

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XEI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DCI, DMA, I ² S, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 13x10b/12b; D/A 2x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128gp804t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

2.2.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 µF to 47 µF.

2.3 **CPU Logic Filter Capacitor Connection (VCAP)**

A low-ESR (< 5 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD, and must have a capacitor between 4.7 µF and 10 µF, preferably surface mount connected within one-eights inch of the VCAP pin connected to ground. The type can be ceramic or tantalum. Refer to Section 30.0 "Electrical Characteristics" for additional information.

The placement of this capacitor should be close to the VCAP. It is recommended that the trace length not exceed one-guarter inch (6 mm). Refer to Section 27.2 "On-Chip Voltage Regulator" for details.

Master Clear (MCLR) Pin 2.4

The MCLR pin provides for two specific device functions:

- Device Reset
- · Device programming and debugging

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor C, be isolated from the MCLR pin during programming and debugging operations.

Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

EXAMPLE OF MCLR PIN CONNECTIONS

VIH and VIL specifications are met.

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at 0x000000, with the actual address for the start of code at 0x000002.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices also have two interrupt vector tables, located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in **Section 7.1 "Interrupt Vector Table**".

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

TABLE 4-22:PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ128GP202/802, dsPIC33FJ64GP202/802 AND
dsPIC33FJ32GP302

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06C0	_	—	_			RP1R<4:0	>		—	_	—			RP0R<4:0>			0000
RPOR1	06C2	_	_	_			RP3R<4:0	>		_	_	_			RP2R<4:0>			0000
RPOR2	06C4	_	_	_			RP5R<4:0	>		—	_	—			RP4R<4:0>			0000
RPOR3	06C6	_	—	—			RP7R<4:0	>		_	_	—			RP6R<4:0>			0000
RPOR4	06C8	_	_	—			RP9R<4:0	>		—	—	—			RP8R<4:0>			0000
RPOR5	06CA	_	_	—			RP11R<4:0	>		—	—	—		I	RP10R<4:0>			0000
RPOR6	06CC	_	_	_			RP13R<4:0	>		_	_	_			RP12R<4:0>			0000
RPOR7	06CE	_	_	_			RP15R<4:0	>		_	_	_			RP14R<4:0>			0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-23:PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ128GP204/804, dsPIC33FJ64GP204/804 AND
dsPIC33FJ32GP304

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06C0	—	—	_			RP1R<4:0>	>		—	—	_			RP0R<4:0>			0000
RPOR1	06C2	_	_	_			RP3R<4:0>	>		_	_	_			RP2R<4:0>			0000
RPOR2	06C4	_	_	_			RP5R<4:0>	>		_	_	_			RP4R<4:0>			0000
RPOR3	06C6	_	_	_			RP7R<4:0>	>		_	_	_			RP6R<4:0>			0000
RPOR4	06C8	_	_	_			RP9R<4:0>	>		_	_	_			RP8R<4:0>			0000
RPOR5	06CA	_	_	_			RP11R<4:0	>		_	_	_			RP10R<4:0>	•		0000
RPOR6	06CC	_	_	_			RP13R<4:0	>		_	_	_			RP12R<4:0>	•		0000
RPOR7	06CE	_	_	_			RP15R<4:0	>		_	_	_		l	RP14R<4:0>	•		0000
RPOR8	06D0	_	_	_			RP17R<4:0	>		_	_	_			RP16R<4:0>	•		0000
RPOR9	06D2	_	_	_			RP19R<4:0	>		_	_	_			RP18R<4:0>	•		0000
RPOR10	06D4	_	_	_			RP21R<4:0	>		_	_	_			RP20R<4:0>	•		0000
RPOR11	06D6	_	_	_			RP23R<4:0	>		_	_	_			RP22R<4:0>	•		0000
RPOR12	06D8	_	_				RP25R<4:0	>		_	_	—			RP24R<4:0>	•		0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-30: PORTA REGISTER MAP FOR dsPIC33FJ128GP204/804, dsPIC33FJ64GP204/804 AND dsPIC33FJ32GP304

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0		_	_	_	_	TRISA10	TRISA9	TRISA8	TRISA7		_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	079F
PORTA	02C2	_	_	_	-	-	RA10	RA9	RA8	RA7	-	_	RA4	RA3	RA2	RA1	RA0	XXXX
LATA	02C4	_	-	-	-	-	LATA10	LATA9	LATA8	LATA7	_	_	LATA4	LATA3	LATA2	LATA1	LATA0	XXXX
ODCA	02C6	_	_	_	_	_	ODCA10	ODCA9	ODCA8	ODCA7	_	_	_	_	_	_	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-31: PORTB REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02CA	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX
LATB	02CC	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	XXXX
ODCB	02CE	_	_	_	_	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	-	_	_	_	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-32: PORTC REGISTER MAP FOR dsPIC33FJ128GP204/804, dsPIC33FJ64GP204/804 AND dsPIC33FJ32GP304

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	02D0	—	—	—	-	—	—	TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	03FF
PORTC	02D2	_	_	_	_	_	_	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX
LATC	02D4	_	_	_	_	_	_	LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	XXXX
ODCC	02D6	_	_	_	_	_	_	ODCC9	ODCC8	ODCC7	ODCC6	ODCC5	ODCC4	ODCC3	_	_	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

REGISTER	8 7-18: IPC3	: INTERRUPT	PRIORITY	CONTROL RI	EGISTER 3		
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	—	—		—		DMA1IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		AD1IP<2:0>		—		U1TXIP<2:0>	
bit 7							bit 0
Legena:			.:4		nantad hit var	ad aa (0)	
R = Readab			DIT		nented dit, rea		
-n = value a	at POR	"1" = Bit is set		$0^{\circ} = Bit is cle$	ared	x = Bit is unkn	own
bit 15 11	Unimplome	ntod: Pood as '	,,				
						11 I.H.	
DIT 10-8			el 1 Data Tra	anster Complete	Interrupt Prio	rity dits	
		upt is priority 7 (r	lignest priori	ity interrupt)			
	•						
	•						
	001 = Interr 000 = Interr	upt is priority 1 upt source is disa	abled				
bit 7	Unimpleme	ented: Read as ')'				
bit 6-4	AD1IP<2:0>	>: ADC1 Convers	ion Complet	te Interrupt Prior	rity bits		
	111 = Interr	upt is priority 7 (I	nighest priori	ity interrupt)	5		
	•		•				
	•						
	•						
	001 = Interr 000 = Interr	upt is priority 1	abled				
bit 3	Unimpleme	ented: Read as '()'				
bit 2-0	U1TXIP<2:(0>: UART1 Trans	mitter Interr	upt Priority bits			
	111 = Interr	rupt is priority 7 (ł	niahest priori	itv interrupt)			
	•		J	-,,			
	•						
	•						
	001 = Interr	rupt is priority 1	ablad				
	000 = interr	upt source is disa	abied				

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

REGISTER 7-26: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—		DCIEIP<2:0>			—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	n'				

DIL 15	Unimplemented. Read as 0
bit 14-12	DCIEIP<2:0>: DCI Error Interrupt Priority bits
	111 = Interrupt is priority 7 (highest priority interrupt)
	•
	•
	•
	001 = Interrupt is priority 1
	000 = Interrupt source is disabled
bit 11-0	Unimplemented: Read as '0'

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect 0 = Address Detect mode disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	1 = Framing error has been detected for the current character (character at the top of the receive FIFO)
	0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (read/clear only)
	 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed. Clearing a previously set OERR bit (1 → 0 transition) resets the receiver buffer and the UxRSR to the empty state.
bit 0	URXDA: Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

Note 1: Refer to **Section 17. "UART**" (DS70188) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for transmit operation.

REGISTER 1	9-20: CIRXN REGIS	STER n (n = 0	-2)	ANCE FILTE	R MASK 517	ANDARD IDEI	NIIFIER
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 15							bit 8
R/M-x	R/M-x	R/M-v	11-0	R/M/-v	11-0	R/M/-v	R/M-y
SID2	SID1	SID0	_	MIDE	_	EID17	EID16
bit 7							bit 0
Legend:		C = Writable b	oit, but only 'C	' can be writter	n to clear the bi	t	
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-5	SID<10:0>: S 1 = Include bi 0 = Bit SIDx i	Standard Identifi it SIDx in filter o s don't care in f	er bits comparison ilter comparis	son			
bit 4	Unimplemen	ted: Read as ')'				
bit 3	MIDE: Identif	ier Receive Mo	de bit				
	1 = Match on 0 = Match eith (i.e., if (Fi	ly message typ her standard or Iter SID) = (Mes	es (standard extended ad ssage SID) o	or extended ad dress message r if (Filter SID/E	ldress) that cor e if filters match EID) = (Messag	respond to EXII e SID/EID))	DE bit in filter

- bit 2 Unimplemented: Read as '0'
- bit 1-0 EID<17:16>: Extended Identifier bits
 - 1 = Include bit EIDx in filter comparison
 - 0 = Bit EIDx is don't care in filter comparison

REGISTER 19-21: CIRXMnEID: ECAN[™] ACCEPTANCE FILTER MASK EXTENDED IDENTIFIER REGISTER n (n = 0-2)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Writable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Include bit EIDx in filter comparison

0 = Bit EIDx is don't care in filter comparison

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ALRMEN	CHIME		AMASK<3:0>		ALRMP	TR<1:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ARP	2T<7:0>			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	id as '0'	
-n = Value at	POR	'1' = Bit is set	'1' = Bit is set '0' = Bit is cleared			x = Bit is unkr	iown
bit 15	ALRMEN: A 1 = Alarm is CHIME 0 = Alarm is	larm Enable bit enabled (clear = 0) disabled	ed automatic	ally after an ala	rm event whe	never ARPT<7:()> = 0x00 and
bit 14	CHIME: Chi	me Enable bit					
	1 = Chime is 0 = Chime is 1 = 0	s enabled; ARP s disabled; ARP	T<7:0> bits a T<7:0> bits s	are allowed to ro stop once they re	ll over from 0x each 0x00	00 to 0xFF	
bit 13-10	AMASK<3:0	>: Alarm Mask	Configuration	n bits			
	101x = Rese 1001 = Once 1000 = Once 0111 = Once 0110 = Once 0101 = Ever 0100 = Ever 0011 = Ever 0010 = Ever 0001 = Ever 0000 = Ever	erved – do not u e a year (except e a month e a week e a day y hour y 10 minutes y minute y 10 second y second y half second	se when config	ured for Februa	iry 29th, once (every 4 years)	
bit 9-8	ALRMPTR< Points to the the ALRMPT ALRMVAL<1 11 = Unimpl 10 = ALRMM 01 = ALRMM 00 = ALRMM ALRMVAL<7 11 = Unimpl 10 = ALRMM 01 = ALRMM	1:0>: Alarm Val corresponding A R<1:0> value de 15:8>: emented MNTH VD MIN 7:0>: emented DAY HR	ue Register (Alarm Value re ecrements or	Window Pointer egisters when re every read or w	bits eading ALRMV vrite of ALRMV	ALH and ALRM\ ALH until it reac	/ALL registers; nes '00'.
bit 7-0	00 = ALRMS ARPT<7:0>: 111111111 = • •	: Alarm Repeat	Counter Valu at 255 more	e bits times			
	00000000 = The counter 0xFF unless	Alarm will not r decrements on CHIME = 1.	epeat any alarm ev	ent. The counte	er is prevented	from rolling ove	r from 0x00 to

DECISTED 24 2 ALADM CONFIGURATION DECISTED ...

REGISTER 25-2: CRCXOR: CRC XOR POLYNOMIAL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			Х<	15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
			X<7:1>				—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-1 X<15:1>: XOR of Polynomial Term Xⁿ Enable bits

bit 0 Unimplemented: Read as '0'

26.0 PARALLEL MASTER PORT (PMP)

- Note 1: This data sheet summarizes the features the dsPIC33FJ32GP302/304, of dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 35. "Parallel Master (PMP)" (DS70299) Port of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com). 2: Some registers and associated bits
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Parallel Master Port (PMP) module is a parallel 8-bit I/O module, specifically designed to communicate with a wide variety of parallel devices, such as communication peripherals, LCDs, external memory

FIGURE 26-1: PMP MODULE OVERVIEW

devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP is highly configurable.

Key features of the PMP module include:

- · Fully multiplexed address/data mode
- Demultiplexed or partially multiplexed address/ data mode:
 - Up to 11 address lines with single chip select
 - Up to 12 address lines without chip select
- One Chip Select Line
- · Programmable Strobe Options
 - Individual Read and Write Strobes or;
 - Read/Write Strobe with Enable Strobe
- Address Auto-Increment/Auto-Decrement
- Programmable Address/Data Multiplexing
- Programmable Polarity on Control Signals
- · Legacy Parallel Slave Port Support
- Enhanced Parallel Slave Support:
 - Address Support
 - 4-Byte Deep Auto-Incrementing Buffer
- · Programmable Wait States
- · Selectable Input Voltage Levels

26.1 **PMP** Resources

Many useful resources related to PMP are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en532311

26.1.1 KEY RESOURCES

- Section 35. "Parallel Master Port (PMP)" (DS70299)
- Code Samples
- Application Notes
- · Software Libraries
- · Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param No.	Param No. Symbol Characteristic		Min	Тур ⁽¹⁾	Мах	Units	Conditions
	VIL	Input Low Voltage					
DI10		I/O pins	Vss	—	0.2 Vdd	V	
DI11		PMP pins	Vss	—	0.15 Vdd	V	PMPTTL = 1
DI15		MCLR	Vss	—	0.2 Vdd	V	
DI16		I/O Pins with OSC1 or SOSCI	Vss	—	0.2 VDD	V	
DI18		I/O Pins with SDAx, SCLx	Vss	—	0.3 VDD	V	SMBus disabled
DI19		I/O Pins with SDAx, SCLx	Vss	—	0.8 Vdd	V	SMBus enabled
	Vih	Input High Voltage					
DI20		I/O Pins Not 5V Tolerant ⁽⁴⁾	0.7 Vdd	—	Vdd	V	
		I/O Pins 5V Tolerant ⁽⁴⁾	0.7 VDD	—	5.5	V	
DI21		I/O Pins Not 5V Tolerant with PMP ⁽⁴⁾	0.24 VDD + 0.8	_	Vdd	V	
		I/O Pins 5V Tolerant with PMP ⁽⁴⁾	0.24 VDD + 0.8	—	5.5	V	
DI28		SDAx, SCLx	0.7 Vdd	—	5.5	V	SMBus disabled
DI29		SDAx, SCLx	2.1	—	5.5	V	SMBus enabled
	ICNPU	CNx Pull-up Current					
DI30			50	250	400	μA	VDD = 3.3V, VPIN = VSS

TABLE 30-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: See the "Pin Diagrams" section for the 5V tolerant I/O pins.

5: VIL source < (Vss - 0.3). Characterized but not tested.

6: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.

7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.

8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

9: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

TABLE 30-33:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING
REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature-40°C ≤TA ≤+85°C for Industrial-40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP70	TscP	Maximum SCK Input Frequency	—	_	11	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time	—	_	_	ns	See parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	—			ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—			ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—			ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30			ns	_	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_		ns	—	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120			ns	_	
SP51	TssH2doZ	SSx	10		50	ns	_	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	_	_	ns	See Note 4	
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	_	50	ns	—	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

FIGURE 30-22: DCI MODULE (AC-LINK MODE) TIMING CHARACTERISTICS

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimens	MIN	NOM	MAX		
Contact Pitch	E		0.65 BSC		
Optional Center Pad Width	W2			4.70	
Optional Center Pad Length	T2			4.70	
Contact Pad Spacing	C1		6.00		
Contact Pad Spacing	C2		6.00		
Contact Pad Width (X28)	X1			0.40	
Contact Pad Length (X28)	Y1			0.85	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A

NOTES: