

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XEI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DCI, DMA, I ² S, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 13x10b/12b; D/A 2x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128gp804-h-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IADLE 1-1.	ABLE 1-1: PINOUT I/O DESCRIPTIONS					
Pin Name	Pin Type	Buffer Type	PPS	Description		
AN0-AN12	I	Analog		Analog input channels.		
CLKI	I	ST/CMOS	No	External clock source input. Always associated with OSC1 pin		
CLKO	0	_	No	function. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.		
OSC1	Ι	ST/CMOS	No	Oscillator crystal input. ST buffer when configured in RC mode;		
OSC2	I/O	_	No	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes		
SOSCI SOSCO	 0	ST/CMOS	No No	32.768 kHz low-power oscillator crystal input; CMOS otherwise. 32.768 kHz low-power oscillator crystal output.		
CN0-CN30	Ι	ST	No No	Change notification inputs. Can be software programmed for internal weak pull-ups on all inputs.		
IC1-IC2 IC7-IC8		ST ST	Yes Yes	Capture inputs 1/2. Capture inputs 7/8.		
OCFA OC1-OC4	Г О	ST —	Yes Yes	Compare Fault A input (for Compare Channels 1, 2, 3 and 4). Compare outputs 1 through 4.		
INT0	Ι	ST	No	External interrupt 0.		
INT1	I	ST	Yes	External interrupt 1.		
INT2	I	ST	Yes	External interrupt 2.		
RA0-RA4	I/O	ST	No	PORTA is a bidirectional I/O port.		
RA7-RA10	I/O	ST	No	PORTA is a bidirectional I/O port.		
RB0-RB15	I/O	ST	No	PORTB is a bidirectional I/O port.		
RC0-RC9	I/O	ST	No	PORTC is a bidirectional I/O port.		
T1CK	I	ST	No	Timer1 external clock input.		
T2CK	I	ST	Yes	Timer2 external clock input.		
T3CK	I	ST	Yes	Timer3 external clock input.		
14CK		SI	Yes	Timer4 external clock input.		
15CK	I	51	Yes			
U1CTS		SI	Yes	UARI1 clear to send.		
U1RTS	0	— ст	Yes	UART1 ready to send.		
U1RX	0		Yes	UART1 transmit.		
		07				
U2CTS		SI	Yes	UARI2 clear to send.		
U2RTS		— ст	Yos	UART2 receive		
U2RX	0		Yes	UART2 transmit		
U21X	0		100			
SCK1	I/O	ST	Yes	Synchronous serial clock input/output for SPI1.		
SD01		51	Yes SPIT data In.			
SS1	1/0	ST ST	Yes	ISPI1 vala out.		
SCK2		ST	Yee	Synchronous serial clock input/output for SPI2		
SDI2	"U	ST	Yes	ISPI2 data in		
SDO2	Ō	_	Yes	SPI2 data out.		
SS2	1/0	ST	Yes	SPI2 slave synchronization or frame pulse I/O.		
Legend: CMOS	= CMOS	S compatible	e input c	proutput Analog = Analog input P = Power		

TABLE 1-1: PINOUT I/O DESCRIPTIONS	TABLE 1-1:	PINOUT I/O DESCRIPTIONS
------------------------------------	------------	--------------------------------

JS compatible input or output gena:

ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer

= Analog Input O = Output I = Input PPS = Peripheral Pin Select

TABLE 1-1:	PINOUT I/O DESCRIPTIONS	(CONTINUED)
------------	-------------------------	-------------

Pin Name	Pin Type	Buffer Type	PPS	Description
AVss	Р	Р	No	Ground reference for analog modules.
Vdd	Р	_	No	Positive supply for peripheral logic and I/O pins.
VCAP	Р	-	No	CPU logic filter capacitor connection.
Vss	Р	_	No	Ground reference for logic and I/O pins.
VREF+	I	Analog	No	Analog voltage reference (high) input.
VREF-		Analog	No	Analog voltage reference (low) input.

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer Analog = Analog inputP = PowerO = OutputI = InputPPS = Peripheral Pin Select

REGISTER	7-10: IEC0:	INTERRUPT	ENABLE CO	ONTROL RE	GISTER 0		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE
bit 15							bit 8
DAMA		DAMA	DAMA	DAMA		D 444 0	DAMA
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	OCZIE	IC2IE	DIVIAULE	THE	OCTIE	ICTIE	
							DIL U
l egend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	iown
			-				-
bit 15	Unimplemer	ted: Read as	0'				
bit 14	DMA1IE: DM	IA Channel 1 D	ata Transfer C	Complete Inter	rupt Enable bit		
	1 = Interrupt	request enable	d				
	0 = Interrupt	request not en	abled				
bit 13	AD1IE: ADC	1 Conversion C	Complete Interi	rupt Enable bi	t		
	\perp = Interrupt 0 = Interrupt	request enable	a abled				
bit 12	U1TXIE: UAF	RT1 Transmitte	r Interrupt Ena	able bit			
	1 = Interrupt	request enable	d				
	0 = Interrupt	request not en	abled				
bit 11	U1RXIE: UAI	RT1 Receiver I	nterrupt Enabl	e bit			
	1 = Interrupt	request enable	d abled				
bit 10	SPI1IE: SPI1	Fvent Interrur	ot Enable bit				
	1 = Interrupt	request enable	d				
	0 = Interrupt	request not en	abled				
bit 9	SPI1EIE: SP	11 Error Interru	pt Enable bit				
	1 = Interrupt	request enable	d				
hit 8	T3IE: Timer3	Interrunt Enab	le hit				
bit o	1 = Interrupt	request enable	d				
	0 = Interrupt	request not en	abled				
bit 7	T2IE: Timer2	Interrupt Enab	le bit				
	1 = Interrupt	request enable	d				
bit 6		request not en ut Compare Ch	ableu	unt Enabla bit			
DILO	1 = Interrunt	request enable	d				
	0 = Interrupt	request not en	abled				
bit 5	IC2IE: Input (Capture Chanr	el 2 Interrupt E	Enable bit			
	1 = Interrupt	request enable	d				
L:1 4	0 = Interrupt	request not en	abled				
Dit 4	1 = Interrupt	IA Channel U L	ata Transfer C	complete inter	rupt Enable bit		
	0 = Interrupt	request not en	abled				
bit 3	T1IE: Timer1	Interrupt Enab	le bit				
	1 = Interrupt	request enable	d				
	0 = Interrupt	request not en	abled				

						D/M/ 0	D/M/ O
					R/W-0	R/W-0	
UZI XIE	UZRAIE	INTZIE	ISIE	141E	UC4IE	OC3IE	DIVIAZIE
DIL 15							DIL O
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC8IF	IC7IF	_	INT1IF	CNIE	CMIE	MI2C1IF	SI2C1IF
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown
bit 15	U2TXIE: UAF	RT2 Transmitte	r Interrupt Ena	able bit			
	1 = Interrupt r	request enable	d				
	0 = Interrupt r	request not ena	abled				
bit 14	U2RXIE: UAP	RI2 Receiver l	nterrupt Enab	le bit			
	1 = Interrupt r0 = Interrupt r	request enable	u abled				
bit 13	INT2IE: Exter	rnal Interrupt 2	Enable bit				
	1 = Interrupt r	request enable	d				
	0 = Interrupt r	request not ena	abled				
bit 12	T5IE: Timer5	Interrupt Enab	le bit				
	1 = Interrupt r	request enable	d abled				
bit 11	T4IE: Timer4	Interrupt Fnab	le bit				
	1 = Interrupt r	request enable	d				
	0 = Interrupt r	request not ena	abled				
bit 10	OC4IE: Output	ut Compare Ch	annel 4 Interi	rupt Enable bit			
	1 = Interrupt r	request enable	d abled				
bit 9	OC3IE: Outpu	ut Compare Ch	annel 3 Interi	upt Enable bit			
	1 = Interrupt r	request enable	d	· · · · · · ·			
	0 = Interrupt r	request not ena	abled				
bit 8	DMA2IE: DM	A Channel 2 D	ata Transfer (Complete Inter	rupt Enable bit		
	1 = Interrupt r	request enable	d abled				
bit 7		Capture Chann	el 8 Interrupt	Enable bit			
5 CT	1 = Interrupt r	request enable	d				
	0 = Interrupt r	request not ena	abled				
bit 6	IC7IE: Input C	Capture Chann	el 7 Interrupt	Enable bit			
	1 = Interrupt r	request enable	d				
hit 5		tod. Dead as '	o'				
bit 4		rnal Interrunt 1	∪ Enable bit				
Sit 1	1 = Interrupt r	request enable	d				
	0 = Interrupt r	request not ena	abled				
bit 3	CNIE: Input C	Change Notifica	ation Interrupt	Enable bit			
	1 = Interrupt r 0 = Interrupt r	request enable request not ena	d abled				

	-J. ILLIL						
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	—	—		—	—	_	PLLDIV<8>
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
			PLLD	IV<7:0>			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-9	Unimplemen	ted: Read as ')'				
bit 8-0	PLLDIV<8:0>	: PLL Feedbac	k Divisor bits	(also denoted	as 'M', PLL mu	ltiplier)	
	111111111 =	= 513					
	•						
	•						
	•						
	000110000 =	= 50 (default)					
	•						
	•						
	•						
	000000010 =	= 4					

REGISTER 9-3-PLIEBD PLI FEEDBACK DIVISOR REGISTER⁽¹⁾

00000001 = 3 000000000 = 2

Note 1: This register is reset only on a Power-on Reset (POR).

REGISTER 11-17: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			RP1R<4:0>		
bit 15		•					bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP0R<4:0>		
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			iown

bit 15-13	Unimplemented: Read as '0'
-----------	----------------------------

bit 12-8 **RP1R<4:0>:** Peripheral Output Function is Assigned to RP1 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP0R<4:0>:** Peripheral Output Function is Assigned to RP0 Output Pin bits (see Table 11-2 for peripheral function numbers)

REGISTER 11-18: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP3R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP2R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP3R<4:0>:** Peripheral Output Function is Assigned to RP3 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP2R<4:0>:** Peripheral Output Function is Assigned to RP2 Output Pin bits (see Table 11-2 for peripheral function numbers)

19.3 Modes of Operation

The ECAN module can operate in one of several operation modes selected by the user. These modes include:

- Initialization mode
- · Disable mode
- Normal Operation mode
- Listen Only mode
- Listen All Messages mode
- · Loopback mode

Modes are requested by setting the REQOP<2:0> bits (CiCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL1<7:5>). The module does not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

19.3.1 INITIALIZATION MODE

In the Initialization mode, the module does not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The user application has access to Configuration registers that are access restricted in other modes. The module protects the user from accidentally violating the CAN protocol through programming errors. All registers which control the configuration of the module cannot be modified while the module is on-line. The ECAN module is not allowed to enter the Configuration mode while a transmission is taking place. The Configuration mode serves as a lock to protect the following registers:

- All Module Control registers
- Baud Rate and Interrupt Configuration registers
- Bus Timing registers
- Identifier Acceptance Filter registers
- Identifier Acceptance Mask registers

19.3.2 DISABLE MODE

In Disable mode, the module does not transmit or receive. The module has the ability to set the WAKIF bit due to bus activity, however, any pending interrupts remains and the error counters retains their value.

If the REQOP<2:0> bits (CiCTRL1<10:8>) = 001, the module enters the Module Disable mode. If the module is active, the module waits for 11 recessive bits on the CAN bus, detect that condition as an Idle bus, then accept the module disable command. When the OPMODE<2:0> bits (CiCTRL1<7:5>) = 001, that indicates whether the module successfully went into Module Disable mode. The I/O pins reverts to normal I/O function when the module is in the Module Disable mode.

The module can be programmed to apply a low-pass filter function to the CiRX input line while the module or the CPU is in Sleep mode. The WAKFIL bit (CiCFG2<14>) enables or disables the filter.

Note: Typically, if the ECAN module is allowed to transmit in a particular mode of operation and a transmission is requested immediately after the ECAN module has been placed in that mode of operation, the module waits for 11 consecutive recessive bits on the bus before starting transmission. If the user switches to Disable mode within this 11-bit period, then this transmission is aborted and the corresponding TXABT bit is set and TXREQ bit is cleared.

19.3.3 NORMAL OPERATION MODE

Normal Operation mode is selected when REQOP<2:0> = 000. In this mode, the module is activated and the I/O pins assumes the CAN bus functions. The module transmits and receive CAN bus messages via the CiTX and CiRX pins.

19.3.4 LISTEN ONLY MODE

If the Listen Only mode is activated, the module on the CAN bus is passive. The transmitter buffers revert to the port I/O function. The receive pins remain inputs. For the receiver, no error flags or Acknowledge signals are sent. The error counters are deactivated in this state. The Listen Only mode can be used for detecting the baud rate on the CAN bus. To use this, it is necessary that there are at least two further nodes that communicate with each other.

19.3.5 LISTEN ALL MESSAGES MODE

The module can be set to ignore all errors and receive any message. The Listen All Messages mode is activated by setting REQOP<2:0> = '111'. In this mode, the data which is in the message assembly buffer, until the time an error occurred, is copied in the receive buffer and can be read via the CPU interface.

19.3.6 LOOPBACK MODE

If the Loopback mode is activated, the module connects the internal transmit signal to the internal receive signal at the module boundary. The transmit and receive pins revert to their port I/O function.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

REGISTER 19	REGISTER 19-2: CiCTRL2: ECAN™ CONTROL REGISTER 2						
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	—	
bit 15							bit 8
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
—	_	_	DNCNT<4:0>				
bit 7							bit 0
Legend:		C = Writable I	oit, but only '0	' can be writter	n to clear the bi	t	
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared			x = Bit is unkr	nown			

bit 15-5 bit 4-0	Unimplemented: Read as '0' DNCNT<4:0>: DeviceNet™ Filter Bit Number bits
	10010-11111 = Invalid selection 10001 = Compare up to data byte 3, bit 6 with EID<17>
	•
	•
	•
	00001 = Compare up to data byte 1, bit 7 with EID<0> 00000 = Do not compare data bytes

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

	n (n =	0-15)					
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0
bit 7							bit 0

REGISTER 19-17:	CIRXFnEID: ECAN™ ACCEPTANCE FILTER EXTENDED IDENTIFIER REGISTER
	n (n = 0-15)

Legend:	C = Writable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0

EID<15:0>: Extended Identifier bits

1 = Message address bit EIDx must be '1' to match filter

0 = Message address bit EIDx must be '0' to match filter

REGISTER 19-18: CiFMSKSEL1: ECAN™ FILTER 7-0 MASK SELECTION REGISTER

bit 7							bit 0
F3MSk	<<1:0>	F2MSK<1:0>		F1MSK<1:0>		F0MSK<1:0>	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
F7MSH	<<1:0>	:0> F6MSK<1:0>		F5MSK<1:0>		F4MSK<1:0>	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

Legend:	C = Writable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14	F7MSK<1:0>: Mask Source for Filter 7 bit
	11 = No mask
	10 = Acceptance Mask 2 registers contain mask
	01 = Acceptance Mask 1 registers contain mask
	00 = Acceptance Mask 0 registers contain mask
bit 13-12	F6MSK<1:0>: Mask Source for Filter 6 bit (same values as bit 15-14)
bit 11-10	F5MSK<1:0>: Mask Source for Filter 5 bit (same values as bit 15-14)
bit 9-8	F4MSK<1:0>: Mask Source for Filter 4 bit (same values as bit 15-14)
bit 7-6	F3MSK<1:0>: Mask Source for Filter 3 bit (same values as bit 15-14)
bit 5-4	F2MSK<1:0>: Mask Source for Filter 2 bit (same values as bit 15-14)
bit 3-2	F1MSK<1:0>: Mask Source for Filter 1 bit (same values as bit 15-14)
bit 1-0	F0MSK<1:0>: Mask Source for Filter 0 bit (same values as bit 15-14)

22.4 DAC Clock

The DAC clock signal clocks the internal logic of the Audio DAC module. The data sample rate of the Audio DAC is an integer division of the rate of the DAC clock. The DAC clock is generated via a clock divider circuit that accepts an auxiliary clock from the auxiliary oscillator.

The divisor ratio is programmed by clock divider bits (DACFDIV<6:0>) in the DAC Control register (DAC1CON). The resulting DAC clock must not exceed 25.6 MHz. If lower sample rates are to be used, then the DAC filter clock frequency may be reduced to reduce power consumption. The DAC clock frequency is 256 times the sampling frequency.

FIGURE 22-2: AUDIO DAC OUTPUT FOR RAMP INPUT (UNSIGNED)

REGISTER 2	2-2: DAC1	STAT: DAC S	IAIUS REG	JISTER			
R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R-0	R-0
LOEN	—	LMVOEN		_	LITYPE	LFULL	LEMPTY
bit 15							bit 8
R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R-0	R-0
ROEN	—	RMVOEN	—	—	RITYPE	RFULL	REMPTY
bit 7							bit 0
Legend:	L :4		L 14			-1 (0)	
R = Readable		vv = vvritable	DIT		mented bit, rea		
-n = Value at P	VOR	'1' = Bit is set		0° = Bit is cle	eared	x = Bit is unk	nown
bit 15	bit 15 LOEN: Left Channel DAC Output Enable bit 1 = Positive and negative DAC outputs are enabled 0 = DAC outputs are disabled						
bit 14	Unimplemen	ted: Read as '	0'				
bit 13	LMVOEN: Le	eft Channel Mid	point DAC Ou	utput Voltage E	Enable bit		
	1 = Midpoint 0 = Midpoint	DAC output is output is disab	enabled led				
bit 12-11	Unimplemen	ted: Read as '	0'				
bit 10	LITYPE: Left Channel Type of Interrupt bit 1 = Interrupt if FIFO is Empty 0 = Interrupt if FIFO is not Full						
bit 9	LFULL: Statu 1 = FIFO is F 0 = FIFO is r	us, Left Channe ⁻ ull not full	l Data Input F	FIFO is Full bit			
bit 8	LEMPTY: Sta 1 = FIFO is E 0 = FIFO is r	atus, Left Chanı Empty not Empty	nel Data Inpu	t FIFO is Empt	y bit		
bit 7	ROEN: Right 1 = Positive 0 = DAC out	Channel DAC and negative D puts are disable	Output Enabl AC outputs a ed	le bit re enabled			
bit 6	Unimplemen	ted: Read as '	0'				
bit 5	RMVOEN: Right Channel Midpoint DAC Output Voltage Enable bit 1 = Midpoint DAC output is enabled 0 = Midpoint output is disabled						
bit 4-3	Unimplemen	ted: Read as '	0'				
bit 2	RITYPE: Right Channel Type of Interrupt bit						
	1 = Interrupt if FIFO is Empty 0 = Interrupt if FIFO is not Full						
bit 1	RFULL: Statu 1 = FIFO is	us, Right Chanı Full	nel Data Inpu	t FIFO is Full b	bit		
h it 0			nnal Data Isa				
DILU	REMPTY: Status, Right Channel Data Input FIFO is Empty bit 1 = FIFO is Empty 0 = FIFO is not Empty						

~ ~~

24.3 RTCC Registers

RTCEN ⁽²⁾ RTCWREN RTCSYNC HALFSEC ⁽³⁾ RTCOE RTCPTR<1:0> bit 15 bit 15 bit 15 bit 15 bit 15 bit 15 RW-0 <	R/W-0	U-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0
bit 15 bit 17 bi	RTCEN ⁽²⁾	—	RTCWREN	RTCSYNC	HALFSEC ⁽³⁾	RTCOE	RTCPT	R<1:0>
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 CAL<7:0> CAL<7:0> bit bit total call ca	bit 15							bit 8
R/W-0 R/W 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
Legend: bit 7 bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 RTCEN: RTCC Enable bit ⁽²⁾ 1 = RTCC module is disabled bit 15 RTCEN: RTCC Enable bit ⁽²⁾ 1 = RTCVALH and RTCVALL registers can be written to by the user 0 = RTCVALH and RTCVALL registers are locked out from being written to by the user 0 = RTCVALH and RTCVALL registers are locked out from being written to by the user bit 12 RTCSYNC: RTCC Value Registers Read Synchronization bit 1 = RTCVALH, RTCVALL and ALCFGRPT registers can be mead withe reading due to a rollover rip resulting in an invalid data read. If the registers can be read without concern over a rollover rip resulting in an invalid data read. If the registers can be read without concern over a rollover rip 1 = Second half period of a second 0 = RTCVALH, RTCVALL or ALCFGRPT registers can be read without concern over a rollover rip 1 = Second half period of a second 0 = RTCC output Enable bit 1 = RTCC output disabled bit 10 RTCOE: RTCC Value Register Window Pointer bits Points to the corresponding RTCC Value registers when reading RTCVALH and RTCVALL register the RTCPTR<1:0· value decrements on every read or write of RTCVALH and RTCVALL register	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 RTCEN: RTCC Enable bit ⁽²⁾ 1 = RTCC module is enabled 0 = RTC C module is disabled bit 14 Unimplemented: Read as '0' 1 = RTCVALH and RTCVALL registers write Enable bit 1 = RTCVALH and RTCVALL registers can be written to by the user 0 = RTCVALH and RTCVALL registers can be written to by the user 0 = RTCVALH, RTCVALL and ALCFGRPT registers can change while reading due to a rollover rip resulting in an invalid data read. If the register is read twice and results in the same data, the d can be assumed to be valid. 0 = RTCVALH, RTCVALL or ALCFGRPT registers can be read without concern over a rollover rip resulting in an invalid data read. If the register is read twice and results in the same data, the d can be assumed to be valid. 0 = RTCVALH, RTCVALL or ALCFGRPT registers can be read without concern over a rollover rip bit 11 HALFSEC: Half-Second Status bit ⁽³⁾ 1 = Second half period of a second 0 = RTCC output enabled 0 = RTCC Tot Silve Register Window Pointer bits Points to the corresponding RTCC Value registers when reading RTCVALH and RTCVALL register the RTCPTR<1.0- value de	hit 7			CAL	<7:0>			hit (
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' .n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 RTCEN: RTCC Enable bit(²⁾ 1 = RTCC module is enabled 0 = RTC C module is disabled bit 14 Unimplemented: Read as '0' 1 = RTCVALH and RTCVALL registers Write Enable bit 1 = RTCVALH and RTCVALL registers can be written to by the user 0 = RTCVALH and RTCVALL registers can be written to by the user 0 = RTCVALH, RTCV Value Registers Read Synchronization bit 1 = RTCVALH, RTCVALL and ALCFGRPT registers can change while reading due to a rollover rip resulting in an invalid data read. If the register is read twice and results in the same data, the d can be assumed to be valid. 0 = RTCVALH, RTCVALL or ALCFGRPT registers can be read without concern over a rollover rip that the fait period of a second 0 = RTCC output Enable bit 1 = RTCC output enabled 0 = RTCC output enabled 0 = RTCC output enabled 0 = RTCC output disabled bit 9-8 RTCPTR<1:0- value decrements on every read or write of RTCVALH and RTCVALL register the RTCPTR<1:0- value decrements on every read or write of RTCVALH and RTCVALL register the RTCPTR<1:0- value decrements on every read or write of RTCVALH until it reaches '00'.								DILU
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 RTCEN: RTCC Enable bit ⁽²⁾ 1 = RTCC module is enabled 0 = RTCC module is enabled 0 = RTCC module is enabled 0 = RTCC C Value Registers Write Enable bit 1 = RTCVALH and RTCVALL registers can be written to by the user 0 = RTCVALH and RTCVALL registers are locked out from being written to by the user 0 = RTCVALH, RTCVALL registers are locked out from being written to by the user bit 12 RTCSYNC: RTCC Value Registers Read Synchronization bit 1 = RTCVALH, RTCVALL and ALCFGRPT registers can change while reading due to a rollover rip resulting in an invalid data read. If the register is read twice and results in the same data, the d can be assumed to be valid. 0 = RTCVALH, RTCVALL or ALCFGRPT registers can be read without concern over a rollover rip resulting in an invalid data read. If the register is read twice and results in the same data, the d can be assumed to be valid. 0 = RTCC Output Enable bit 1 = Second Status bit ⁽³⁾ 1 = Second half period of a second 0 = RTCC Output Enable bit 1 = RTCCAUL or ALCFGRPT registers when reading RTCVALH and RTCVALL register Points to the corresponding RTCC Value registers when reading RTCVALH and RTCVALL register 0 = RTCC output enabled 0 = RTCCVALH and RTCVALL register	Legend:							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 RTCEN: RTCC Enable bit ⁽²⁾ 1 = RTCC module is enabled 0 = RTCC module is disabled bit 14 Unimplemented: Read as '0' 1 = RTCVALH and RTCVALL registers can be written to by the user 0 = RTCVALH and RTCVALL registers can be written to by the user 0 = RTCVALH and RTCVALL registers can be written to by the user 0 = RTCVALH and RTCVALL registers can be dout from being written to by the user bit 12 RTCSYNC: RTCC Value Registers Read Synchronization bit 1 = RTCVALH, RTCVALL and ALCFGRPT registers can change while reading due to a rollover rip resulting in an invalid data read. If the register is read twice and results in the same data, the d can be assumed to be valid. 0 = RTCVALH, RTCVALL or ALCFGRPT registers can be read without concern over a rollover rip bit 11 HALFSEC: Half-Second Status bit ⁽³⁾ 1 = Second half period of a second 0 = RTCC output enabled 0 = RTCC output enabled 0 = RTCC output enabled 0 = RTCC Value Register Window Pointer bits Points to the corresponding RTCC Value registers when reading RTCVALH and RTCVALL register the RTCPTR<1:0> value decrements on every read or write of RTCVALH and RTCVALL register the RTCVALE 15:8>: 0 = MINUTES 0 = MINUTES 0 = WEKDAY 0 = MONTH 1 = RESCONDS 0 = SECONDS 0 = DAY 1 = YEAR <td>R = Readable</td> <td>bit</td> <td>W = Writable</td> <td>bit</td> <td>U = Unimplem</td> <td>ented bit, read</td> <td>d as '0'</td> <td></td>	R = Readable	bit	W = Writable	bit	U = Unimplem	ented bit, read	d as '0'	
bit 15 RTCEN: RTCC Enable bit ⁽²⁾ 1 = RTCC module is enabled 0 = RTCC module is disabled bit 14 Unimplemented: Read as '0' bit 13 RTCWREN: RTCC Value Registers Write Enable bit 1 = RTCVALH and RTCVALL registers can be written to by the user 0 = RTCVALH and RTCVALL registers Read Synchronization bit 1 = RTCVALH, RTCVALL and ALCFGRPT registers can change while reading due to a rollover rip resulting in an invalid data read. If the register is read twice and results in the same data, the d can be assumed to be valid. 0 = RTCVALH, RTCVALL or ALCFGRPT registers can be read without concern over a rollover rip bit 11 HALFSEC: Half-Second Status bit ⁽³⁾ 1 = Second half period of a second 0 = First half period of a second bit 10 RTCOE: RTCC Output Enable bit 1 = RTCC output enabled 0 = RTCC output enabled 0 = RTCC output enabled 0 = RTCC output Bable bit 1 = RTCC output enabled 0 = RTCC Value Register Window Pointer bits Points to the corresponding RTCC Value registers when reading RTCVALH and RTCVALL register the RTCPTR<1:0> value decrements on every read or write of RTCVALH until it reaches '00'. <u>RTCVAL<15.8>:</u> 0 = MINUTES 0 = MINUTES 0 = MONTH 1 = Reserved <u>RTCVAL<7:0>:</u> 0 = SECONDS 0 = HOURS 1 = YEAR Note 1: The BCEGCAL register is only affected by a PCP	-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	nown
bit 15 RTCEN: RTCC Enable bit ⁽²⁾ 1 = RTCC module is enabled 0 = RTCC module is disabled bit 14 Unimplemented: Read as '0' bit 13 RTCWREN: RTCC Value Registers Write Enable bit 1 = RTCVALH and RTCVALL registers can be written to by the user 0 = RTCVALH and RTCVALL registers are locked out from being writen to by the user 1 = RTCVALH and RTCVALL registers Read Synchronization bit 1 = RTCVALH, RTCVALL and ALCFGRPT registers can change while reading due to a rollover rip resulting in an invalid data read. If the register is read twice and results in the same data, the d can be assumed to be valid. 0 = RTCVALH, RTCVALL on ALCFGRPT registers can be read without concern over a rollover rip bit 11 HALFSEC: Half-Second Status bit ⁽³⁾ 1 = Second half period of a second 0 = First half period of a second 0 = First half period of a second 0 = RTCC output enabled 0 = RTCC output disabled bit 9-8 RTCPTR<1:0>: RTCC Value Register Window Pointer bits Points to the corresponding RTCC Value registers when reading RTCVALH and RTCVALL register the RTCPTR<1:0>: value decrements on every read or write of RTCVALH until it reaches '100'. RTCVAL<15:8>: 0 = MINUTES 0 = MINUTES 0 = MINUTES 0 = SECONDS 0 = SECONDS 0 = SECONDS 0 = HOURS 1 = YEAR Note 1: The BCEGCAL register is only affected by a PDP			(0)					
 1 = RTCC module is enabled 0 = RTCC module is disabled bit 14 Unimplemented: Read as '0' bit 13 RTCWREN: RTCC Value Registers Write Enable bit 1 = RTCVALH and RTCVALL registers can be written to by the user 0 = RTCVALH and RTCVALL registers read locked out from being written to by the user bit 12 RTCSYNC: RTCC Value Registers Read Synchronization bit 1 = RTCVALH, RTCVALL and ALCFGRPT registers can change while reading due to a rollover rip resulting in an invalid data read. If the register is read twice and results in the same data, the d can be assumed to be valid. 0 = RTCVALH, RTCVALL or ALCFGRPT registers can be read without concern over a rollover rip bit 11 HALFSEC: Half-Second Status bit⁽³⁾ 1 = Second half period of a second 0 = First half period of a second 0 = RTCC output disabled bit 10 RTCCC output disabled bit 9-8 RTCPTR<1:0>: RTCC Value Register Window Pointer bits Points to the corresponding RTCC Value registers when reading RTCVALH and RTCVALL register the RTCPTR<1:0>: value decrements on every read or write of RTCVALH until it reaches '100'. RTCVAL<15:8>: 00 = MINUTES 01 = WEEKDAY 10 = MONTH 11 = Reserved RTCVAL RTCVAL The RCECCCAL register is only affected by a POP. 	bit 15	RTCEN: RTC	CC Enable bit ⁽²⁾					
bit 14 Unimplemented: Read as '0' bit 13 RTCWREN: RTCC Value Registers Write Enable bit 1 = RTCVALH and RTCVALL registers can be written to by the user 0 = RTCVALH and RTCVALL registers are locked out from being written to by the user bit 12 RTCSYNC: RTCC Value Registers Read Synchronization bit 1 = RTCVALH, RTCVALL and ALCFGRPT registers can change while reading due to a rollover rip resulting in an invalid data read. If the register is read twice and results in the same data, the d can be assumed to be valid. 0 = RTCVALH, RTCVALL or ALCFGRPT registers can be read without concern over a rollover rip bit 11 HALFSEC: Half-Second Status bit ⁽³⁾ 1 = Second half period of a second 0 = First half period of a second bit 10 RTCOE: RTCC Output Enable bit 1 = RTCC output enabled 0 = RTCC output disabled bit 9-8 RTCPTR<1:0>: RTCC Value Register Window Pointer bits Points to the corresponding RTCC Value registers when reading RTCVALH and RTCVALL register the RTCPTR<1:0>: RTCC Value decrements on every read or write of RTCVALH until it reaches '00'. RTCVAL<15:8>: 0 = MINUTES 0 = MINUTES 0 = MINUTES 0 = MONTH 1 = Reserved RTCVAL<7:0>: 0 = SECONDS 0 = HOURS 1 = PLORS 1 = PLORS 1 = PLORS 1 = PLORS 1 = YEAR Note 1: The RCECCAL register is only affected by a POP		1 = RICC m 0 = RTCC m	nodule is enable nodule is disable	ed ed				
bit 13 RTCWREN: RTCC Value Registers Write Enable bit 1 = RTCVALH and RTCVALL registers can be written to by the user 0 = RTCVALH and RTCVALL registers are locked out from being written to by the user bit 12 RTCSYNC: RTCC Value Registers Read Synchronization bit 1 = RTCVALH, RTCVALL and ALCFGRPT registers can change while reading due to a rollover rip resulting in an invalid data read. If the register is read twice and results in the same data, the d can be assumed to be valid. 0 = RTCVALH, RTCVALL or ALCFGRPT registers can be read without concern over a rollover rip bit 11 HALFSEC: Half-Second Status bit ⁽³⁾ 1 = Second Status bit ⁽³⁾ 1 = Second Status bit ⁽³⁾ 1 = RTCC output Enable bit 1 = RTCC output enabled 0 = RTCC output enabled 0 = RTCC output disabled bit 9-8 RTCPTR<1:0>: RTCC Value Register Window Pointer bits Points to the corresponding RTCC Value registers when reading RTCVALH and RTCVALL register the RTCPTR<1:0>: value decrements on every read or write of RTCVALH until it reaches '00'. RTCVAL<15:8>: 00 = MINUTES 01 = WEEKDAY 10 = MONTH 11 = Reserved RTCVAL<7:0>: 00 = SECONDS 01 = HOURS 10 = DAY 11 = YEAR	bit 14	Unimplemen	nted: Read as '	0'				
 1 = RTCVALH and RTCVALL registers can be written to by the user 0 = RTCVALH and RTCVALL registers are locked out from being written to by the user bit 12 RTCSYNC: RTCC Value Registers Read Synchronization bit 1 = RTCVALH, RTCVALL and ALCFGRPT registers can change while reading due to a rollover rip resulting in an invalid data read. If the register is read twice and results in the same data, the d can be assumed to be valid. 0 = RTCVALH, RTCVALL or ALCFGRPT registers can be read without concern over a rollover rip bit 11 HALFSEC: Half-Second Status bit⁽³⁾ 1 = Second half period of a second 0 = RTCC output Enable bit 1 = RTCC output enabled 0 = RTCC output disabled bit 9-8 RTCPTR<1:>: RTCC Value Register Window Pointer bits Points to the corresponding RTCC Value registers when reading RTCVALH and RTCVALL register the RTCPTR<1:>: value decrements on every read or write of RTCVALH and RTCVALL register 0 = MINUTES 0 = MONTH 1 = Reserved RTCVAL RTCVAL RTCVAL Note 1: The BCEGCAL register is only affected by a POP 	bit 13	RTCWREN:	RTCC Value Re	egisters Write	Enable bit			
 0 = RTCVALH and RTCVALL registers are locked out from being written to by the user bit 12 RTCSYNC: RTCC Value Registers Read Synchronization bit 1 = RTCVALH, RTCVALL and ALCFGRPT registers can change while reading due to a rollover rip resulting in an invalid data read. If the register is read twice and results in the same data, the d can be assumed to be valid. 0 = RTCVALH, RTCVALL or ALCFGRPT registers can be read without concern over a rollover rip bit 10 HALFSEC: Half-Second Status bit⁽³⁾ 1 = Second half period of a second 0 = RTCC output Enable bit 1 = RTCC output enabled 0 = RTCC output enabled 0 = RTCC value Register Window Pointer bits Points to the corresponding RTCC Value registers when reading RTCVALH and RTCVALL register the RTCPTR<1:0> value decrements on every read or write of RTCVALH until it reaches '00'. <u>RTCVAL<15:8>:</u> 00 = MINUTES 01 = WEEKDAY 10 = MONTH 11 = Reserved <u>RTCVAL</u> RTCVAL RTCVAL RTCVAL RTCVAL RTCVAL RTCVAL RTCVAL RTCC <l< u=""></l<>		1 = RTCVAL	H and RTCVAL	L registers ca	an be written to I	by the user		
bit 12 RTCSYNC: RTCC Value Registers Read Synchronization bit 1 = RTCVALH, RTCVALL and ALCFGRPT registers can change while reading due to a rollover rip resulting in an invalid data read. If the register is read twice and results in the same data, the d can be assumed to be valid. 0 = RTCVALH, RTCVALL or ALCFGRPT registers can be read without concern over a rollover rip bit 11 HALFSEC: Half-Second Status bit ⁽³⁾ 1 = Second half period of a second 0 = First half period of a second bit 10 RTCOE: RTCC Output Enable bit 1 = RTCC output enabled 0 = RTCC output enabled 0 = RTCC output disabled bit 9-8 RTCPTR<1:0>: RTCC Value Register Window Pointer bits Points to the corresponding RTCC Value registers when reading RTCVALH and RTCVALL register the RTCPTR<1:0> value decrements on every read or write of RTCVALH until it reaches '00'. RTCVAL<15:8>: 00 = MINUTES 01 = WEEKDAY 10 = MONTH 11 = Reserved RTCVAL<7:0>: 00 = SECONDS 01 = HOURS 10 = DAY 11 = YEAR		0 = RTCVAL	H and RTCVAL	L registers ar	e locked out fro	m being writte	n to by the user	-
 1 = RTCVALH, RTCVALL and ALCFGRPT registers can change while reading due to a rollover rip resulting in an invalid data read. If the register is read twice and results in the same data, the d can be assumed to be valid. 0 = RTCVALH, RTCVALL or ALCFGRPT registers can be read without concern over a rollover rip bit 11 HALFSEC: Half-Second Status bit⁽³⁾ 1 = Second half period of a second 0 = First half period of a second 0 = First half period of a second 0 = RTCC Output Enable bit 1 = RTCC output enabled 0 = RTCC output disabled bit 9-8 RTCPTR RTCPTR Note of RTCVALH and RTCVALL register Window Pointer bits Points to the corresponding RTCC Value registers when reading RTCVALH and RTCVALL register the RTCPTR 1 = WEEKDAY 1 = WEEKDAY 1 = WEEKDAY 1 = MORTH 1 = Reserved RTCVAL 1 = YEAR 	bit 12	RTCSYNC: F	RTCC Value Re	gisters Read	Synchronization	bit		
an be assumed to be valid. 0 = RTCVALH, RTCVALL or ALCFGRPT registers can be read without concern over a rollover rip bit 11 HALFSEC: Half-Second Status bit ⁽³⁾ 1 = Second half period of a second 0 = First half period of a second bit 10 RTCOE: RTCC Output Enable bit 1 = RTCC output enabled 0 = RTCC output disabled bit 9-8 RTCPTR<1:0>: RTCC Value Register Window Pointer bits Points to the corresponding RTCC Value registers when reading RTCVALH and RTCVALL register the RTCPTR<1:0> value decrements on every read or write of RTCVALH until it reaches '00'. RTCVAL<15:8>: 00 = MINUTES 01 = WEEKDAY 10 = MONTH 11 = Reserved RTCVAL<7:0>: 00 = SECONDS 01 = HOURS 10 = DAY 11 = YEAR		1 = RTCVAL resulting	H, RTCVALL a. I in an invalid da	nd ALCFGRP	I registers can o register is read	hange while r	eading due to a	rollover ripple
 0 = RTCVALH, RTCVALL or ALCFGRPT registers can be read without concern over a rollover rip bit 11 HALFSEC: Half-Second Status bit⁽³⁾ 1 = Second half period of a second 0 = First half period of a second 0 = RTCC Output Enable bit 1 = RTCC output enabled 0 = RTCC output disabled bit 9-8 RTCPTR<1:0>: RTCC Value Register Window Pointer bits Points to the corresponding RTCC Value registers when reading RTCVALH and RTCVALL register the RTCPTR<1:0> value decrements on every read or write of RTCVALH until it reaches '00'. <u>RTCVAL<15:8>:</u> 00 = MINUTES 01 = WEEKDAY 10 = MONTH 11 = Reserved <u>RTCVAL<7:0>:</u> 00 = SECONDS 01 = HOURS 10 = DAY 11 = YEAR Note 1: The RCEGCAL register is only affected by a POR Note 1: The RCEGCAL register is only affected by a POR Output the second seco		can be a	assumed to be v	alid.				
bit 11 HALFSEC: Half-Second Status bit ⁽³⁾ 1 = Second half period of a second 0 = First half period of a second bit 10 RTCOE: RTCC Output Enable bit 1 = RTCC output enabled 0 = RTCC output disabled bit 9-8 RTCPTR<1:0>: RTCC Value Register Window Pointer bits Points to the corresponding RTCC Value registers when reading RTCVALH and RTCVALL register the RTCPTR<1:0> value decrements on every read or write of RTCVALH until it reaches '00'. <u>RTCVAL<15:8>:</u> 00 = MINUTES 01 = WEEKDAY 10 = MONTH 11 = Reserved <u>RTCVAL<7:0>:</u> 00 = SECONDS 01 = HOURS 10 = DAY 11 = YEAR		0 = RTCVAL	H, RTCVALL o	ALCFGRPT	registers can be	e read without	concern over a	rollover ripple
1 = Second half period of a second 0 = First half period of a second bit 10 RTCOE: RTCC Output Enable bit 1 = RTCC output enabled 0 = RTCC output disabled bit 9-8 RTCPTR<1:0>: RTCC Value Register Window Pointer bits Points to the corresponding RTCC Value registers when reading RTCVALH and RTCVALL registe the RTCPTR<1:0> value decrements on every read or write of RTCVALH until it reaches '00'. <u>RTCVAL<15:8>:</u> 00 = MINUTES 01 = WEEKDAY 10 = MONTH 11 = Reserved <u>RTCVAL<7:0>:</u> 00 = SECONDS 01 = HOURS 10 = DAY 11 = YEAR	bit 11	HALFSEC: H	Half-Second Sta	tus bit ⁽³⁾				
bit 10 RTCOE : RTCC Output Enable bit 1 = RTCC output enabled 0 = RTCC output disabled bit 9-8 RTCPTR<1:0> : RTCC Value Register Window Pointer bits Points to the corresponding RTCC Value registers when reading RTCVALH and RTCVALL register the RTCPTR<1:0> value decrements on every read or write of RTCVALH until it reaches '00'. <u>RTCVAL<15:8>:</u> 00 = MINUTES 01 = WEEKDAY 10 = MONTH 11 = Reserved <u>RTCVAL<7:0>:</u> 00 = SECONDS 01 = HOURS 10 = DAY 11 = YEAR		1 = Second	half period of a	second				
Image: State of the state	bit 10			onu Na hit				
 0 = RTCC output disabled bit 9-8 RTCPTR<1:0>: RTCC Value Register Window Pointer bits Points to the corresponding RTCC Value registers when reading RTCVALH and RTCVALL register the RTCPTR<1:0> value decrements on every read or write of RTCVALH until it reaches '00'. <u>RTCVAL<15:8>:</u> 00 = MINUTES 01 = WEEKDAY 10 = MONTH 11 = Reserved <u>RTCVAL<7:0>:</u> 00 = SECONDS 01 = HOURS 10 = DAY 11 = YEAR Note 1: The RCEGCAL register is only affected by a POR 		1 = RTCC of	utput enabled					
bit 9-8 RTCPTR<1:0>: RTCC Value Register Window Pointer bits Points to the corresponding RTCC Value registers when reading RTCVALH and RTCVALL register the RTCPTR<1:0> value decrements on every read or write of RTCVALH until it reaches '00'. <u>RTCVAL<15:8>:</u> 00 = MINUTES 01 = WEEKDAY 10 = MONTH 11 = Reserved <u>RTCVAL<7:0>:</u> 00 = SECONDS 01 = HOURS 10 = DAY 11 = YEAR Note 1: The RCEGCAL register is only affected by a POR		0 = RTCC o	utput disabled					
Points to the corresponding RTCC Value registers when reading RTCVALH and RTCVALL register the RTCPTR<1:0> value decrements on every read or write of RTCVALH until it reaches '00'. <u>RTCVAL<15:8>:</u> 00 = MINUTES 01 = WEEKDAY 10 = MONTH 11 = Reserved <u>RTCVAL<7:0>:</u> 00 = SECONDS 01 = HOURS 10 = DAY 11 = YEAR	bit 9-8	RTCPTR<1:	0>: RTCC Value	e Register Wi	ndow Pointer bit	s		
RTCVAL<15:8>: 00 = MINUTES 01 = WEEKDAY 10 = MONTH 11 = Reserved RTCVAL<7:0>: 00 = SECONDS 01 = HOURS 10 = DAY 11 = YEAR		Points to the	corresponding	RTCC Value	registers when r	eading RTCV	ALH and RTCV	ALL registers;
00 = MINUTES 01 = WEEKDAY 10 = MONTH 11 = Reserved <u>RTCVAL<7:0>:</u> 00 = SECONDS 01 = HOURS 10 = DAY 11 = YEAR Note 1: The RCEGCAL register is only affected by a POR	TO ALCONTRACTOR VALUE DECREMENTS ON EVERY READ OF WRITE OF RICVALH UNTILIT REACHES 100°.							
01 = WEEKDAY 10 = MONTH 11 = Reserved <u>RTCVAL<7:0>:</u> 00 = SECONDS 01 = HOURS 10 = DAY 11 = YEAR Note 1: The RCEGCAL register is only affected by a POR		00 = MINUTES						
10 = MONTH 11 = Reserved <u>RTCVAL<7:0>:</u> 00 = SECONDS 01 = HOURS 10 = DAY 11 = YEAR Note 1: The RCEGCAL register is only affected by a POR		01 = WEEKDAY						
$\frac{\text{RTCVAL} < 7:0>:}{00 = \text{SECONDS}}$ $01 = \text{HOURS}$ $10 = \text{DAY}$ $11 = \text{YEAR}$ Note 1: The RCEGCAL register is only affected by a POR		10 = MONTH						
00 = SECONDS 01 = HOURS 10 = DAY 11 = YEAR Note 1: The RCEGCAL register is only affected by a POR								
01 = HOURS 10 = DAY 11 = YEAR Note 1: The RCEGCAL register is only affected by a POR		00 = SECON	<u>vds</u>					
10 = DAY 11 = YEAR Note 1: The RCEGCAL register is only affected by a POR		01 = HOURS	S					
11 = YEAR		10 = DAY						
Note 1: The RCEGCAL register is only affected by a POR		11 = YEAR						
	Note 1: The	e RCEGCAL re	aister is only af	fected by a P	OR.			

REGISTER 24-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾

2: A write to the RTCEN bit is only allowed when RTCWREN = 1.

3: This bit is read-only. It is cleared to '0' on a write to the lower half of the MINSEC register.

Bit Field	Register	RTSP Effect	Description
BWRP	FBS	Immediate	Boot Segment Program Flash Write Protection 1 = Boot segment can be written 0 = Boot segment is write-protected
BSS<2:0>	FBS	Immediate	Boot Segment Program Flash Code Protection Size X11 = No Boot program Flash segment
			110 = Standard security; boot program Flash segment ends at 0x0007FE
			010 = High security; boot program Flash segment ends at 0x0007FE
			Boot space is 4K Instruction Words (except interrupt vectors) 101 = Standard security; boot program Flash segment, ends at 0x001FFE
			001 = High security; boot program Flash segment ends at 0x001FFE
			Boot space is 8K Instruction Words (except interrupt vectors) 100 = Standard security; boot program Flash segment ends at 0x003FFE
			000 = High security; boot program Flash segment ends at 0x003FFE
RBS<1:0> ⁽¹⁾	FBS	Immediate	Boot Segment RAM Code Protection Size
			10 = Boot RAM is 128 bytes 01 = Boot RAM is 256 bytes 00 = Boot RAM is 1024 bytes
SWRP ⁽¹⁾	FSS ⁽¹⁾	Immediate	Secure Segment Program Flash Write-Protect bit 1 = Secure Segment can bet written 0 = Secure Segment is write-protected
SSS<2:0> ⁽¹⁾	FSS ⁽¹⁾	Immediate	Secure Segment Program Flash Code Protection Size (Secure segment is not implemented on 32K devices) X11 = No Secure program flash segment
			Secure space is 4K IW less BS 110 = Standard security; secure program flash segment starts at End of BS, ends at 0x001FFE 010 = High security; secure program flash segment starts at
			End of BS, ends at 0x001FFE
			Secure space is 8K IW less BS 101 = Standard security; secure program flash segment starts at End of BS, ends at 0x003FFE
			001 = High security; secure program flash segment starts at End of BS, ends at 0x003FFE
			Secure space is 16K IW less BS 100 = Standard security; secure program flash segment starts at End of BS, ends at 007FFEh
			000 = High security; secure program flash segment starts at End of BS, ends at 0x007FFE

TARI E 27-2.	dePIC CONFIGURATION BITS DESCRIPTION
IADLL ZI-Z.	USFIC CONFIGURATION BITS DESCRIPTION

Note 1: This Configuration register is not available on dsPIC33FJ32GP302/304 devices.

CONFIG BITS	BSS<2:0> = x11 0K	BSS<2:0> = x10 1K	BSS<2:0> = x01 4K	BSS<2:0> = x00 8K	
SSS<2:0> = x11 0K	VS = 256 IW 0x000000h 0x0001FEh 0x000200h 0x0007FEh 0x0007FEh 0x001FFEh 0x002000h 0x0007FEh 0x003FFEh 0x004000h 0x004000h 0x004000h 0x004000h 0x00800h 0x004000h 0x004000h	VS = 256 IW 0x000000h 0x0001FEh BS = 768 IW 0x000200h 0x0007FEh 0x000001FEh 0x00007FEh 0x001FFEh 0x001FFEh 0x00200h 0x001FFEh 0x001FFEh 0x001FFEh 0x00000h 0x00000h 0x00000h 0x00000h 0x004000h 0x00400h 0x004000h 0x008000h 0x00400FFEh 0x00400F	VS = 256 IW 0x00000h 0x0001FEh 0x00020h BS = 3840 IW 0x0007FEh 0x0007FEh 0x001FFEh 0x001FEh 0x00200h 0x001FFEh 0x00200h 0x00200h 0x001FFEh 0x00200h 0x00200h 0x00200h 0x002FFEh 0x00400h 0x00400h 0x00400h 0x00800h 0x00800h 0x004BFEh	VS = 256 IW 0x00000h 0x0001FEh 0x0001FEh 0x0007FEh 0x0007FEh 0x00200h 0x0031FEh 0x00200h GS = 13824 IW 0x0000h 0x003FEh 0x00800h 0x003FFEh	
	0x0157FEh	0x0157FEh	0x0157FEh	0x0157FEh	
SSS<2:0> = x10	VS = 256 IW 0x00000h 0x0001FEh 0x000200h 0x0007FEh 0x000800h 0x001FFEh 0x0001FFEh 0x002000h	VS = 256 IW 0x000000h 0x0001FEh BS = 768 IW 0x000200h 0x0007FEh SS = 3072 IW 0x000800h 0x001FFEh 0x00200h 0x001FFEh	VS = 256 IW 0x00000h 0x0001FEh BS = 3840 IW 0x000200h 0x0007FEh 0x000800h 0x000800h 0x001FFEh 0x000800h 0x001FFEh 0x000800h	VS = 256 IW 0x00000h 0x0001FEh BS = 7936 IW 0x000200h 0x0007FEh 0x000200h 0x000800h 0x0001FFEh 0x000200h 0x002000h 0x001FFEh	
4К	GS = 17920 IW 0x004000h 0x007FFEh 0x008000h 0x00ABFEh 0x0157EEh	GS = 17920 IW 0x004000h 0x007FFEh 0x008000h 0x00ABFEh 0x0157FEh	GS = 17920 IW 0x004000h 0x007FFEh 0x008000h 0x00ABFEh	GS = 13824 IW 0x004000h 0x007FFEh 0x008000h 0x00ABFEh	
SSS<2:0> = x01 8K	VS = 256 IW 0x00000h 0x0001FEh 0x000200h 0x000200h 0x0007FEh 0x000800h 0x001FFEh 0x002000h 0x003FFEh 0x004000h 0x007FEh 0x004000h 0x007FFEh 0x00800h 0x00ABFEh	VS = 256 IW 0x000000h 0x0001FEh 0x000200h BS = 768 IW 0x000200h 0x0007FEh SS = 7168 IW 0x00200h 0x003FFEh GS = 13824 IW 0x00800h 0x00ABFEh	VS = 256 IW 0x000000h 0x0001FEh 0x000200h BS = 3840 IW 0x000200h 0x0007FEh 0x000800h SS = 4096 IW 0x00200h 0x003FFEh GS = 13824 IW 0x00800h 0x00ABFEh	VS = 256 IW 0x00000h 0x0001FEh 0x000200h BS = 7936 IW 0x000200h 0x0007FEh 0x002000h 0x002200h 0x00307FEh 0x002000h 0x003FFEh 0x004000h 0x007FFEh 0x004000h GS = 13824 IW 0x00ABFEh	
	0x0157FEh	0x0157FEh	0x0157FEh	0x0157FEh	
SSS<2:0> = x00 16K	VS = 256 IW 0x00000h 0x0001FEh 0x000200h 0x007FEh 0x00800h 0x001FFEh 0x003FFEh 0x00400h 0x007FFEh 0x00400h 0x007FFEh 0x00400h 0x007FFEh 0x00400h 0x008000h 0x0080Eh 0x00457FEh	VS = 256 IW UX00000h 0x0001FEh BS = 768 IW 0x000200h 0x0007FEh 0x000200h 0x000200h 0x001FFEh 0x001FEh 0x00200h 0x00200h 0x001FFEh 0x003FFEh 0x004000h 0x004000h 0x007FFEh 0x00800h 0x008000h 0x004000h 0x00800h 0x004000h 0x00800h 0x004000h 0x0080Dh 0x004000h 0x00400h 0x004000h 0x00400h 0x004000h 0x00400h	VS = 256 IW 0x00000h 0x0001FEh BS = 3840 IW 0x000200h 0x0007FEh 0x000200h 0x001FFEh 0x000200h 0x001FFEh SS = 12288 IW 0x004000h 0x004000h 0x00800h GS = 5632 IW 0x00400h 0x00ABFEh 0x00157FEh 0x0157FEh	VS = 256 IW 0x000000h 0x0001FEh 0x000200h BS = 7936 IW 0x000200h 0x0007FEh 0x002000h SS = 8192 IW 0x003FFEh 0x004000h GS = 5632 IW 0x00800h 0x008FEh 0x00800h 0x00800h 0x00800h 0x00800h	

TABLE 27-4: CODE FLASH SECURITY SEGMENT SIZES FOR 64 KB DEVICES

Most instructions are a single word. Certain doubleword instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note: For more details on the instruction set, refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157).

TABLE 28-1:	SYMBOLS USED IN OPCODE DESCRIPTIONS
-------------	-------------------------------------

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{}	Optional field or operation
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.w	Word mode selection (default)
Acc	One of two accumulators {A, B}
AWB	Accumulator write back destination address register \in {W13, [W13]+ = 2}
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal ∈ {0,1}
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal ∈ {016384}
lit16	16-bit unsigned literal ∈ {065535}
lit23	23-bit unsigned literal ∈ {08388608}; LSb must be '0'
None	Field does not require an entry, can be blank
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate
PC	Program Counter
Slit10	10-bit signed literal ∈ {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal ∈ {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor working register pair (direct addressing)

TABLE 30-11: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Character	Characteristic		Тур	Max ⁽¹⁾	Units	Conditions
BO10	VBOR	BOR Event on VDD transition high-to-low		2.40	_	2.55	V	Vdd

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

TABLE 30-12: DC CHARACTERISTICS: PROGRAM MEMORY

DC CHARACTERISTICS		Standard Operating Col (unless otherwise state Operating temperature			nditions: 3.0V to 3.6V :d) -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended		
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
		Program Flash Memory					
D130a	Eр	Cell Endurance	10,000	—	_	E/W	-40° C to +125° C
D131	Vpr	VDD for Read	VMIN	—	3.6	V	Vмın = Minimum operating voltage
D132B	VPEW	VDD for Self-Timed Write	VMIN	—	3.6	V	Vмın = Minimum operating voltage
D134	TRETD	Characteristic Retention	20	—	—	Year	Provided no other specifications are violated
D135	IDDP	Supply Current during Programming	—	10	—	mA	
D136a	Trw	Row Write Time	1.32	—	1.74	ms	Trw = 11064 FRC cycles, Ta = +85°C, See Note 2
D136b	Trw	Row Write Time	1.28	—	1.79	ms	Trw = 11064 FRC cycles, Ta = +125°C, See Note 2
D137a	Тре	Page Erase Time	20.1	—	26.5	ms	TPE = 168517 FRC cycles, TA = +85°C, See Note 2
D137b	Тре	Page Erase Time	19.5	—	27.3	ms	TPE = 168517 FRC cycles, TA = +125°C, See Note 2
D138a	Tww	Word Write Cycle Time	42.3	_	55.9	μs	Tww = 355 FRC cycles, TA = +85°C, See Note 2
D138b	Tww	Word Write Cycle Time	41.1	—	57.6	μs	Tww = 355 FRC cycles, Ta = +125°C, See Note 2

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = b'011111 (for Min), TUN<5:0> = b'100000 (for Max). This parameter depends on the FRC accuracy (see Table 30-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). For complete details on calculating the Minimum and Maximum time see Section 5.3 "Programming Operations".

TABLE 30-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated):Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended							
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments
	CEFC	External Filter Capacitor Value ⁽¹⁾	4.7	10	—	μF	Capacitor must be low series resistance (< 5 Ohms)

Note 1: Typical VCAP voltage = 2.5V when VDD \ge VDDMIN.

FIGURE 30-6: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS

TABLE 30-25: INPUT CAPTURE TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No. Symbol Character			ristic ⁽¹⁾	stic ⁽¹⁾ Min Max Units Co				
IC10	TccL	ICx Input Low Time	No Prescaler	0.5 Tcy + 20		ns	—	
			With Prescaler	10	—	ns		
IC11	TccH	ICx Input High Time	No Prescaler	0.5 Tcy + 20	—	ns	—	
			With Prescaler	10	_	ns		
IC15	TccP	ICx Input Period		(Tcy + 40)/N		ns	N = prescale value (1, 4, 16)	

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 30-7: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS

TABLE 30-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Мах	Units	Conditions
OC10	TccF	OCx Output Fall Time	_		_	ns	See parameter D032
OC11	TccR	OCx Output Rise Time	— — — ns See parameter D031				

Note 1: These parameters are characterized but not tested in manufacturing.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Ν	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	N		28	-		
Pitch	е		1.27 BSC			
Overall Height	A	-	-	2.65		
Molded Package Thickness	A2	2.05	-	-		
Standoff §	A1	0.10	-	0.30		
Overall Width	E		10.30 BSC			
Molded Package Width	E1	7.50 BSC				
Overall Length	D		17.90 BSC			
Chamfer (Optional)	h	0.25	-	0.75		
Foot Length	L	0.40	-	1.27		
Footprint	L1		1.40 REF			
Lead Angle	Θ	0°	-	-		
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.18	-	0.33		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2