parameters are characterized but not tested in manufacturing.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Microchip Traden Architecture — Flash Memory Fa Program Memory Product Group Pin Count — Tape and Reel Fl Temperature Rar Package — Pattern —	mark amily - y Size (ag (if a nge	d (KB)	<u>sPIC 33 FJ 32 GP3 02 T E / SP - XXX</u>	Examples: a) dsPIC33FJ32GP302-E/SP: General Purpose dsPIC33, 32 KB program memory, 28-pin, Extended temperature, SPDIP package.
Architecture:	33	=	16-bit Digital Signal Controller	
Flash Memory Family:	FJ	=	Flash program memory, 3.3V	
Product Group:	GP2 GP3 GP8	= = =	General Purpose family General Purpose family General Purpose family	
Pin Count:	02 04	=	28-pin 44-pin	
Temperature Range:	I E H	= = =	-40° C to+85° C (Industrial) -40° C to+125° C (Extended) -40° C to+150° C (High)	
Package:	SP SO ML MM PT		Skinny Plastic Dual In-Line - 300 mil body (SPDIP) Plastic Small Outline - Wide - 7.5 mil body (SOIC) Plastic Quad, No Lead Package - 8x8 mm body (QFN) Plastic Quad, No Lead Package - 6x6x0.9 mm body (QFN-S) Plastic Thin Quad Flatpack - 10x10x1 mm body (TQFP)	

٦