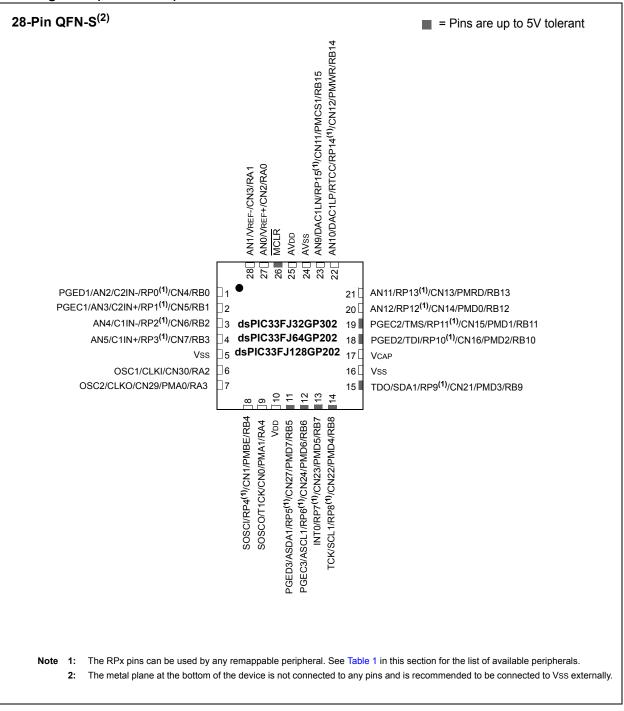



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


#### Details

E·XEI

| Product Status             | Active                                                                           |
|----------------------------|----------------------------------------------------------------------------------|
| Core Processor             | dsPIC                                                                            |
| Core Size                  | 16-Bit                                                                           |
| Speed                      | 40 MIPs                                                                          |
| Connectivity               | CANbus, I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                          |
| Peripherals                | Brown-out Detect/Reset, DCI, DMA, I <sup>2</sup> S, POR, PWM, WDT                |
| Number of I/O              | 35                                                                               |
| Program Memory Size        | 128KB (128K x 8)                                                                 |
| Program Memory Type        | FLASH                                                                            |
| EEPROM Size                |                                                                                  |
| RAM Size                   | 16K x 8                                                                          |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                        |
| Data Converters            | A/D 13x10b/12b; D/A 2x16b                                                        |
| Oscillator Type            | Internal                                                                         |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                    |
| Package / Case             | 44-TQFP                                                                          |
| Supplier Device Package    | 44-TQFP (10x10)                                                                  |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128gp804-e-pt |
|                            |                                                                                  |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



#### Pin Diagrams (Continued)

#### TABLE 4-19: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 1(FOR dsPIC33FJ128GP802/804 AND dsPIC33FJ64GP802/804) (CONTINUED)

| File Name  | Addr | Bit 15 | Bit 14    | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8    | Bit 7                   | Bit 6    | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All<br>Resets |
|------------|------|--------|-----------|--------|--------|--------|--------|-------|----------|-------------------------|----------|-------|-------|-------|-------|-------|-------|---------------|
| C1RXF11EID | 046E |        | EID<15:8> |        |        |        |        |       |          |                         | EID<7:0> |       |       |       |       |       |       | XXXX          |
| C1RXF12SID | 0470 |        | SID<10:3> |        |        |        |        |       |          | SID<2:0>                |          | _     | EXIDE |       | EID<1 | 7:16> | xxxx  |               |
| C1RXF12EID | 0472 |        | EID<15:8> |        |        |        |        |       | EID<7:0> |                         |          |       |       |       |       | XXXX  |       |               |
| C1RXF13SID | 0474 |        | SID<10:3> |        |        |        |        |       | SID<2:0> |                         | —        | EXIDE | —     | EID<1 | 7:16> | XXXX  |       |               |
| C1RXF13EID | 0476 |        |           |        | EID<   | 15:8>  |        |       |          | EID<7:0>                |          |       |       |       |       |       | XXXX  |               |
| C1RXF14SID | 0478 |        |           |        | SID<   | 10:3>  |        |       |          | SID<2:0> — EXIDE — EID< |          |       |       |       | EID<1 | 7:16> | XXXX  |               |
| C1RXF14EID | 047A |        | EID<15:8> |        |        |        |        |       |          |                         |          | EID<  | 7:0>  |       |       |       | XXXX  |               |
| C1RXF15SID | 047C |        | SID<10:3> |        |        |        |        |       | SID<2:0> |                         | —        | EXIDE | —     | EID<1 | 7:16> | XXXX  |       |               |
| C1RXF15EID | 047E |        |           |        | EID<   | 15:8>  |        |       |          |                         |          |       | EID<  | 7:0>  |       |       |       | XXXX          |

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### TABLE 4-20: DCI REGISTER MAP

| SFR Name | Addr. | Bit 15 | Bit 14 | Bit 13  | Bit 12                          | Bit 11 | Bit 10                                                        | Bit 9    | Bit 8       | Bit 7      | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2   | Bit 1   | Bit 0   |         | Reset Sta | ate     |
|----------|-------|--------|--------|---------|---------------------------------|--------|---------------------------------------------------------------|----------|-------------|------------|-------|-------|-------|-------|---------|---------|---------|---------|-----------|---------|
| DCICON1  | 0280  | DCIEN  | —      | DCISIDL | —                               | DLOOP  | CSCKD                                                         | CSCKE    | COFSD       | UNFM       | CSDOM | DJST  | —     | —     | _       | COFSM1  | COFSM0  | 0000    | 0000 00   | 00 0000 |
| DCICON2  | 0282  | _      | _      |         | _                               | BLEN1  | N1 BLEN0 — COFSG<3:0> — WS<3:0>                               |          |             |            |       |       |       |       | 0000    | 0000 00 | 00 0000 |         |           |         |
| DCICON3  | 0284  | —      | —      | _       | —                               |        | BCG<11:0>                                                     |          |             |            |       |       |       | 0000  | 0000 00 | 00 0000 |         |         |           |         |
| DCISTAT  | 0286  | —      | —      | _       | —                               | SLOT3  | SLOT2                                                         | SLOT1    | SLOT0       | —          | —     | _     | _     | ROV   | RFUL    | TUNF    | TMPTY   | 0000    | 0000 00   | 00 0000 |
| TSCON    | 0288  | TSE15  | TSE14  | TSE13   | TSE12                           | TSE11  | TSE10                                                         | TSE9     | TSE8        | TSE7       | TSE6  | TSE5  | TSE4  | TSE3  | TSE2    | TSE1    | TSE0    | 0000    | 0000 00   | 00 0000 |
| RSCON    | 028C  | RSE15  | RSE14  | RSE13   | RSE12                           | RSE11  | E11 RSE10 RSE9 RSE8 RSE7 RSE6 RSE5 RSE4 RSE3 RSE2 RSE1 RSE0 0 |          |             |            |       |       |       |       | 0000    | 0000 00 | 00 0000 |         |           |         |
| RXBUF0   | 0290  |        |        |         |                                 |        | Receive Buffer 0 Data Register                                |          |             |            |       |       |       |       |         |         | 0000    | 0000 00 | 00 0000   |         |
| RXBUF1   | 0292  |        |        |         |                                 |        |                                                               | Receive  | Buffer 1 Da | ata Regist | er    |       |       |       |         |         |         | 0000    | 0000 00   | 00 0000 |
| RXBUF2   | 0294  |        |        |         |                                 |        |                                                               | Receive  | Buffer 2 Da | ata Regist | er    |       |       |       |         |         |         | 0000    | 0000 00   | 00 0000 |
| RXBUF3   | 0296  |        |        |         |                                 |        |                                                               | Receive  | Buffer 3 Da | ata Regist | er    |       |       |       |         |         |         | 0000    | 0000 00   | 00 0000 |
| TXBUF0   | 0298  |        |        |         |                                 |        |                                                               | Transmit | Buffer 0 Da | ata Regis  | ter   |       |       |       |         |         |         | 0000    | 0000 00   | 00 0000 |
| TXBUF1   | 029A  |        |        |         | Transmit Buffer 1 Data Register |        |                                                               |          |             |            |       |       |       |       | 0000    | 0000 00 | 00 0000 |         |           |         |
| TXBUF2   | 029C  |        |        |         |                                 |        |                                                               | Transmit | Buffer 2 Da | ata Regis  | ter   |       |       |       |         |         |         | 0000    | 0000 00   | 00 0000 |
| TXBUF3   | 029E  |        |        |         |                                 |        |                                                               | Transmit | Buffer 3 Da | ata Regis  | ter   |       |       |       |         |         |         | 0000    | 0000 00   | 00 0000 |

Legend: — = unimplemented, read as '0'.

#### REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

| bit 2 | OC1IF: Output Compare Channel 1 | Interrupt Flag Status bit |
|-------|---------------------------------|---------------------------|
|-------|---------------------------------|---------------------------|

- 1 = Interrupt request has occurred
  - 0 = Interrupt request has not occurred
- bit 1 IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
  - 1 = Interrupt request has occurred
    - 0 = Interrupt request has not occurred
- bit 0 INTOIF: External Interrupt 0 Flag Status bit
  - 1 = Interrupt request has occurred
  - 0 = Interrupt request has not occurred

| R/W-0                   | R/W-0                              | U-0                              | U-0             | U-0                      | U-0              | U-0             | U-0   |
|-------------------------|------------------------------------|----------------------------------|-----------------|--------------------------|------------------|-----------------|-------|
| DAC1LIE <sup>(2)</sup>  | DAC1RIE <sup>(2)</sup>             | _                                | _               | —                        | —                | —               |       |
| bit 15                  |                                    |                                  |                 |                          |                  |                 | bit   |
|                         |                                    |                                  |                 |                          |                  |                 |       |
| U-0                     | R/W-0                              | R/W-0                            | R/W-0           | R/W-0                    | R/W-0            | R/W-0           | U-0   |
| —                       | C1TXIE <sup>(1)</sup>              | DMA7IE                           | DMA6IE          | CRCIE                    | U2EIE            | U1EIE           | —     |
| bit 7                   |                                    |                                  |                 |                          |                  |                 | bit   |
| Lowandi                 |                                    |                                  |                 |                          |                  |                 |       |
| Legend:<br>R = Readable | , hit                              | \\/ = \\/ritabla                 | hit             | II – Unimplor            | monted hit read  |                 |       |
| -n = Value at           |                                    | W = Writable<br>'1' = Bit is set |                 | '0' = Bit is cle         | mented bit, read | x = Bit is unkn | 0.000 |
|                         | FUR                                |                                  | L               |                          | aleu             |                 |       |
| bit 15                  | DAC1LIE: DA                        | C Left Channe                    | el Interrupt En | able bit <sup>(2)</sup>  |                  |                 |       |
|                         | 1 = Interrupt r                    |                                  |                 |                          |                  |                 |       |
|                         | 0 = Interrupt r                    | •                                |                 |                          |                  |                 |       |
| bit 14                  | DAC1RIE: DA                        |                                  |                 | nable bit <sup>(2)</sup> |                  |                 |       |
|                         | 1 = Interrupt r                    | •                                |                 |                          |                  |                 |       |
| bit 13-7                | 0 = Interrupt r<br>Unimplement     | •                                |                 |                          |                  |                 |       |
| bit 6                   | •                                  |                                  |                 | nterrupt Enable          | o hit(1)         |                 |       |
|                         | 1 = Interrupt r                    |                                  | •               | nterrupt Enable          |                  |                 |       |
|                         |                                    | equest not occ                   |                 |                          |                  |                 |       |
| bit 5                   | DMA7IE: DM                         | A Channel 7 D                    | ata Transfer C  | Complete Interr          | upt Enable bit   |                 |       |
|                         |                                    | equest enable                    |                 |                          |                  |                 |       |
|                         | -                                  | equest not en                    |                 |                          |                  |                 |       |
| bit 4                   |                                    |                                  |                 | Complete Interr          | upt Enable bit   |                 |       |
|                         | 1 = Interrupt r<br>0 = Interrupt r | equest enable                    |                 |                          |                  |                 |       |
| bit 3                   | CRCIE: CRC                         | •                                |                 | oit                      |                  |                 |       |
| DIL 3                   | 1 = Interrupt r                    |                                  | •               | JIL                      |                  |                 |       |
|                         | 0 = Interrupt r                    |                                  |                 |                          |                  |                 |       |
| bit 2                   | U2EIE: UART                        | 2 Error Interru                  | pt Enable bit   |                          |                  |                 |       |
|                         | 1 = Interrupt r                    | equest enable                    | d               |                          |                  |                 |       |
|                         | 0 = Interrupt r                    | equest not en                    | abled           |                          |                  |                 |       |
| bit 1                   | U1EIE: UART                        |                                  | -               |                          |                  |                 |       |
|                         | 1 = Interrupt r<br>0 = Interrupt r | equest enable                    |                 |                          |                  |                 |       |
|                         |                                    |                                  |                 |                          |                  |                 |       |

Note 1: Interrupts are disabled on devices without ECAN<sup>™</sup> modules.

2: Interrupts are disabled on devices without Audio DAC modules.

| R/W-0          | R/W-0                                    | R/W-0                               | R/W-0               | R/W-0              | U-0           | U-0             | R/W-0 |
|----------------|------------------------------------------|-------------------------------------|---------------------|--------------------|---------------|-----------------|-------|
| T5MD           | T4MD                                     | T3MD                                | T2MD                | T1MD               |               | _               | DCIMD |
| oit 15         |                                          |                                     |                     |                    |               |                 | bit 8 |
| R/W-0          | R/W-0                                    | R/W-0                               | R/W-0               | R/W-0              | U-0           | R/W-0           | R/W-0 |
| I2C1MD         | U2MD                                     | U1MD                                | SPI2MD              | SPI1MD             |               | C1MD            | AD1MD |
| pit 7          | OZINB                                    | 0 mile                              |                     | GITTIND            |               | 0 THE           | bit   |
| Legend:        |                                          |                                     |                     |                    |               |                 |       |
| R = Readabl    | le bit                                   | W = Writable                        | bit                 | U = Unimpleme      | ented bit rea | id as '0'       |       |
| -n = Value at  |                                          | '1' = Bit is set                    |                     | '0' = Bit is clear |               | x = Bit is unkr | nown  |
|                |                                          |                                     |                     |                    |               |                 |       |
| bit 15         |                                          | 5 Module Disat<br>odule is disable  |                     |                    |               |                 |       |
|                |                                          | odule is disable                    |                     |                    |               |                 |       |
| bit 14         |                                          | 4 Module Disat                      | -                   |                    |               |                 |       |
|                | -                                        | odule is disable                    |                     |                    |               |                 |       |
|                | -                                        | odule is enable                     |                     |                    |               |                 |       |
| bit 13         | T3MD: Timer                              | 3 Module Disat                      | ole bit             |                    |               |                 |       |
|                | 1 = Timer3 m                             | odule is disable                    | ed                  |                    |               |                 |       |
|                | 0 = Timer3 m                             | odule is enable                     | d                   |                    |               |                 |       |
| bit 12         | T2MD: Timer                              | 2 Module Disat                      | ole bit             |                    |               |                 |       |
|                | -                                        | odule is disable                    |                     |                    |               |                 |       |
|                |                                          | odule is enable                     |                     |                    |               |                 |       |
| bit 11         | -                                        | 1 Module Disat                      |                     |                    |               |                 |       |
|                | -                                        | odule is disable<br>odule is enable |                     |                    |               |                 |       |
| bit 10-9       |                                          | ted: Read as '                      |                     |                    |               |                 |       |
| bit 8          | -                                        | Module Disable                      |                     |                    |               |                 |       |
|                | -                                        | ule is disabled                     |                     |                    |               |                 |       |
|                | 0 = DCI modu                             |                                     |                     |                    |               |                 |       |
| bit 7          |                                          | 1 Module Disab                      | le bit              |                    |               |                 |       |
|                | $1 = I^2 C1 \mod 1$                      | ule is disabled                     |                     |                    |               |                 |       |
|                | 0 = I <sup>2</sup> C1 mod                | ule is enabled                      |                     |                    |               |                 |       |
| bit 6          |                                          | 2 Module Disa                       |                     |                    |               |                 |       |
|                |                                          | odule is disabl                     |                     |                    |               |                 |       |
|                |                                          | odule is enable                     |                     |                    |               |                 |       |
| bit 5          |                                          | 1 Module Disa                       |                     |                    |               |                 |       |
|                | -                                        | odule is disabl<br>odule is enable  |                     |                    |               |                 |       |
| bit 4          |                                          | 2 Module Disal                      |                     |                    |               |                 |       |
| Dit 4          |                                          | lule is disabled                    |                     |                    |               |                 |       |
|                |                                          | lule is enabled                     |                     |                    |               |                 |       |
| bit 3          |                                          | 1 Module Disal                      | ole bit             |                    |               |                 |       |
|                |                                          | lule is disabled                    |                     |                    |               |                 |       |
|                | 0 = SPI1 mod                             | lule is enabled                     |                     |                    |               |                 |       |
| bit 2          | Unimplemen                               | ted: Read as '                      | o'                  |                    |               |                 |       |
|                | C1MD: ECAN                               | 1 Module Disa                       | ble bit             |                    |               |                 |       |
| bit 1          |                                          | adula ia diaabl                     | ed                  |                    |               |                 |       |
| bit 1          | 1 = ECAN1 m                              | iouule is uisabi                    |                     |                    |               |                 |       |
| bit 1          | -                                        | nodule is enable                    |                     |                    |               |                 |       |
| bit 1<br>bit 0 | 0 = ECAN1 m                              |                                     | ed                  |                    |               |                 |       |
|                | 0 = ECAN1 m<br>AD1MD: AD0<br>1 = ADC1 mo | nodule is enable                    | ed<br>ible bit<br>d |                    |               |                 |       |

# 10.6 Power-Saving Control Registers

## dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

| REGISTER     | 10-3: PMD3   | B: PERIPHER                      | AL MODULI     | E DISABLE O      | CONTROL RE      | EGISTER 3       |       |
|--------------|--------------|----------------------------------|---------------|------------------|-----------------|-----------------|-------|
| U-0          | U-0          | U-0                              | U-0           | U-0              | R/W-0           | R/W-0           | R/W-0 |
|              | _            | —                                |               | —                | CMPMD           | RTCCMD          | PMPMD |
| bit 15       |              |                                  |               |                  |                 |                 | bit 8 |
| R/W-0        | R/W-0        | U-0                              | U-0           | U-0              | U-0             | U-0             | U-0   |
| CRCMD        | DAC1MD       |                                  |               |                  |                 |                 | _     |
| bit 7        | Briomi       |                                  |               |                  |                 |                 | bit ( |
|              |              |                                  |               |                  |                 |                 |       |
| Legend:      |              |                                  |               |                  |                 |                 |       |
| R = Readab   | le bit       | W = Writable b                   | bit           | U = Unimple      | mented bit, rea | d as '0'        |       |
| -n = Value a | t POR        | '1' = Bit is set                 |               | '0' = Bit is cle | eared           | x = Bit is unkn | iown  |
|              |              |                                  |               |                  |                 |                 |       |
| bit 15-11    | Unimplemen   | ted: Read as '0                  | ,             |                  |                 |                 |       |
| bit 10       | CMPMD: Con   | mparator Module                  | e Disable bit |                  |                 |                 |       |
|              |              | tor module is dis                |               |                  |                 |                 |       |
|              | 0 = Comparat | tor module is er                 | abled         |                  |                 |                 |       |
| bit 9        |              | CC Module Dis                    |               |                  |                 |                 |       |
|              |              | dule is disabled                 |               |                  |                 |                 |       |
| 1.11.0       |              | dule is enabled                  |               |                  |                 |                 |       |
| bit 8        |              | P Module Disab                   | ie dit        |                  |                 |                 |       |
|              |              | lule is disabled lule is enabled |               |                  |                 |                 |       |
| bit 7        |              | C Module Disab                   | le bit        |                  |                 |                 |       |
|              |              | lule is disabled                 |               |                  |                 |                 |       |
|              | 0 = CRC mod  | lule is enabled                  |               |                  |                 |                 |       |
| bit 6        | DAC1MD: DA   | AC1 Module Dis                   | able bit      |                  |                 |                 |       |
|              | 1 = DAC1 mo  | dule is disabled                 | ł             |                  |                 |                 |       |
|              | 0 = DAC1 mo  | dule is enabled                  |               |                  |                 |                 |       |
| bit 5-0      | Unimplemen   | ted: Read as '0                  | ,             |                  |                 |                 |       |
|              |              |                                  |               |                  |                 |                 |       |

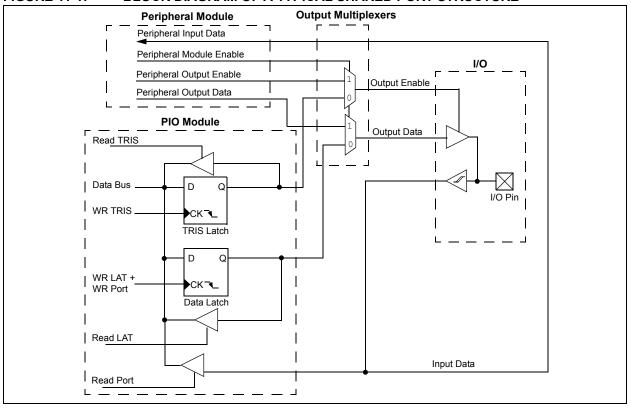
### 11.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section "30. I/O Ports with Peripheral Pin Select" (DS70190) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

All of the device pins (except VDD, VSS, MCLR and OSC1/CLKI) are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

#### 11.1 Parallel I/O (PIO) Ports

Generally a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through," in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected.


When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device is disabled. This means the corresponding LATx and TRISx registers and the port pin are read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.





© 2007-2012 Microchip Technology Inc.

| U-0                                | U-0 | U-0 | R/W-0 | R/W-0                                   | R/W-0           | R/W-0     | R/W-0 |  |  |
|------------------------------------|-----|-----|-------|-----------------------------------------|-----------------|-----------|-------|--|--|
| —                                  | —   | —   |       |                                         | RP13R<4:0       | >         |       |  |  |
| bit 15                             |     |     |       |                                         |                 |           | bit 8 |  |  |
|                                    |     |     |       |                                         |                 |           |       |  |  |
| U-0                                | U-0 | U-0 | R/W-0 | R/W-0                                   | R/W-0           | R/W-0     | R/W-0 |  |  |
| —                                  | —   | —   |       |                                         | RP12R<4:0       | >         |       |  |  |
| bit 7                              |     |     |       |                                         |                 |           | bit C |  |  |
| Legend:                            |     |     |       |                                         |                 |           |       |  |  |
| R = Readable bit W = Writable bit  |     |     |       | U = Unimpler                            | mented bit, rea | ad as '0' |       |  |  |
| -n = Value at POR '1' = Bit is set |     |     |       | '0' = Bit is cleared x = Bit is unknown |                 |           |       |  |  |

| DIL 15-13 | Unimplemented: Read as 0                                                                                                                 |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------|
| bit 12-8  | <b>RP13R&lt;4:0&gt;:</b> Peripheral Output Function is Assigned to RP13 Output Pin bits (see Table 11-2 for peripheral function numbers) |
| bit 7-5   | Unimplemented: Read as '0'                                                                                                               |
| bit 4-0   | <b>RP12R&lt;4:0&gt;:</b> Peripheral Output Function is Assigned to RP12 Output Pin bits (see Table 11-2 for peripheral function numbers) |

#### REGISTER 11-24: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

| U-0    | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0      | R/W-0 | R/W-0 |
|--------|-----|-----|-------|-------|------------|-------|-------|
| —      | —   | —   |       |       | RP15R<4:0> |       |       |
| bit 15 |     |     |       |       |            |       | bit 8 |

| U-0   | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0      | R/W-0 | R/W-0 |
|-------|-----|-----|-------|-------|------------|-------|-------|
| —     | —   | —   |       |       | RP14R<4:0> |       |       |
| bit 7 |     |     |       |       |            |       | bit 0 |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | 1 as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP15R<4:0>:** Peripheral Output Function is Assigned to RP15 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP14R<4:0>:** Peripheral Output Function is Assigned to RP14 Output Pin bits (see Table 11-2 for peripheral function numbers)

The Timer2/3 and Timer4/5 modules can operate in one of the following modes:

- · Timer mode
- · Gated Timer mode
- Synchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous Counter mode, the input clock is derived from the external clock input at TxCK pin.

The timer modes are determined by the following bits:

- TCS (TxCON<1>): Timer Clock Source Control bit
- TGATE (TxCON<6>): Timer Gate Control bit

Timer control bit settings for different operating modes are given in the Table 13-1.

| Mode                | TCS | TGATE |
|---------------------|-----|-------|
| Timer               | 0   | 0     |
| Gated timer         | 0   | 1     |
| Synchronous counter | 1   | Х     |

#### 13.1 16-bit Operation

To configure any of the timers for individual 16-bit operation:

- 1. Clear the T32 bit corresponding to that timer.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit.

| Note: | Only Timer2 and Timer3 can trigger a | ı |
|-------|--------------------------------------|---|
|       | DMA data transfer.                   |   |

#### 13.2 32-bit Operation

A 32-bit timer module can be formed by combining a Type B and a Type C 16-bit timer module. For 32-bit timer operation, the T32 control bit in the Type B Timer Control register (TxCON<3>) must be set. The Type C timer holds the most significant word (msw) and the Type B timer holds the least significant word (lsw) for 32-bit operation.

When configured for 32-bit operation, only the Type B Timer Control register (TxCON) bits are required for setup and control. Type C timer control register bits are ignored (except TSIDL bit). For interrupt control, the combined 32-bit timer uses the interrupt enable, interrupt flag and interrupt priority control bits of the Type C timer. The interrupt control and status bits for the Type B timer are ignored during 32-bit timer operation.

The Type B and Type C timers that can be combined to form a 32-bit timer are listed in Table 13-2.

#### TABLE 13-2: 32-BIT TIMER

| TYPE B Timer (Isw) | TYPE C Timer (msw) |  |
|--------------------|--------------------|--|
| Timer2             | Timer3             |  |
| Timer4             | Timer5             |  |

A block diagram representation of the 32-bit timer module is shown in Figure 13-3. The 32-bit timer module can operate in one of the following modes:

- Timer mode
- · Gated Timer mode
- · Synchronous Counter mode

To configure the features of Timer2/3 or Timer4/5 for 32-bit operation:

- 1. Set the T32 control bit.
- 2. Select the prescaler ratio for Timer2 or Timer4 using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the corresponding TCS and TGATE bits.
- Load the timer period value. PR3 or PR5 contains the most significant word of the value, while PR2 or PR4 contains the least significant word.
- If interrupts are required, set the interrupt enable bits, T3IE or T5IE. Use the priority bits, T3IP<2:0> or T5IP<2:0> to set the interrupt priority. While Timer2 or Timer4 controls the timer, the interrupt appears as a Timer3 or Timer5 interrupt.
- 6. Set the corresponding TON bit.

The timer value at any point is stored in the register pair, TMR3:TMR2 or TMR5:TMR4, which always contains the most significant word of the count, while TMR2 or TMR4 contains the least significant word.

## 18.3 UART Control Registers

#### REGISTER 18-1: UxMODE: UARTx MODE REGISTER

| R/W-0                 | U-0 | R/W-0 | R/W-0               | R/W-0 | U-0 | R/W-0 | R/W-0 |
|-----------------------|-----|-------|---------------------|-------|-----|-------|-------|
| UARTEN <sup>(1)</sup> | —   | USIDL | IREN <sup>(2)</sup> | RTSMD | —   | UEN   | <1:0> |
| bit 15                |     |       |                     |       |     |       | bit 8 |

| R/W-0 HC | R/W-0  | R/W-0 HC | R/W-0  | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
|----------|--------|----------|--------|-------|-------|-------|-------|
| WAKE     | LPBACK | ABAUD    | URXINV | BRGH  | PDSEL | <1:0> | STSEL |
| bit 7    |        |          |        |       |       |       | bit 0 |

| Legend:           | HC = Hardware cleared |                             |                    |
|-------------------|-----------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit      | U = Unimplemented bit, read | l as '0'           |
| -n = Value at POR | '1' = Bit is set      | '0' = Bit is cleared        | x = Bit is unknown |

| bit 15  | <ul> <li>UARTEN: UARTx Enable bit<sup>(1)</sup></li> <li>1 = UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN&lt;1:0&gt;</li> <li>0 = UARTx is disabled; all UARTx pins are controlled by port latches; UARTx power consumption minimal</li> </ul>                                                                                                                    |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 14  | Unimplemented: Read as '0'                                                                                                                                                                                                                                                                                                                                                                      |
| bit 13  | USIDL: Stop in Idle Mode bit                                                                                                                                                                                                                                                                                                                                                                    |
|         | <ul> <li>1 = Discontinue module operation when device enters Idle mode</li> <li>0 = Continue module operation in Idle mode</li> </ul>                                                                                                                                                                                                                                                           |
| bit 12  | IREN: IrDA <sup>®</sup> Encoder and Decoder Enable bit <sup>(2)</sup>                                                                                                                                                                                                                                                                                                                           |
|         | <ul> <li>1 = IrDA<sup>®</sup> encoder and decoder enabled</li> <li>0 = IrDA<sup>®</sup> encoder and decoder disabled</li> </ul>                                                                                                                                                                                                                                                                 |
| bit 11  | <b>RTSMD:</b> Mode Selection for UxRTS Pin bit                                                                                                                                                                                                                                                                                                                                                  |
|         | 1 = <u>UxRTS</u> pin in Simplex mode<br>0 = UxRTS pin in Flow Control mode                                                                                                                                                                                                                                                                                                                      |
| bit 10  | Unimplemented: Read as '0'                                                                                                                                                                                                                                                                                                                                                                      |
| bit 9-8 | UEN<1:0>: UARTx Enable bits                                                                                                                                                                                                                                                                                                                                                                     |
|         | <ul> <li>11 = UxTX, UxRX and BCLK pins are enabled and used; UxCTS pin controlled by port latches</li> <li>10 = UxTX, UxRX, UxCTS and UxRTS pins are enabled and used</li> <li>01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin controlled by port latches</li> <li>00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLK pins controlled by port latches</li> </ul> |
| bit 7   | WAKE: Wake-up on Start bit Detect During Sleep Mode Enable bit                                                                                                                                                                                                                                                                                                                                  |
|         | <ul> <li>1 = UARTx continues to sample the UxRX pin; interrupt generated on falling edge; bit cleared<br/>in hardware on following rising edge</li> <li>0 = No wake-up enabled</li> </ul>                                                                                                                                                                                                       |
| bit 6   | LPBACK: UARTx Loopback Mode Select bit                                                                                                                                                                                                                                                                                                                                                          |
|         | 1 = Enable Loopback mode<br>0 = Loopback mode is disabled                                                                                                                                                                                                                                                                                                                                       |
| bit 5   | ABAUD: Auto-Baud Enable bit                                                                                                                                                                                                                                                                                                                                                                     |
|         | <ul> <li>1 = Enable baud rate measurement on the next character – requires reception of a Sync field (55h) before other data; cleared in hardware upon completion</li> <li>0 = Baud rate measurement disabled or completed</li> </ul>                                                                                                                                                           |
| Note 1: | Refer to <b>Section 17. "UART"</b> (DS70188) in the <i>"dsPIC33F/PIC24H Family Reference Manual"</i> for information on enabling the UART module for receive or transmit operation.                                                                                                                                                                                                             |
|         |                                                                                                                                                                                                                                                                                                                                                                                                 |

2: This feature is only available for the 16x BRG mode (BRGH = 0).

#### 21.4 ADC Helpful Tips

- 1. The SMPI<3:0> (AD1CON2<5:2>) control bits:
  - a) Determine when the ADC interrupt flag is set and an interrupt is generated if enabled.
  - b) When the CSCNA bit (AD1CON2<10>) is set to '1', determines when the ADC analog scan channel list defined in the AD1CSSL/ AD1CSSH registers starts over from the beginning.
  - c) On devices without a DMA peripheral, determines when ADC result buffer pointer to ADC1BUF0-ADC1BUFF, gets reset back to the beginning at ADC1BUF0.
- On devices without a DMA module, the ADC has 16 result buffers. ADC conversion results are stored sequentially in ADC1BUF0-ADC1BUFF regardless of which analog inputs are being used subject to the SMPI<3:0> bits (AD1CON2<5:2>) and the condition described in 1c above. There is no relationship between the ANx input being measured and which ADC buffer (ADC1BUF0-ADC1BUFF) that the conversion results will be placed in.
- On devices with a DMA module, the ADC module has only 1 ADC result buffer, (i.e., ADC1BUF0), per ADC peripheral and the ADC conversion result must be read either by the CPU or DMA controller before the next ADC conversion is complete to avoid overwriting the previous value.
- 4. The DONE bit (AD1CON1<0>) is only cleared at the start of each conversion and is set at the completion of the conversion, but remains set indefinitely even through the next sample phase until the next conversion begins. If application code is monitoring the DONE bit in any kind of software loop, the user must consider this behavior because the CPU code execution is faster than the ADC. As a result, in manual sample mode, particularly where the users code is setting the SAMP bit (AD1CON1<1>), the DONE bit should also be cleared by the user application just before setting the SAMP bit.
- 5. On devices with two ADC modules, the ADCxPCFG registers for both ADC modules must be set to a logic '1' to configure a target I/O pin as a digital I/O pin. Failure to do so means that any alternate digital input function will always see only a logic '0' as the digital input buffer is held in Disable mode.

#### 21.5 ADC Resources

Many useful resources related to ADC are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

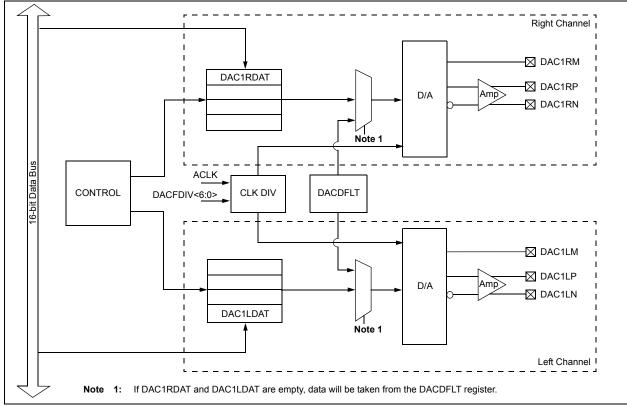
Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en532311

#### 21.5.1 KEY RESOURCES

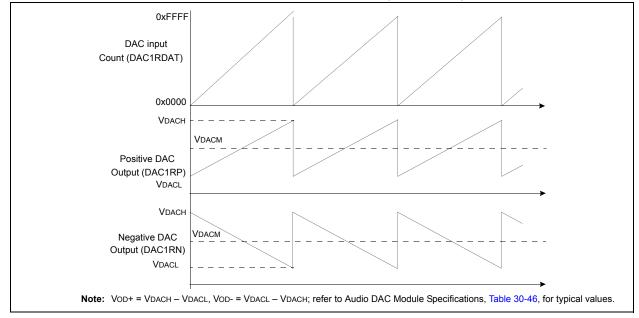
- Section 16. "Analog-to-Digital Converter (ADC)" (DS70183)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

|                 |                                                                                                                                                                                                             |                                                                                                                                                                                                                          | -                                                                                                                                                                                                                 |                                     |                   | •               |       |  |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------|-----------------|-------|--|
| R/W-0           | U-0                                                                                                                                                                                                         | U-0                                                                                                                                                                                                                      | R/W-0                                                                                                                                                                                                             | R/W-0                               | R/W-0             | R/W-0           | R/W-0 |  |
| CH0NB           |                                                                                                                                                                                                             |                                                                                                                                                                                                                          |                                                                                                                                                                                                                   |                                     | CH0SB<4:0>        |                 |       |  |
| bit 15          |                                                                                                                                                                                                             |                                                                                                                                                                                                                          |                                                                                                                                                                                                                   |                                     |                   |                 | bit   |  |
| R/W-0           | U-0                                                                                                                                                                                                         | U-0                                                                                                                                                                                                                      | R/W-0                                                                                                                                                                                                             | R/W-0                               | R/W-0             | R/W-0           | R/W-0 |  |
| <b>CH0NA</b>    | _                                                                                                                                                                                                           |                                                                                                                                                                                                                          |                                                                                                                                                                                                                   |                                     | CH0SA<4:0>        |                 |       |  |
| bit 7           |                                                                                                                                                                                                             |                                                                                                                                                                                                                          |                                                                                                                                                                                                                   |                                     |                   |                 | bit   |  |
| Legend:         |                                                                                                                                                                                                             |                                                                                                                                                                                                                          |                                                                                                                                                                                                                   |                                     |                   |                 |       |  |
| R = Readable    | e bit                                                                                                                                                                                                       | W = Writable I                                                                                                                                                                                                           | bit                                                                                                                                                                                                               | U = Unimple                         | emented bit, read | l as '0'        |       |  |
| -n = Value at I | POR                                                                                                                                                                                                         | '1' = Bit is set                                                                                                                                                                                                         |                                                                                                                                                                                                                   | '0' = Bit is c                      | eared             | x = Bit is unki | nown  |  |
| bit 15          |                                                                                                                                                                                                             | nnel 0 Negative                                                                                                                                                                                                          | e Input Select                                                                                                                                                                                                    | for Sample B                        | bit               |                 |       |  |
|                 | Same definition                                                                                                                                                                                             |                                                                                                                                                                                                                          |                                                                                                                                                                                                                   |                                     |                   |                 |       |  |
| bit 14-13       | -                                                                                                                                                                                                           | ted: Read as 'o                                                                                                                                                                                                          |                                                                                                                                                                                                                   |                                     |                   |                 |       |  |
| bit 12-8        |                                                                                                                                                                                                             | Channel 0 Po                                                                                                                                                                                                             | -                                                                                                                                                                                                                 |                                     | le B bits         |                 |       |  |
|                 |                                                                                                                                                                                                             | nnel 0 positive<br>nnel 0 positive                                                                                                                                                                                       |                                                                                                                                                                                                                   |                                     |                   |                 |       |  |
|                 | •                                                                                                                                                                                                           | inei o positive                                                                                                                                                                                                          | input is ANTT                                                                                                                                                                                                     |                                     |                   |                 |       |  |
|                 | •                                                                                                                                                                                                           |                                                                                                                                                                                                                          |                                                                                                                                                                                                                   |                                     |                   |                 |       |  |
|                 | •<br>01000 = Channel 0 positive input is AN8 <sup>(1)</sup>                                                                                                                                                 |                                                                                                                                                                                                                          |                                                                                                                                                                                                                   |                                     |                   |                 |       |  |
|                 | 01111 = Channel 0 positive input is AN3 <sup>(1)</sup>                                                                                                                                                      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                   |                                     |                   |                 |       |  |
|                 | 00110 = Channel 0 positive input is AN6(1)                                                                                                                                                                  |                                                                                                                                                                                                                          |                                                                                                                                                                                                                   |                                     |                   |                 |       |  |
|                 |                                                                                                                                                                                                             |                                                                                                                                                                                                                          |                                                                                                                                                                                                                   |                                     |                   |                 |       |  |
|                 | •                                                                                                                                                                                                           | ·                                                                                                                                                                                                                        |                                                                                                                                                                                                                   |                                     |                   |                 |       |  |
|                 | •<br>•                                                                                                                                                                                                      | ·                                                                                                                                                                                                                        |                                                                                                                                                                                                                   |                                     |                   |                 |       |  |
|                 |                                                                                                                                                                                                             | nnel 0 positive                                                                                                                                                                                                          | input is AN2                                                                                                                                                                                                      |                                     |                   |                 |       |  |
|                 | 00001 <b>= Cha</b> i                                                                                                                                                                                        | nnel 0 positive<br>nnel 0 positive                                                                                                                                                                                       | input is AN2<br>input is AN1                                                                                                                                                                                      |                                     |                   |                 |       |  |
| hit 7           | 00001 <b>= Cha</b> i<br>00000 <b>= Cha</b> i                                                                                                                                                                | nnel 0 positive<br>nnel 0 positive<br>nnel 0 positive                                                                                                                                                                    | input is AN2<br>input is AN1<br>input is AN0                                                                                                                                                                      |                                     | bit               |                 |       |  |
| bit 7           | 00001 <b>= Cha</b> i<br>00000 <b>= Chai</b><br><b>CH0NA: Cha</b> i                                                                                                                                          | nnel 0 positive<br>nnel 0 positive<br>nnel 0 positive<br>nnel 0 Negative                                                                                                                                                 | input is AN2<br>input is AN1<br>input is AN0<br>e Input Select                                                                                                                                                    |                                     | bit               |                 |       |  |
| bit 7           | 00001 = Char<br>00000 = Char<br><b>CH0NA:</b> Char<br>1 = Channel 0                                                                                                                                         | nnel 0 positive<br>nnel 0 positive<br>nnel 0 positive<br>nnel 0 Negative<br>negative input                                                                                                                               | input is AN2<br>input is AN1<br>input is AN0<br>e Input Select<br>t is AN1                                                                                                                                        |                                     | bit               |                 |       |  |
|                 | 00001 = Char<br>00000 = Char<br><b>CH0NA:</b> Char<br>1 = Channel 0<br>0 = Channel 0                                                                                                                        | nnel 0 positive<br>nnel 0 positive<br>nnel 0 positive<br>nnel 0 Negative<br>negative input                                                                                                                               | input is AN2<br>input is AN1<br>input is AN0<br>e Input Select<br>t is AN1<br>t is VREF-                                                                                                                          |                                     | bit               |                 |       |  |
| bit 6-5         | 00001 = Char<br>00000 = Char<br><b>CH0NA:</b> Char<br>1 = Channel 0<br>0 = Channel 0<br><b>Unimplement</b>                                                                                                  | nnel 0 positive<br>nnel 0 positive<br>nnel 0 positive<br>nnel 0 Negative<br>negative input<br>negative input<br>ted: Read as (0                                                                                          | input is AN2<br>input is AN1<br>input is AN0<br>Input Select<br>t is AN1<br>t is VREF-<br>o'                                                                                                                      | for Sample A                        |                   |                 |       |  |
|                 | 00001 = Char<br>00000 = Char<br>CH0NA: Char<br>1 = Channel 0<br>0 = Channel 0<br>Unimplement<br>CH0SA<4:0>                                                                                                  | nnel 0 positive<br>nnel 0 positive<br>nnel 0 positive<br>negative input<br>negative input<br>negative input<br>ted: Read as '0<br>channel 0 Po                                                                           | input is AN2<br>input is AN1<br>input is AN0<br>e Input Select<br>t is AN1<br>t is VREF-<br>o'<br>sitive Input Se                                                                                                 | for Sample A<br>elect for Samp      |                   |                 |       |  |
| bit 6-5         | 00001 = Char<br>00000 = Char<br>CH0NA: Char<br>1 = Channel 0<br>0 = Channel 0<br>Unimplement<br>CH0SA<4:0>:<br>01100 = Char                                                                                 | nnel 0 positive<br>nnel 0 positive<br>nnel 0 positive<br>nnel 0 Negative<br>negative input<br>negative input<br>ted: Read as (0                                                                                          | input is AN2<br>input is AN1<br>input is AN0<br>Input Select<br>t is AN1<br>t is VREF-<br>o'<br>sitive Input Se<br>input is AN12                                                                                  | for Sample A<br>elect for Samp      |                   |                 |       |  |
| bit 6-5         | 00001 = Char<br>00000 = Char<br>CH0NA: Char<br>1 = Channel 0<br>0 = Channel 0<br>Unimplement<br>CH0SA<4:0>:<br>01100 = Char                                                                                 | nnel 0 positive<br>nnel 0 positive<br>nnel 0 positive<br>negative input<br>negative input<br>negative input<br>ted: Read as '0<br>channel 0 Po<br>nnel 0 positive                                                        | input is AN2<br>input is AN1<br>input is AN0<br>Input Select<br>t is AN1<br>t is VREF-<br>o'<br>sitive Input Se<br>input is AN12                                                                                  | for Sample A<br>elect for Samp      |                   |                 |       |  |
| bit 6-5         | 00001 = Char<br>00000 = Char<br>CH0NA: Char<br>1 = Channel 0<br>0 = Channel 0<br>Unimplement<br>CH0SA<4:0>:<br>01100 = Char                                                                                 | nnel 0 positive<br>nnel 0 positive<br>nnel 0 positive<br>negative input<br>negative input<br>negative input<br>ted: Read as '0<br>channel 0 Po<br>nnel 0 positive                                                        | input is AN2<br>input is AN1<br>input is AN0<br>Input Select<br>t is AN1<br>t is VREF-<br>o'<br>sitive Input Se<br>input is AN12                                                                                  | for Sample A<br>elect for Samp      |                   |                 |       |  |
| bit 6-5         | 00001 = Char<br>00000 = Char<br>CH0NA: Char<br>1 = Channel 0<br>0 = Channel 0<br>Unimplement<br>CH0SA<4:0>:<br>01100 = Char<br>01011 = Char<br>01000 = Char                                                 | nnel 0 positive<br>nnel 0 positive<br>nnel 0 Negative<br>negative input<br>negative input<br>ced: Read as '0<br>channel 0 Po<br>nnel 0 positive<br>nnel 0 positive                                                       | input is AN2<br>input is AN1<br>input is AN0<br>e Input Select<br>t is AN1<br>t is VREF-<br>o'<br>sitive Input Se<br>input is AN12<br>input is AN11                                                               | for Sample A<br>elect for Samp      |                   |                 |       |  |
| bit 6-5         | 00001 = Char<br>00000 = Char<br>CH0NA: Char<br>1 = Channel 0<br>0 = Channel 0<br>Unimplement<br>CH0SA<4:0>:<br>01100 = Char<br>01011 = Char<br>01000 = Char<br>00111 = Char                                 | nnel 0 positive<br>nnel 0 positive<br>nnel 0 positive<br>negative input<br>negative input<br>ed: Read as '0<br>channel 0 Po<br>nnel 0 positive<br>nnel 0 positive<br>nnel 0 positive                                     | input is AN2<br>input is AN1<br>input is AN0<br>e Input Select<br>t is AN1<br>t is VREF-<br>o'<br>sitive Input Se<br>input is AN12<br>input is AN8 <sup>(7)</sup>                                                 | for Sample A<br>elect for Samp<br>) |                   |                 |       |  |
| bit 6-5         | 00001 = Char<br>00000 = Char<br>CH0NA: Char<br>1 = Channel 0<br>0 = Channel 0<br>Unimplement<br>CH0SA<4:0>:<br>01100 = Char<br>01011 = Char<br>01000 = Char<br>00111 = Char                                 | nnel 0 positive<br>nnel 0 positive<br>nnel 0 Negative<br>negative input<br>negative input<br>ced: Read as '0<br>channel 0 Po<br>nnel 0 positive<br>nnel 0 positive                                                       | input is AN2<br>input is AN1<br>input is AN0<br>e Input Select<br>t is AN1<br>t is VREF-<br>o'<br>sitive Input Se<br>input is AN12<br>input is AN8 <sup>(7)</sup>                                                 | for Sample A<br>elect for Samp<br>) |                   |                 |       |  |
| bit 6-5         | 00001 = Char<br>00000 = Char<br>CH0NA: Char<br>1 = Channel 0<br>0 = Channel 0<br>Unimplement<br>CH0SA<4:0>:<br>01100 = Char<br>01011 = Char<br>01000 = Char<br>00111 = Char                                 | nnel 0 positive<br>nnel 0 positive<br>nnel 0 positive<br>negative input<br>negative input<br>ed: Read as '0<br>channel 0 Po<br>nnel 0 positive<br>nnel 0 positive<br>nnel 0 positive                                     | input is AN2<br>input is AN1<br>input is AN0<br>e Input Select<br>t is AN1<br>t is VREF-<br>o'<br>sitive Input Se<br>input is AN12<br>input is AN8 <sup>(7)</sup>                                                 | for Sample A<br>elect for Samp<br>) |                   |                 |       |  |
| bit 6-5         | 00001 = Char<br>00000 = Char<br>CH0NA: Char<br>1 = Channel C<br>0 = Channel C<br>Unimplement<br>CH0SA<4:0>:<br>01100 = Char<br>01011 = Char<br>01000 = Char<br>00111 = Char<br>00110 = Char                 | annel 0 positive<br>annel 0 positive<br>annel 0 positive<br>annel 0 Negative<br>annel 0 Negative<br>annel 0 Negative<br>annel 0 positive<br>annel 0 positive<br>annel 0 positive<br>annel 0 positive<br>annel 0 positive | input is AN2<br>input is AN1<br>input is AN0<br>e Input Select<br>t is AN1<br>t is VREF-<br>o'<br>sitive Input Se<br>input is AN12<br>input is AN11<br>input is AN8 <sup>(7)</sup><br>input is AN8 <sup>(7)</sup> | for Sample A<br>elect for Samp<br>) |                   |                 |       |  |
| bit 6-5         | 00001 = Char<br>00000 = Char<br>CH0NA: Char<br>1 = Channel C<br>0 = Channel C<br>Unimplement<br>CH0SA<4:0>:<br>01100 = Char<br>01011 = Char<br>01000 = Char<br>00111 = Char<br>00110 = Char<br>00110 = Char | nnel 0 positive<br>nnel 0 positive<br>nnel 0 positive<br>negative input<br>negative input<br>ed: Read as '0<br>channel 0 Po<br>nnel 0 positive<br>nnel 0 positive<br>nnel 0 positive                                     | input is AN2<br>input is AN1<br>input is AN0<br>e Input Select<br>t is AN1<br>t is VREF-<br>o'<br>sitive Input Se<br>input is AN12<br>input is AN11<br>input is AN8 <sup>(7)</sup><br>input is AN8 <sup>(7)</sup> | for Sample A<br>elect for Samp<br>) |                   |                 |       |  |

### REGISTER 21-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER


Note 1: These bit settings are reserved on dsPIC33FJ128GPX02, dsPIC33FJ64GPX02 and dsPIC33FJ32GPX02 (28-pin) devices.

#### 22.4 DAC Clock


The DAC clock signal clocks the internal logic of the Audio DAC module. The data sample rate of the Audio DAC is an integer division of the rate of the DAC clock. The DAC clock is generated via a clock divider circuit that accepts an auxiliary clock from the auxiliary oscillator.

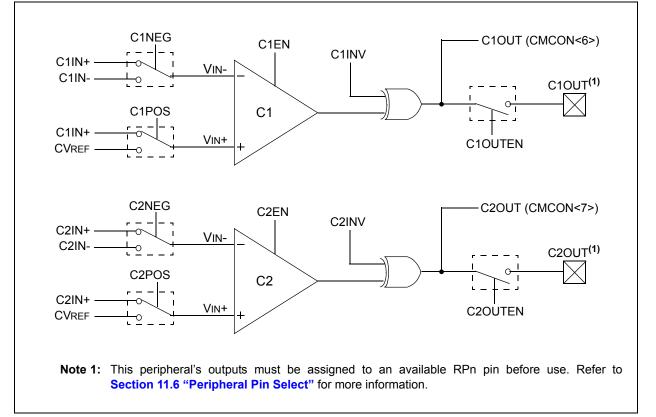
The divisor ratio is programmed by clock divider bits (DACFDIV<6:0>) in the DAC Control register (DAC1CON). The resulting DAC clock must not exceed 25.6 MHz. If lower sample rates are to be used, then the DAC filter clock frequency may be reduced to reduce power consumption. The DAC clock frequency is 256 times the sampling frequency.





#### FIGURE 22-2: AUDIO DAC OUTPUT FOR RAMP INPUT (UNSIGNED)




### 23.0 COMPARATOR MODULE

- Note 1: This data sheet summarizes the features dsPIC33FJ32GP302/304. of the dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 34. "Comparator" (DS70212) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
  - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

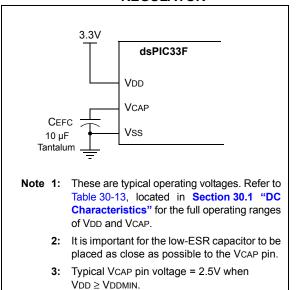
The Comparator module provides a set of dual input comparators. The inputs to the comparator can be configured to use any one of the four pin inputs (C1IN+, C1IN-, C2IN+ and C2IN-) as well as the Comparator Voltage Reference Input (CVREF).

Note: This peripheral contains output functions that may need to be configured by the peripheral pin select feature. For more information, see Section 11.6 "Peripheral Pin Select".

#### FIGURE 23-1: COMPARATOR I/O OPERATING MODES



#### 27.2 On-Chip Voltage Regulator


All of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/ X04 devices power their core digital logic at a nominal 2.5V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. When the regulator is enabled, a low-ESR (less than 5 Ohms) capacitor (such as tantalum or ceramic) must be connected to the VCAP pin (Figure 27-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 30-13 located in Section 30.1 "DC Characteristics".

| Note: | It is important for the low-ESR capacitor to |
|-------|----------------------------------------------|
|       | be placed as close as possible to the VCAP   |
|       | pin.                                         |

On a POR, it takes approximately 20 µs for the on-chip voltage regulator to generate an output voltage. During this time, designated as TSTARTUP, code execution is disabled. TSTARTUP is applied every time the device resumes operation after any power-down.

#### FIGURE 27-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR<sup>(1,2,3)</sup>



#### 27.3 BOR: Brown-out Reset

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines, or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the PWRT time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM = 100 is applied. The total delay in this case is TFSCM.

The BOR Status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle modes and resets the device should VDD fall below the BOR threshold voltage.

#### Base Assembly # of # of Status Flags Instr Assembly Syntax Description Mnemonic Words Cycles Affected # 10 BTSC BTSC Bit Test f, Skip if Clear 1 None f,#bit4 1 (2 or 3) BTSC Ws,#bit4 Bit Test Ws, Skip if Clear 1 None 1 (2 or 3) 11 Bit Test f, Skip if Set BTSS BTSS f,#bit4 1 None 1 (2 or 3) BTSS Ws,#bit4 Bit Test Ws, Skip if Set 1 1 None (2 or 3) 12 1 Ζ BTST BTST Bit Test f 1 f,#bit4 Bit Test Ws to C 1 1 С BTST.C Ws,#bit4 BTST.Z Ws,#bit4 Bit Test Ws to Z 1 1 Ζ BTST.C Ws,Wb Bit Test Ws<Wb> to C 1 1 С Bit Test Ws<Wb> to Z 1 1 Ζ BTST.Z Ws,Wb 13 BTSTS BTSTS Bit Test then Set f 1 1 Ζ f,#bit4 BTSTS.C Ws,#bit4 Bit Test Ws to C, then Set 1 1 С BTSTS.Z Ws.#bit4 Bit Test Ws to Z, then Set 1 1 Ζ 14 CALL CALL lit23 Call subroutine 2 2 None Call indirect subroutine 2 None 1 CALL Wn 15 f = 0x00001 1 None CLR CLR f WREG = 0x0000 CLR 1 1 None WREG CLR Ws Ws = 0x00001 1 None Clear Accumulator OA,OB,SA,SB CLR Acc, Wx, Wxd, Wy, Wyd, AWB 1 1 16 CLRWDT Clear Watchdog Timer 1 WDTO,Sleep CLRWDT 1 $f = \overline{f}$ 17 COM СОМ 1 1 N,Z f f,WREG WREG = $\overline{f}$ N,Z COM 1 1 Ws,Wd Wd = WsСОМ 1 1 N,Z 18 СР CP Compare f with WREG 1 1 C,DC,N,OV,Z f СР Compare Wb with lit5 1 1 C,DC,N,OV,Z Wb,#lit5 СР Compare Wb with Ws (Wb - Ws) 1 1 C,DC,N,OV,Z Wb,Ws 19 CP0 CPO Compare f with 0x0000 1 1 C,DC,N,OV,Z f CPO Compare Ws with 0x0000 1 1 C,DC,N,OV,Z Ws 20 1 1 CPB CPB f Compare f with WREG, with Borrow C,DC,N,OV,Z CPB Compare Wb with lit5, with Borrow 1 1 C,DC,N,OV,Z Wb,#lit5 CPB Compare Wb with Ws, with Borrow 1 1 C,DC,N,OV,Z Wb,Ws $(Wb - Ws - \overline{C})$ 21 CPSEQ CPSEQ Compare Wb with Wn, skip if = 1 None Wb, Wn 1 (2 or 3) 22 CPSGT CPSGT Compare Wb with Wn, skip if > 1 1 None Wb, Wn (2 or 3) 23 Compare Wb with Wn, skip if < 1 CPSLT CPSLT Wb, Wn 1 None (2 or 3) 24 Compare Wb with Wn, skip if $\neq$ 1 CPSNE CPSNE Wb, Wn 1 None (2 or 3) 25 DAW DAW Wn Wn = decimal adjust Wn 1 1 С 26 f = f - 11 C,DC,N,OV,Z DEC DEC f 1 WREG = f - 1DEC f,WREG 1 1 C,DC,N,OV,Z Wd = Ws - 1C,DC,N,OV,Z DEC Ws,Wd 1 1 27 DEC2 f = f - 2 C,DC,N,OV,Z DEC2 1 1 f

WREG = f - 2

Wd = Ws - 2

Disable Interrupts for k instruction cycles

#### TABLE 28-2: **INSTRUCTION SET OVERVIEW (CONTINUED)**

DEC2

DEC2

DISI

28

DISI

f,WREG

Ws,Wd

#lit14

C,DC,N,OV,Z

C,DC,N,OV,Z

None

1

1

1

1

1

1

#### 31.1 High Temperature DC Characteristics

#### TABLE 31-1: OPERATING MIPS VS. VOLTAGE

|                |                             |                              | Max MIPS                                                                    |
|----------------|-----------------------------|------------------------------|-----------------------------------------------------------------------------|
| Characteristic | VDD Range<br>(in Volts)     | Temperature Range<br>(in °C) | dsPIC33FJ32GP302/304,<br>dsPIC33FJ64GPX02/X04, and<br>dsPIC33FJ128GPX02/X04 |
|                | 3.0V to 3.6V <sup>(1)</sup> | -40°C to +150°C              | 20                                                                          |

**Note 1:** Device is functional at VBORMIN < VDD < VDDMIN. Analog modules such as the ADC will have degraded performance. Device functionality is tested but not characterized.

#### TABLE 31-2: THERMAL OPERATING CONDITIONS

| Rating                                                                                                                                                                                 | Symbol | Min           | Тур | Max  | Unit |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|-----|------|------|
| High Temperature Devices                                                                                                                                                               |        |               |     |      |      |
| Operating Junction Temperature Range                                                                                                                                                   | TJ     | -40           | _   | +155 | °C   |
| Operating Ambient Temperature Range                                                                                                                                                    | TA     | -40           | _   | +150 | °C   |
| Power Dissipation:<br>Internal chip power dissipation:<br>$PINT = VDD x (IDD - \Sigma IOH)$<br>I/O Pin Power Dissipation:<br>$I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$ | PD     | Pint + Pi/o   |     |      | W    |
| Maximum Allowed Power Dissipation                                                                                                                                                      |        | (Tj - Ta)/θja |     |      | W    |

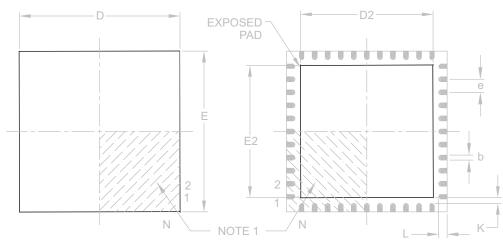
#### TABLE 31-3: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

| DC CHARACTERISTICS   |        |                | Standard Operating Conditions: 3.0V to 3.6V         (unless otherwise stated)         Operating temperature       -40°C ≤TA ≤+150°C for High Temperature |     |     |       |                 |
|----------------------|--------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-------|-----------------|
| Parameter<br>No.     | Symbol | Characteristic | Min                                                                                                                                                      | Тур | Мах | Units | Conditions      |
| Operating Voltage    |        |                |                                                                                                                                                          |     |     |       |                 |
| HDC10 Supply Voltage |        |                |                                                                                                                                                          |     |     |       |                 |
|                      | Vdd    | _              | 3.0                                                                                                                                                      | 3.3 | 3.6 | V     | -40°C to +150°C |

**Note 1:** Device is functional at VBORMIN < VDD < VDDMIN. Analog modules such as the ADC will have degraded performance. Device functionality is tested but not characterized.

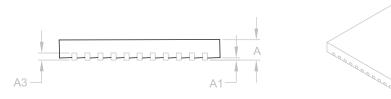
| -            | AC         Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)           Operating temperature         -40°C ≤TA ≤+150°C for High Temperature |                           |              |           |           |          |                                                  |  |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------|-----------|-----------|----------|--------------------------------------------------|--|
| Param<br>No. | Symbol                                                                                                                                                          | Characteristic            | Min          | Тур       | Max       | Units    | Conditions                                       |  |
|              |                                                                                                                                                                 | C Accuracy (10-bit Mode)  | Maggi        | romonto   | with Ex   | tornal V |                                                  |  |
|              | 1                                                                                                                                                               | Resolution <sup>(3)</sup> |              |           |           | 1        |                                                  |  |
| HAD20b       | Nr                                                                                                                                                              |                           | 10 data bits |           | bits      |          |                                                  |  |
| HAD21b       | INL                                                                                                                                                             | Integral Nonlinearity     | -3           | _         | 3         | LSb      | VINL = AVSS = VREFL = 0V,<br>AVDD = VREFH = 3.6V |  |
| HAD22b       | DNL                                                                                                                                                             | Differential Nonlinearity | > -1         | —         | < 1       | LSb      | VINL = AVSS = VREFL = 0V,<br>AVDD = VREFH = 3.6V |  |
| HAD23b       | Gerr                                                                                                                                                            | Gain Error                | -5           | —         | 6         | LSb      | VINL = AVSS = VREFL = 0V,<br>AVDD = VREFH = 3.6V |  |
| HAD24b       | EOFF                                                                                                                                                            | Offset Error              | -1           | —         | 5         | LSb      | VINL = AVSS = VREFL = 0V,<br>AVDD = VREFH = 3.6V |  |
|              | AD                                                                                                                                                              | C Accuracy (10-bit Mode)  | – Measu      | irement   | s with In | ternal V | REF+/VREF- <sup>(1)</sup>                        |  |
| HAD20b       | Nr                                                                                                                                                              | Resolution <sup>(3)</sup> | 10 data bits |           | bits      | _        |                                                  |  |
| HAD21b       | INL                                                                                                                                                             | Integral Nonlinearity     | -2           |           | 2         | LSb      | VINL = AVSS = 0V, AVDD = 3.6V                    |  |
| HAD22b       | DNL                                                                                                                                                             | Differential Nonlinearity | > -1         |           | < 1       | LSb      | VINL = AVSS = 0V, AVDD = 3.6V                    |  |
| HAD23b       | Gerr                                                                                                                                                            | Gain Error                | -5           | —         | 15        | LSb      | VINL = AVSS = 0V, AVDD = 3.6V                    |  |
| HAD24b       | EOFF                                                                                                                                                            | Offset Error              | -1.5         | —         | 7         | LSb      | VINL = AVSS = 0V, AVDD = 3.6V                    |  |
|              |                                                                                                                                                                 | Dynamic Po                | erformar     | nce (10-l | oit Mode  | (2)      |                                                  |  |
| HAD33b       | Fnyq                                                                                                                                                            | Input Signal Bandwidth    | —            |           | 400       | kHz      | _                                                |  |

### TABLE 31-16: ADC MODULE SPECIFICATIONS (10-BIT MODE)


**Note 1:** These parameters are characterized, but are tested at 20 ksps only.

**2:** These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.


### 44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



**TOP VIEW** 

**BOTTOM VIEW** 



|                        | Units       | MILLIMETERS    |      |      |  |
|------------------------|-------------|----------------|------|------|--|
| Dimens                 | sion Limits | MIN            | NOM  | MAX  |  |
| Number of Pins         | Ν           | 44             |      |      |  |
| Pitch                  | е           | 0.65 BSC       |      |      |  |
| Overall Height         | Α           | 0.80           | 0.90 | 1.00 |  |
| Standoff               | A1          | 0.00           | 0.02 | 0.05 |  |
| Contact Thickness      | A3          | 0.20 REF       |      |      |  |
| Overall Width          | E           | 8.00 BSC       |      |      |  |
| Exposed Pad Width      | E2          | 6.30 6.45 6.80 |      |      |  |
| Overall Length         | D           | 8.00 BSC       |      |      |  |
| Exposed Pad Length     | D2          | 6.30           | 6.45 | 6.80 |  |
| Contact Width          | b           | 0.25           | 0.30 | 0.38 |  |
| Contact Length         | L           | 0.30           | 0.40 | 0.50 |  |
| Contact-to-Exposed Pad | K           | 0.20           | -    | -    |  |

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103B

#### Revision C (May 2009)

This revision includes minor typographical and formatting changes throughout the data sheet text.

Global changes include:

- Changed all instances of OSCI to OSC1 and OSCO to OSC2
- Changed all instances of VDDCORE and VDDCORE/ VCAP to VCAP/VDDCORE

The other changes are referenced by their respective section in the following table.

#### TABLE A-2: MAJOR SECTION UPDATES

| Section Name                                                                              | Update Description                                                                                                                          |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| High-Performance, 16-bit Digital<br>Signal Controllers                                    | Updated all pin diagrams to denote the pin voltage tolerance (see " <b>Pin Diagrams</b> ").                                                 |
|                                                                                           | Added Note 2 to the 28-Pin QFN-S and 44-Pin QFN pin diagrams, which references pin connections to Vss.                                      |
| Section 1.0 "Device Overview"                                                             | Updated AVDD in the PINOUT I/O Descriptions (see Table 1-1).                                                                                |
|                                                                                           | Added Peripheral Pin Select (PPS) capability column to Pinout I/O Descriptions (see Table 1-1).                                             |
| Section 2.0 "Guidelines for Getting<br>Started with 16-bit Digital Signal<br>Controllers" | Added new section to the data sheet that provides guidelines on getting started with 16-bit Digital Signal Controllers.                     |
| Section 3.0 "CPU"                                                                         | Updated CPU Core Block Diagram with a connection from the DSP Engine to the Y Data Bus (see Figure 3-1).                                    |
|                                                                                           | Vertically extended the X and Y Data Bus lines in the DSP Engine Block Diagram (see Figure 3-3).                                            |
| Section 4.0 "Memory Organization"                                                         | Updated Reset value for CORCON in the CPU Core Register Map (see Table 4-1).                                                                |
|                                                                                           | Updated the Reset values for IPC14 and IPC15 and removed the FLTA1IE bit (IEC3) from the Interrupt Controller Register Map (see Table 4-4). |
|                                                                                           | Updated bit locations for RPINR25 in the Peripheral Pin Select Input Register Map (see Table 4-21).                                         |
|                                                                                           | Updated the Reset value for CLKDIV in the System Control Register Map (see Table 4-33).                                                     |
| Section 5.0 "Flash Program<br>Memory"                                                     | Updated <b>Section 5.3 "Programming Operations"</b> with programming time formula.                                                          |
| Section 9.0 "Oscillator<br>Configuration"                                                 | Updated the Oscillator System Diagram and added Note 2 (see Figure 9-1).                                                                    |
| Comgulation                                                                               | Added Note 1 and Note 2 to the OSCON register (see Register 9-1).                                                                           |
|                                                                                           | Updated default bit values for DOZE<2:0> and FRCDIV<2:0> in the Clock Divisor (CLKDIV) Register (see Register 9-2).                         |
|                                                                                           | Added a paragraph regarding FRC accuracy at the end of <b>Section 9.1.1</b> "System Clock Sources".                                         |
|                                                                                           | Added Note 3 to Section 9.2.2 "Oscillator Switching Sequence".                                                                              |
|                                                                                           | Added Note 1 to the FRC Oscillator Tuning (OSCTUN) Register (see Register 9-4).                                                             |