

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

•XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DCI, DMA, I ² S, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gp302-e-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Type	Buffer Type	PPS	Description			
SCL1	I/O	ST	No	Synchronous serial clock input/output for I2C1.			
SDA1	I/O	ST	No	Synchronous serial data input/output for I2C1.			
ASCL1	I/O	ST	No	Alternate synchronous serial clock input/output for I2C1.			
ASDA1	I/O	ST	No	Alternate synchronous serial data input/output for I2C1.			
TMS	1	ST	No	JTAG Test mode select pin.			
TCK	1	ST	No	JTAG test clock input pin.			
TDI	1	ST	No	JTAG test data input pin.			
TDO	0	—	No	JTAG test data output pin.			
C1RX	I	ST	Yes	ECAN1 bus receive pin.			
C1TX	0	—	Yes	ECAN1 bus transmit pin.			
RTCC	0	_	No	Real-Time Clock Alarm Output.			
CVREF	0	ANA	No	Comparator Voltage Reference Output.			
C1IN-	1	ANA	No	Comparator 1 Negative Input			
C1IN+	i	ANA	No	Comparator 1 Positive Input.			
C10UT	Ó	_	Yes	Comparator 1 Output.			
C2IN-	1	ΔΝΔ	No	Comparator 2 Negative Input			
C2IN+	i	ANA	No	Comparator 2 Positive Input			
C2OUT	Ó	_	Yes	Comparator 2 Output.			
PMA0	I/O	TTL/ST	No	Parallel Master Port Address Bit 0 Input (Buffered Slave modes) and			
				Output (Master modes).			
PMA1	I/O	TTL/ST	No	Parallel Master Port Address Bit 1 Input (Buffered Slave modes) and			
				Output (Master modes).			
PMA2 -PMPA10	0	—	No	Parallel Master Port Address (Demultiplexed Master Modes).			
PMBE	0		No	Parallel Master Port Byte Enable Strobe.			
PMCS1	0	—	No	Parallel Master Port Chip Select 1 Strobe.			
PMD0-PMPD7	I/O	TTL/ST	No	Parallel Master Port Data (Demultiplexed Master mode) or Address/			
				Data (Multiplexed Master modes).			
PMRD	0	—	No	Parallel Master Port Read Strobe.			
PMWR	0	—	NO	Parallel Master Port Write Strobe.			
DAC1RN	0	—	No	DAC1 Right Channel Negative Output.			
DAC1RP	0	—	No	DAC1 Right Channel Positive Output.			
DACIRM	0		No	DAC1 Right Channel Middle Point Value (typically 1.65V).			
DAC1LN	0	—	No	DAC1 Left Channel Negative Output.			
DAC1LP	0	—	No	DAC1 Left Channel Positive Output.			
DAC1LM	0	—	No	DAC1 Left Channel Middle Point Value (typically 1.65V).			
COFS	I/O	ST	Yes	Data Converter Interface frame synchronization pin.			
CSCK	I/O	ST	Yes	Data Converter Interface serial clock input/output pin.			
CSDI	I	ST	Yes	Data Converter Interface serial data input pin			
CSDO	0	—	Yes	Data Converter Interface serial data output pin.			
PGED1	I/O	ST	No	Data I/O pin for programming/debugging communication channel 1.			
PGEC1		ST	No	Clock input pin for programming/debugging communication channel 1.			
PGED2	I/O	ST	No	Data I/O pin for programming/debugging communication channel 2.			
PGEC2	I	ST	No	Clock input pin for programming/debugging communication channel 2.			
PGED3	I/O	ST	No	Data I/O pin for programming/debugging communication channel 3.			
PGEC3	1	ST	No	Clock input pin for programming/debugging communication channel 3.			
MCLR	I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the			
AVDD	Р	Р	No	Positive supply for analog modules. This pin must be connected at all			
Legend: CMOS	= CMOS	S compatible	e input c	or output Analog = Analog input P = Power			
SI = S	cnmitt li	igger input	with CIV	IUS levels U = Output I = Input			
L =	i i ∟ inpu	ιouπer		PPS = Peripheral Pin Select			

ΤΔ RI E 1-1·	PINOLIT I/O DESCRIPTIONS	۱
IADLE I-I.	FINOUT I/O DESCRIFTIONS	,

3.5 CPU Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en532311

3.5.1 KEY RESOURCES

- Section 2. "CPU" (DS70204)
- Code Samples
- Application Notes
- · Software Libraries
- · Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	0680	_	_	_			INT1R<4:0>			_	—	_	_	_	_	_	_	1F00
RPINR1	0682	_		_	_	_	_	_	_	_	_	_			INT2R<4:0	>		001F
RPINR3	0686	_		_			T3CKR<4:0>	•		_	_	_			T2CKR<4:0	>		1F1F
RPINR4	0688	_	_	_			T5CKR<4:0>			_	_	_			T4CKR<4:0	>		1F1F
RPINR7	068E	_	_	_			IC2R<4:0>			_	_	_			IC1R<4:0>			1F1F
RPINR10	0694	_	_	_			IC8R<4:0>			_	_	_			IC7R<4:0>			1F1F
RPINR11	0696	_	_	_	_	_	_	_	_	_	_	_	— OCFAR<4:0>					001F
RPINR18	06A4	_		_			U1CTSR<4:0	>		_	_	_			U1RXR<4:0	>		1F1F
RPINR19	06A6	_	_	_			U2CTSR<4:0	>		_	_	_			U2RXR<4:0	>		1F1F
RPINR20	06A8	_		_			SCK1R<4:0>	•		_	_	_			SDI1R<4:0	>		1F1F
RPINR21	06AA	_	_	_	_	_	_	_	_	_	_	_			SS1R<4:0	>		001F
RPINR22	06AC	_		_			SCK2R<4:0>	•		_	_	_			SDI2R<4:0	>		1F1F
RPINR23	06AE	_	_	_	_	_	_	_	_	_	_	_			SS2R<4:0	`		001F
RPINR24	06B0	_	_	_			CSCKR<4:0>	>		_	_	_			CSDIR<4:0	>		1F1F
RPINR25	06B2	_	_	_	_	_	_	_	_	_	_	_			COFSR<4:0	>		001F
RPINR26 ⁽¹⁾	06B4	_	_	_	_	_	_	_	_	_	_	_			C1RXR<4:0	>		001F

TABLE 4-21: PERIPHERAL PIN SELECT INPUT REGISTER MAP

 Legend:
 x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

 Note
 1:
 This register is present only for dsPIC33FJ128GP802/804 and dsPIC33FJ64GP802/804

5.2 RTSP Operation

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to erase a page of memory, which consists of eight rows (512 instructions) at a time, and to program one row or one word at a time. Table 30-12 shows typical erase and programming times. The 8-row erase pages and single row write rows are edge-aligned from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

The program memory implements holding buffers that can contain 64 instructions of programming data. Prior to the actual programming operation, the write data must be loaded into the buffers sequentially. The instruction words loaded must always be from a group of 64 boundary.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register. A total of 64 TBLWTL and TBLWTH instructions are required to load the instructions.

All of the table write operations are single-word writes (two instruction cycles) because only the buffers are written. A programming cycle is required for programming each row.

5.3 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

The programming time depends on the FRC accuracy (see Table 30-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). Use the formula in Equation 5-1 to calculate the minimum and maximum values for the Row Write Time, Page Erase Time and Word Write Cycle Time parameters (see Table 30-12).

EQUATION 5-1: PROGRAMMING TIME

For example, if the device is operating at +125°C, the FRC accuracy will be $\pm 5\%$. If the TUN<5:0> bits (see Register 9-4) are set to `b111111, the minimum row write time is equal to Equation 5-2.

EQUATION 5-2: MINIMUM ROW WRITE TIME

$$T_{RW} = \frac{11064 \ Cycles}{7.37 \ MHz \times (1 + 0.05) \times (1 - 0.00375)} = 1.435 \ ms$$

The maximum row write time is equal to Equation 5-3.

$$T_{RW} = \frac{11064 \ Cycles}{7.37 \ MHz \times (1 - 0.05) \times (1 - 0.00375)} = 1.586 ms$$

Setting the WR bit (NVMCON<15>) starts the operation, and the WR bit is automatically cleared when the operation is finished.

5.4 Control Registers

Two SFRs are used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY (Register 5-2) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register. Refer to **Section 5.3 "Programming Operations"** for further details.

5.5 Flash Resources

Many useful resources related to Flash memory are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en532311

5.5.1 KEY RESOURCES

- Section 5. "Flash Programming" (DS70191)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF
bit 15							bit 8
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC8IF	IC7IF		INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF
bit 7							bit 0
<u> </u>							
Legend:	L 14		L :4			(0)	
R = Readable		vv = vvritable	DIT	U = Unimple	mented bit, read	a = Ditio upkr	
	OR	I = DILIS SEL			aleu	X = DILIS UNKI	IOWI
bit 15	U2TXIF: UAR	RT2 Transmitter	Interrupt Fla	a Status bit			
	1 = Interrupt r	request has occ	curred	g clatac bit			
	0 = Interrupt r	equest has not	occurred				
bit 14	U2RXIF: UAF	RT2 Receiver Ir	nterrupt Flag	Status bit			
	1 = Interrupt r	equest has occ	curred				
bit 13	INT2IF: Exter	nal Interrupt 2	Flag Status b	it			
	1 = Interrupt r	request has occ	curred				
	0 = Interrupt r	equest has not	occurred				
bit 12	T5IF: Timer5	Interrupt Flag S	Status bit				
	1 = Interrupt r	equest has occ	curred				
bit 11	T4IF: Timer4	Interrupt Flag S	Status bit				
2	1 = Interrupt r	request has occ	curred				
	0 = Interrupt r	equest has not	occurred				
bit 10	OC4IF: Outpu	ut Compare Ch	annel 4 Interr	upt Flag Status	s bit		
	1 = Interrupt r 0 = Interrupt r	equest has occ request has not	curred				
bit 9	OC3IF: Outpu	ut Compare Ch	annel 3 Interr	upt Flag Status	s bit		
	1 = Interrupt r	equest has oc	curred	1 0			
	0 = Interrupt r	request has not	occurred				
bit 8	DMA2IF: DM	A Channel 2 Da	ata Transfer (Complete Interi	rupt Flag Status	bit	
	\perp = Interrupt r 0 = Interrupt r	request has occ	currea t occurred				
bit 7	IC8IF: Input C	Capture Channe	el 8 Interrupt	Flag Status bit			
	1 = Interrupt r	equest has occ	curred .	0			
	0 = Interrupt r	request has not	occurred				
bit 6	IC7IF: Input C	Capture Channe	el 7 Interrupt	Flag Status bit			
	1 = Interrupt r 0 = Interrupt r	request has occorrequest has not	curred				
bit 5	Unimplemen	ted: Read as ')'				
hit 4	INT1IF: Exter	nal Interrupt 1	Flag Status b	it			
	1 = Interrupt r	equest has occ	curred				
	1 = Interrupt r 0 = Interrupt r	equest has occ equest has not	curred t occurred				
bit 3	1 = Interrupt r 0 = Interrupt r CNIF: Input C	request has occ request has not change Notifica	curred toccurred tion Interrupt	Flag Status bit	:		

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

	-10. 1200.				OIOTEINO		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
_	RTCIE	DMA5IE	DCIIE	DCIEIE	_	—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown	
bit 15	Unimplemen	ted: Read as '	0'				
bit 14	RTCIE: Real-	Time Clock and	d Calendar In	terrupt Enable	bit		
	1 = Interrupt	request enable	d				
	0 = Interrupt	request not ena	abled				
bit 13	DMA5IE: DM	A Channel 5 D	ata Transfer (Complete Interi	rupt Enable bit		
	1 = Interrupt	request enableo request not ena	d abled				
bit 12	DCIIE: DCI E	vent Interrupt E	Enable bit				

REGISTER 7-13: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3

	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 11	DCIEIE: DCI Error Interrupt Enable bit

```
1 = Interrupt request enabled
```

- 0 = Interrupt request not enabled
- bit 10-0 Unimplemented: Read as '0'

NOTES:

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSAD	DR<15:8>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSA	DR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit	t U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown				own

REGISTER 8-9: DSADR: MOST RECENT DMA RAM ADDRESS

bit 15-0 DSADR<15:0>: Most Recent DMA RAM Address Accessed by DMA Controller bits

TABLE 11-1:	SELECTABLE INPUT SOURCES	(MAPS INPUT TO FUNCTION))(1)
			,

Input Name	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<4:0>
External Interrupt 2	INT2	RPINR1	INT2R<4:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<4:0>
Timer3 External Clock	T3CK	RPINR3	T3CKR<4:0>
Timer4 External Clock	T4CK	RPINR4	T4CKR<4:0>
Timer5 External Clock	T5CK	RPINR4	T5CKR<4:0>
Input Capture 1	IC1	RPINR7	IC1R<4:0>
Input Capture 2	IC2	RPINR7	IC2R<4:0>
Input Capture 7	IC7	RPINR10	IC7R<4:0>
Input Capture 8	IC8	RPINR10	IC8R<4:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<4:0>
UART1 Receive	U1RX	RPINR18	U1RXR<4:0>
UART1 Clear To Send	U1CTS	RPINR18	U1CTSR<4:0>
UART2 Receive	U2RX	RPINR19	U2RXR<4:0>
UART2 Clear To Send	U2CTS	RPINR19	U2CTSR<4:0>
SPI1 Data Input	SDI1	RPINR20	SDI1R<4:0>
SPI1 Clock Input	SCK1	RPINR20	SCK1R<4:0>
SPI1 Slave Select Input	SS1	RPINR21	SS1R<4:0>
SPI2 Data Input	SDI2	RPINR22	SDI2R<4:0>
SPI2 Clock Input	SCK2	RPINR22	SCK2R<4:0>
SPI2 Slave Select Input	SS2	RPINR23	SS2R<4:0>
DCI Serial Data Input	CSDI	RPINR24	CSDIR<4:0>
DCI Serial Clock Input	CSCK	RPINR24	CSCKR<4:0>
DCI Frame Sync Input	COFS	RPINR25	COFSR<4:0>
ECAN1 Receive	CIRX	RPINR26	CIRXR<4:0>

Note 1: Unless otherwise noted, all inputs use Schmitt input buffers.

19.3 Modes of Operation

The ECAN module can operate in one of several operation modes selected by the user. These modes include:

- Initialization mode
- · Disable mode
- Normal Operation mode
- Listen Only mode
- Listen All Messages mode
- · Loopback mode

Modes are requested by setting the REQOP<2:0> bits (CiCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL1<7:5>). The module does not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

19.3.1 INITIALIZATION MODE

In the Initialization mode, the module does not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The user application has access to Configuration registers that are access restricted in other modes. The module protects the user from accidentally violating the CAN protocol through programming errors. All registers which control the configuration of the module cannot be modified while the module is on-line. The ECAN module is not allowed to enter the Configuration mode while a transmission is taking place. The Configuration mode serves as a lock to protect the following registers:

- All Module Control registers
- Baud Rate and Interrupt Configuration registers
- Bus Timing registers
- Identifier Acceptance Filter registers
- Identifier Acceptance Mask registers

19.3.2 DISABLE MODE

In Disable mode, the module does not transmit or receive. The module has the ability to set the WAKIF bit due to bus activity, however, any pending interrupts remains and the error counters retains their value.

If the REQOP<2:0> bits (CiCTRL1<10:8>) = 001, the module enters the Module Disable mode. If the module is active, the module waits for 11 recessive bits on the CAN bus, detect that condition as an Idle bus, then accept the module disable command. When the OPMODE<2:0> bits (CiCTRL1<7:5>) = 001, that indicates whether the module successfully went into Module Disable mode. The I/O pins reverts to normal I/O function when the module is in the Module Disable mode.

The module can be programmed to apply a low-pass filter function to the CiRX input line while the module or the CPU is in Sleep mode. The WAKFIL bit (CiCFG2<14>) enables or disables the filter.

Note: Typically, if the ECAN module is allowed to transmit in a particular mode of operation and a transmission is requested immediately after the ECAN module has been placed in that mode of operation, the module waits for 11 consecutive recessive bits on the bus before starting transmission. If the user switches to Disable mode within this 11-bit period, then this transmission is aborted and the corresponding TXABT bit is set and TXREQ bit is cleared.

19.3.3 NORMAL OPERATION MODE

Normal Operation mode is selected when REQOP<2:0> = 000. In this mode, the module is activated and the I/O pins assumes the CAN bus functions. The module transmits and receive CAN bus messages via the CiTX and CiRX pins.

19.3.4 LISTEN ONLY MODE

If the Listen Only mode is activated, the module on the CAN bus is passive. The transmitter buffers revert to the port I/O function. The receive pins remain inputs. For the receiver, no error flags or Acknowledge signals are sent. The error counters are deactivated in this state. The Listen Only mode can be used for detecting the baud rate on the CAN bus. To use this, it is necessary that there are at least two further nodes that communicate with each other.

19.3.5 LISTEN ALL MESSAGES MODE

The module can be set to ignore all errors and receive any message. The Listen All Messages mode is activated by setting REQOP<2:0> = '111'. In this mode, the data which is in the message assembly buffer, until the time an error occurred, is copied in the receive buffer and can be read via the CPU interface.

19.3.6 LOOPBACK MODE

If the Loopback mode is activated, the module connects the internal transmit signal to the internal receive signal at the module boundary. The transmit and receive pins revert to their port I/O function.

REGISTER	19-6: CINTF	F: ECAN ™ IN	ITERRUPT	FLAG REGIS	STER					
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0			
_	_	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN			
bit 15				-			bit 8			
R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0			
IVRIF	WAKIF	ERRIF	—	FIFOIF	RBOVIF	RBIF	TBIF			
bit 7							bit 0			
Legend:		C = Writable	bit, but only '0	' can be writte	n to clear the bit					
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	Iown			
bit 15-14	Unimplemen	ted: Read as '	0'							
bit 13	TXBO: Transi	mitter in Error	State Bus Off	bit						
	1 = Transmitte	er is in Bus Of	state							
		ter is not in Bu	s Off state							
DIT 12	1 = Transmitte	mitter in Error : er is in Rus Pa	State Bus Pas	SIVE DIT						
	0 = Transmitte	er is not in Bus	Passive state	<u>ə</u>						
bit 11	RXBP: Recei	ver in Error Sta	ate Bus Passi	ve bit						
	1 = Receiver	is in Bus Pass	ive state							
	0 = Receiver	is not in Bus P	assive state							
bit 10	TXWAR: Trar	nsmitter in Erro	r State Warni	ng bit						
	1 = Transmitter is in Error Warning state									
h # 0		er is not in Erro	or vvarning sta							
DIT 9	1 = Receiver	is in Error War	state warning	DI						
	0 = Receiver	is not in Error	Warning state							
bit 8	EWARN: Tran	nsmitter or Red	ceiver in Error	State Warning	a bit					
	1 = Transmitte	er or Receiver	is in Error Sta	te Warning sta	ate					
	0 = Transmitte	er or Receiver	is not in Error	State Warning	g state					
bit 7	IVRIF: Invalid	Message Rec	eived Interrup	ot Flag bit						
	1 = Interrupt Request has occurred									
hit C				aa hit						
DILO	1 = Interrunt F	Request has o	curred	ag bit						
	0 = Interrupt F	Request has n	ot occurred							
bit 5	ERRIF: Error	Interrupt Flag	bit (multiple s	ources in CilN	TF<13:8> regist	er)				
	1 = Interrupt F	Request has o	ccurred		C C					
	0 = Interrupt F	Request has n	ot occurred							
bit 4	Unimplemen	ted: Read as '	0'							
bit 3	FIFOIF: FIFO	Almost Full In	terrupt Flag b	it						
	1 = Interrupt F	Request has o	ccurred							
h # 0		Request has no	ot occurred	I- :4						
DIT 2	1 = Interrunt E	Buffer Overflor	w Interrupt Fia	ag bit						
	0 = Interrupt F	Request has n	ot occurred							
bit 1	RBIF: RX But	ffer Interrupt Fl	ag bit							
-	1 = Interrupt F	Request has o	ccurred							
	0 = Interrupt F	Request has n	ot occurred							
bit 0	TBIF: TX Buff	fer Interrupt Fla	ag bit							
	1 = Interrupt F	Request has o	ccurred							
	0 = Interrupt H	kequest has h	or occurred							

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F7BI	P<3:0>			F6BP	2<3:0>		
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F5BI	P<3:0>			F4BP	2<3:0>		
bit 7							bit 0	
Legend:		C = Writable	bit, but only '0	' can be written	to clear the bit			
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15-12	F7BP<3:0>	: RX Buffer mas	k for Filter 7					
	1111 = Filte	er hits received in	n RX FIFO bu	ffer				
	1110 = Filte	er hits received in	n RX Buffer 14	1				
	•							
	•							
	•							
	0001 = Filte	er hits received in	n RX Buffer 1					
	0000 = Filte	er hits received in	n RX Buffer 0					
bit 11-8	F6BP<3:0>	: RX Buffer mas	k for Filter 6 (s	same values as	bit 15-12)			
bit 7-4	F5BP<3:0>	: RX Buffer mas	k for Filter 5 (s	same values as	bit 15-12)			

REGISTER 19-13: CiBUFPNT2: ECAN™ FILTER 4-7 BUFFER POINTER REGISTER

bit 3-0 F4BP	<3:0>: RX Buffer mask for Filter 4 (same values as bit 15-12)
---------------------	---

REGISTER 19-14: CiBUFPNT3: ECAN™ FILTER 8-11 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F11BP	2<3:0>			F10BI	P<3:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F9BP	<3:0>			F8BF	?<3:0>	
bit 7							bit 0
Legend:		C = Writable	bit, but only '0	' can be writter	to clear the bi	t	
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	lown
bit 15-12	F11BP<3:0>:	RX Buffer ma	sk for Filter 11				
	1111 = Filter	hits received in	n RX FIFO bu	ffer			
	1110 = Filter	hits received ii	n RX Buffer 14	1			
	•						
	•						
	•						
	0001 = Filter	hits received in	n RX Buffer 1				
	0000 = Filter	hits received ii					
bit 11-8 F10BP<3:0>: RX Buffer mask for Filter 10 (same values as bit 15-12)							
bit 7-4 F9BP<3:0>: RX Buffer mask for Filter 9 (same values as bit 15-12)							
bit 3-0	F8BP<3:0>:	RX Buffer mas	k for Filter 8 (s	same values as	s bit 15-12)		

BUFFER 19-7: ECAN™ MESSAGE BUFFER WORD 6

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	te 7			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	te 6			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-8 Byte 7<15:8>: ECAN™ Message Byte 7

bit 7-0 Byte 6<7:0>: ECAN Message Byte 6

BUFFER 19-8: ECAN™ MESSAGE BUFFER WORD 7

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	—			FILHIT<4:0> ⁽¹))	
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		—	—		—
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **FILHIT<4:0>:** Filter Hit Code bits⁽¹⁾

Encodes number of filter that resulted in writing this buffer.

bit 7-0 Unimplemented: Read as '0'

Note 1: These bits are only written by the module for receive buffers, and are unused for transmit buffers.

23.2 Comparator Control Register

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CMIDL	—	C2EVT	C1EVT	C2EN	C1EN	C2OUTEN ⁽¹⁾	C1OUTEN ⁽²⁾
bit 15		<u> </u>		1	I		bit 8
R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
C2OUT	C10UT	C2INV	C1INV	C2NEG	C2POS	C1NEG	C1POS
bit 7							bit 0
Legend:	1.11					1 (0)	
R = Readable	DIT	VV = VVritable	DIT	U = Unimpler	nented bit, read	as 'U'	
-n = value at i	JOR	= Bit is set		$0^{\circ} = Bit is cle$	ared	x = Bit is unkr	lown
bit 15	CMIDI · Stop	in Idle Mode bi	ŧ				
bit 15	1 = When dev	vice enters Idle	mode. modu	ile does not ae	nerate interrup	ts. Module is stil	ll enabled.
	0 = Continue	normal module	e operation in	Idle mode			
bit 14	Unimplement	ted: Read as ')'				
bit 13	C2EVT: Comp	parator 2 Event	bit				
	1 = Compara	tor output char	ged states	- 4			
hit 10		tor output ala r	iot change sta	ates			
DIL 12		tor output char	. UIL Incod states				
	0 = Compara	tor output did r	ot change sta	ates			
bit 11	C2EN: Compa	arator 2 Enable	bit				
	1 = Compara	tor is enabled					
	0 = Compara	tor is disabled					
bit 10	C1EN: Compa	arator 1 Enable	e bit				
	0 = Compara	tor is disabled					
bit 9	C2OUTEN: C	omparator 2 O	utput Enable	bit ⁽¹⁾			
	1 = Compara	tor output is dri	ven on the ou	utput pad			
	0 = Compara	tor output is no	t driven on th	e output pad			
bit 8	C1OUTEN: C	omparator 1 O	utput Enable	bit ⁽²⁾			
	1 = Compara 0 = Compara	tor output is an	ven on the ou t driven on th	utput pad			
bit 7	C2OUT: Com	parator 2 Outp	ut bit	e capat paa			
	When C2INV	= 0:					
	1 = C2 VIN+ >	> C2 VIN-					
	0 = C2 VIN + <	< C2 VIN-					
	0 = C2 VIN+2	<u>= ⊥:</u> > C2 Vin-					
	1 = C2 VIN+ <	< C2 VIN-					
Note 1: If C	20UTEN = 1, tl	he C2OUT per	pheral output	t must be confi	gured to an ava	ailable RPx pin.	See

REGISTER 23-1: CMCON: COMPARATOR CONTROL REGISTER

- **Note 1:** If C2OUTEN = 1, the C2OUT peripheral output must be configured to an available RPx pin. See **Section 11.6 "Peripheral Pin Select"** for more information.
 - 2: If C1OUTEN = 1, the C1OUT peripheral output must be configured to an available RPx pin. See Section 11.6 "Peripheral Pin Select" for more information.

24.2 RTCC Resources

Many useful resources related to RTCC are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en532311

24.2.1 KEY RESOURCES

- Section 37. "Real-Time Clock and Calendar (RTCC)" (DS70301)
- · Code Samples
- Application Notes
- Software Libraries
- · Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

CONFIG BITS	BSS<2:0> = x11 0K	BSS<2:0> = x10 1K	BSS<2:0> = x01 4K	BSS<2:0> = x00 8K
SSS<2:0> = x11 0K	VS = 256 IW 0x000000h 0x0001FEh 0x000200h 0x0007FEh 0x000800h 0x0007FEh 0x001FEh 0x0017FEh 0x0017FEh 0x002000h 0x0017FEh 0x0017FEh 0x0017FEh 0x0017FEh 0x0017FEh 0x004000h 0x004000h 0x004000h 0x004000h 0x004000h 0x004000h 0x004000h 0x004000h 0x004000h 0x004000h 0x004000h 0x004000h	VS = 256 IW 0x000000h 0x0001FEh 0x000200h 0x0007FEh 0x0007FEh 0x001FFEh 0x001FFEh 0x001FFEh 0x002000h 0x001FFEh 0x002000h 0x007FFEh 0x004000h 0x007FFEh 0x008000h 0x008BFEh	VS = 256 IW 0x000000h 0x0001FEh BS = 3840 IW 0x000200h 0x0007FEh 0x000200h 0x0007FEh 0x0003FFEh 0x001FFEh 0x00200h 0x001FFEh 0x00200h 0x001FFEh 0x00200h 0x001FFEh 0x00200h 0x002000h 0x00200h 0x002000h 0x004000h 0x004000h 0x004000h 0x008000h 0x00400ABFEh 0x00ABFEh	VS = 256 IW 0x00000h 0x0001FEh 0x00020h 0x0007FEh 0x0007FEh 0x000800h 0x003FFEh 0x00200h 0x003FFEh 0x00200h 0x003FFEh 0x00400h 0x007FFEh GS = 13824 IW 0x0000h 0x003FFEh 0x008000h 0x003FFEh
	0x0157FEh	0x0157FEh	0x0157FEh	0x0157FEh
SSS<2:0> = x 10	VS = 256 IW 0x000000h 0x0001FEh 0x000200h 0x000200h 0x0007FEh 0x000800h 0x000800h 0x001FFEh 0x002000h	VS = 256 IW 0x000000h 0x0001FEh BS = 768 IW 0x000200h 0x0007FEh SS = 3072 IW 0x000800h 0x001FFEh 0x00200h 0x001FFEh	VS = 256 IW 0x00000h 0x0001FEh BS = 3840 IW 0x000200h 0x0007FEh 0x000800h 0x000800h 0x001FFEh 0x000800h 0x001FFEh 0x000800h	VS = 256 IW 0x00000h 0x0001FEh BS = 7936 IW 0x000200h 0x0007FEh 0x000200h 0x000800h 0x001FFEh 0x00200h
4К	GS = 17920 IW 0x004000h 0x007FFEh 0x008000h 0x00ABFEh 0x0157EEh	GS = 17920 IW 0x004000h 0x007FFEh 0x008000h 0x00ABFEh 0x0157FEh	GS = 17920 IW 0x004000h 0x007FFEh 0x008000h 0x00ABFEh 0x0157EEh	GS = 13824 IW 0x004000h 0x007FFEh 0x008000h 0x00ABFEh
SSS<2:0> = x01 8K	VS = 256 IW 0x00000h 0x0001FEh 0x000200h 0x000200h 0x001FFEh 0x00800h 0x001FFEh 0x002000h 0x003FFEh 0x004000h 0x007FFEh 0x004000h 0x007FFEh 0x00800h 0x00ABFEh	VS = 256 IW 0x000000h 0x0001FEh 0x000200h BS = 768 IW 0x000200h 0x0007FEh 0x000800h SS = 7168 IW 0x00200h 0x003FFEh 0x004000h GS = 13824 IW 0x00800h 0x00ABFEh	VS = 256 IW 0x000000h 0x0001FEh 0x000200h 0x0007FEh 0x000200h 0x0007FEh 0x000800h 0x001FFEh 0x000000h 0x003FFEh 0x004000h 0x007FFEh 0x004000h 0x007FFEh 0x00800h 0x00ABFEh	VS = 256 IW 0x000000h 0x0001FEh 0x000200h BS = 7936 IW 0x000200h 0x0007FEh 0x002000h 0x002000h 0x002000h 0x003FFEh 0x004000h 0x004000h 0x004000h 0x00800h 0x004000h 0x00800h 0x004000h 0x00800h 0x004000h 0x00800h 0x00800h 0x00800h
	0x0157FEh	0x0157FEh	0x0157FEh	0x0157FEh
SSS<2:0> = x00 16K	VS = 256 IW 0x000000h 0x0001FEh 0x000200h 0x0007FEh 0x000800h 0x001FFEh 0x003FFEh 0x004000h 0x007FEh 0x004000h 0x007FFEh 0x004000h 0x007FFEh 0x004000h SS = 16128 IW 0x04000h 0x007FFEh 0x004000h 0x004FEh GS = 5632 IW 0x0457FEh	VS = 256 IW 0x00000h 0x0001FEh BS = 768 IW 0x000200h 0x0007FEh 0x000200h 0x001FFEh 0x00200h 0x003FFEh SS = 15360 IW 0x004000h 0x004000h GS = 5632 IW 0x00ABFEh 0x00157FEh 0x004000h	VS = 256 IW 0x00000h 0x0001FEh BS = 3840 IW 0x000200h 0x0007FEh 0x000200h 0x001FFEh 0x000200h 0x001FFEh SS = 12288 IW 0x004000h 0x007FFEh GS = 5632 IW 0x00ABFEh 0x00157FEh 0x00457FEh	VS = 256 IW 0x000000h 0x0001FEh 0x000200h BS = 7936 IW 0x000200h 0x0007FEh 0x002000h SS = 8192 IW 0x004000h 0x007FFEh GS = 5632 IW 0x00800h 0x004000h 0x00800h 0x007FFEh 0x004000h 0x007FFEh 0x004000h 0x008000h 0x004000h 0x008000h 0x004000h 0x008000h 0x00457FFh 0x00457FFh

TABLE 27-4: CODE FLASH SECURITY SEGMENT SIZES FOR 64 KB DEVICES

рс сн	DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Мах	Units	Conditions		
	VIL	Input Low Voltage							
DI10		I/O pins	Vss	—	0.2 Vdd	V			
DI11		PMP pins	Vss	—	0.15 Vdd	V	PMPTTL = 1		
DI15		MCLR	Vss	—	0.2 Vdd	V			
DI16		I/O Pins with OSC1 or SOSCI	Vss	—	0.2 VDD	V			
DI18		I/O Pins with SDAx, SCLx	Vss	—	0.3 VDD	V	SMBus disabled		
DI19		I/O Pins with SDAx, SCLx	Vss	—	0.8 Vdd	V	SMBus enabled		
	Vih	Input High Voltage							
DI20		I/O Pins Not 5V Tolerant ⁽⁴⁾	0.7 Vdd	—	Vdd	V			
		I/O Pins 5V Tolerant ⁽⁴⁾	0.7 VDD	—	5.5	V			
DI21		I/O Pins Not 5V Tolerant with PMP ⁽⁴⁾	0.24 VDD + 0.8	_	Vdd	V			
		I/O Pins 5V Tolerant with PMP ⁽⁴⁾	0.24 VDD + 0.8	—	5.5	V			
DI28		SDAx, SCLx	0.7 Vdd	—	5.5	V	SMBus disabled		
DI29		SDAx, SCLx	2.1	—	5.5	V	SMBus enabled		
	ICNPU	CNx Pull-up Current							
DI30			50	250	400	μA	VDD = 3.3V, VPIN = VSS		

TABLE 30-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: See the "Pin Diagrams" section for the 5V tolerant I/O pins.

5: VIL source < (Vss - 0.3). Characterized but not tested.

6: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.

7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.

8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

9: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature-40°C ≤TA ≤+150°C for High Temperature							
Param No.	Symbol	Characteristic	Min Typ Max		Units	Conditions			
	AD	C Accuracy (10-bit Mode)	– Measu	rements	with Ex	ternal V	REF+/VREF- ⁽¹⁾		
HAD20b	Nr	Resolution ⁽³⁾	1	0 data bi	ts	bits	—		
HAD21b	INL	Integral Nonlinearity	-3	—	3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
HAD22b	DNL	Differential Nonlinearity	> -1	—	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
HAD23b	Gerr	Gain Error	-5	—	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
HAD24b	EOFF	Offset Error	-1	—	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
	AD	C Accuracy (10-bit Mode)	– Measu	irement	s with Int	ernal V	REF+/VREF- ⁽¹⁾		
HAD20b	Nr	Resolution ⁽³⁾	1	0 data bi	ts	bits	_		
HAD21b	INL	Integral Nonlinearity	-2	_	2	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
HAD22b	DNL	Differential Nonlinearity	> -1		< 1	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
HAD23b	Gerr	Gain Error	-5	_	15	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
HAD24b	EOFF	Offset Error	-1.5	_	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
		Dynamic P	erformar	nce (10-l	oit Mode)	(2)			
HAD33b	FNYQ	Input Signal Bandwidth	—	_	400	kHz	—		

TABLE 31-16: ADC MODULE SPECIFICATIONS (10-BIT MODE)

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE [.]	Technical Publications Manage	r Total Pages Sent
From	1. Nama	
1101	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Appl	ication (optional):	
Wou	Id you like a reply? Y N	
Devi	ce: dsPIC33FJ32GP302/304, dsPIC33FJ128GPX02/X04	dsPIC33FJ64GPX02/X04, and Literature Number: DS70292G
Que	stions:	
1. \	What are the best features of this	document?
-		
2. I	How does this document meet you	r hardware and software development needs?
-		
3. I	Do you find the organization of this	document easy to follow? If not, why?
-		
4. \	What additions to the document do	you think would enhance the structure and subject?
-		
-		
5. \	What deletions from the document	could be made without affecting the overall usefulness?
-		
6. I	s there any incorrect or misleading	nformation (what and where)?
-		
-		
7. I	How would you improve this docur	nent?
-		