

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DCI, DMA, I ² S, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gp302-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.6 CPU Control Registers

REGISTER 3-1: SR: CPU STATUS REGISTER

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R -0	R/W-0				
OA	OB	SA ⁽¹⁾	SB ⁽¹⁾	OAB	SAB ⁽⁴⁾	DA	DC				
bit 15		-					bit 8				
R/W-0 ⁽³	³⁾ R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0				
	IPL<2:0> ⁽²⁾		RA	Ν	OV	Z	С				
bit 7							bit 0				
Legend:											
C = Clear	only bit	R = Readable	able bit U = Unimplemented bit, read as '0'								
S = Set on	lly bit	W = Writable	ible bit -n = Value at POR								
'1' = Bit is	set	'0' = Bit is cle	ared	x = Bit is unk	nown						
bit 15	OA: Accumu	lator A Overflov	v Status bit								
	1 = Accumulation = Accumulation	ator A overflow	ed								
bit 14		OB: Accumulator B Overflow Status bit									
	1 = Accumula	ator B overflow	ed								
	0 = Accumul	0 = Accumulator B has not overflowed									
bit 13	SA: Accumu	SA: Accumulator A Saturation 'Sticky' Status bit ⁽¹⁾									
	1 = Accumul	ator A is satura	ted or has bee	en saturated at	some time						
	0 = Accumul	ator A is not sa	turated	(4)							
bit 12	SB: Accumu	lator B Saturation	on 'Sticky' Stat	tus bit ⁽¹⁾							
	1 = Accumulation = Accumulation	ator B is satura ator B is not sat	ted or has bee turated	en saturated at	some time						
bit 11		OB Combined A	Accumulator O	verflow Status	bit						
Sit II	1 = Accumula	ators A or B ha	ve overflowed		Sit						
	0 = Neither A	Accumulators A	or B have ove	erflowed							
bit 10	SAB: SA S	B Combined A	ccumulator (Si	ticky) Status bi	t(4)						
	1 = Accumula 0 = Neither A	ators A or B are Accumulator A c	e saturated or or B are satura	have been sat ited	urated at some	time in the pas	t				
bit 9	DA: DO Loop	Active bit									
	1 = DO loop i	n progress									
	0 = DO loop r	0 = DO loop not in progress									
bit 8	DC: MCU AL	U Half Carry/B	orrow bit								
	1 = A carry-o	out from the 4th	low-order bit (for byte-sized (data) or 8th low-	order bit (for wo	ord-sized data)				
	0 = No carry data) of	-out from the 4	th low-order b	oit (for byte-siz	ed data) or 8th	low-order bit (1	for word-sized				
Note 1:	This hit can be rea	ad or cloared (n	et sot)								
NULE 1: 2.	The IPI <2.05 hite	au ui uieareu (fi are concatena	ted with the ID	1 <3> hit (COE	RCON<3>) to for	rm the CPI Lint	errunt Priority				
۷.	The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Prior Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1										
3:	3: The IPL<2:0> Status bits are read only when the NSTDIS bit (INTCON1<15>) = 1.										

4: This bit can be read or cleared (not set). Clearing this bit clears SA and SB.

TABLE 4-26: REAL-TIME CLOCK AND CALENDAR REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ALRMVAL	0620						Alarr	m Value Regis	ter Window ba	sed on APT	R<1:0>							XXXX
ALCFGRPT	0622	ALRMEN	CHIME		AMASK<3:0> ALRMPTR<1:0> ARPT<7:-0>								0000					
RTCVAL	0624						RTCC	Value Registe	er Window bas	ed on RTCF	PTR<1:0>							XXXX
RCFGCAL	0626	RTCEN	_	RTCWREN	TCWREN RTCSYNC HALFSEC RTCOE RTCPTR<1:0> CAL<7:0> 00								0000					
PADCFG1	02FC	—	_	—	_	—	_	—	—	—	—	—	—	_		RTSECSEL	PMPTTL	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-27: CRC REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 12 Bit 11 Bit 10 Bit 9 Bit 8				Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CRCCON	0640	—	_	CSIDL		VWORD<4:0>					CRCMPT	—	CRCGO		PLEN	<3:0>		0000
CRCXOR	0642					X<15												0000
CRCDAT	0644				CRC Data Input Register								0000					
CRCWDAT	0646		CRC Result Register							0000								

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-28: DUAL COMPARATOR REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMCON	0630	CMIDL	—	C2EVT	C1EVT	C2EN	C1EN	C2OUTEN	C1OUTEN	C2OUT	C1OUT	C2INV	C1INV	C2NEG	C2POS	C1NEG	C1POS	0000
CVRCON	0632	—	-	-	_		-	_	_	CVREN	CVROE	CVRR	CVRSS		CVR	<3:0>		0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-29: PORTA REGISTER MAP FOR dsPIC33FJ128GP202/802, dsPIC33FJ64GP202/802 AND dsPIC33FJ32GP302

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	-	—	_	-	-	—	-	—	-	-	—	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	001F
PORTA	02C2	—	—	_	-	—	_	_	_	_	-	—	RA4	RA3	RA2	RA1	RA0	XXXX
LATA	02C4	—	—	_	—	—	—	_	_	_	—	—	LATA4	LATA3	LATA2	LATA1	LATA0	XXXX
ODCA	02C6	_	_		_	_	_			_	_	_	_	_	_	_	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

© 2007-2012 Microchip Technology Inc.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF
bit 15							bit 8
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC8IF	IC7IF		INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF
bit 7							bit 0
<u> </u>							
Legend:	L 14		L :4			(0)	
R = Readable		vv = vvritable	DIT	U = Unimple	mented bit, read	a = Ditio upkr	
	OR	I = DILIS SEL			aleu	X = DILIS UNKI	IOWI
bit 15	U2TXIF: UAR	RT2 Transmitter	Interrupt Fla	a Status bit			
	1 = Interrupt r	request has occ	curred	g clatac bit			
	0 = Interrupt r	equest has not	occurred				
bit 14	U2RXIF: UAF	RT2 Receiver Ir	nterrupt Flag	Status bit			
	1 = Interrupt r	equest has occ	curred				
bit 13	INT2IF: Exter	nal Interrupt 2	Flag Status b	it			
	1 = Interrupt r	request has occ	curred				
	0 = Interrupt r	equest has not	occurred				
bit 12	T5IF: Timer5	Interrupt Flag S	Status bit				
	1 = Interrupt r	equest has occ	curred				
bit 11	T4IF: Timer4	Interrupt Flag S	Status bit				
2	1 = Interrupt r	request has occ	curred				
	0 = Interrupt r	equest has not	occurred				
bit 10	OC4IF: Outpu	ut Compare Ch	annel 4 Interr	upt Flag Status	s bit		
	1 = Interrupt r 0 = Interrupt r	equest has occ request has not	curred				
bit 9	OC3IF: Outpu	ut Compare Ch	annel 3 Interr	upt Flag Status	s bit		
	1 = Interrupt r	equest has oc	curred	1 0			
	0 = Interrupt r	request has not	occurred				
bit 8	DMA2IF: DM	A Channel 2 Da	ata Transfer (Complete Interi	rupt Flag Status	bit	
	\perp = Interrupt r 0 = Interrupt r	request has occ	currea t occurred				
bit 7	IC8IF: Input C	Capture Channe	el 8 Interrupt	Flag Status bit			
	1 = Interrupt r	equest has occ	curred .	0			
	0 = Interrupt r	request has not	occurred				
bit 6	IC7IF: Input C	Capture Channe	el 7 Interrupt	Flag Status bit			
	1 = Interrupt r 0 = Interrupt r	request has occ request has not	curred				
bit 5	Unimplemen	ted: Read as ')'				
hit 4	INT1IF: Exter	nal Interrupt 1	Flag Status b	it			
	1 = Interrupt r	equest has occ	curred				
	1 = Interrupt r 0 = Interrupt r	equest has occ equest has not	curred t occurred				
bit 3	1 = Interrupt r 0 = Interrupt r CNIF: Input C	request has occ request has not change Notifica	curred toccurred tion Interrupt	Flag Status bit	:		

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

REGISTER	7-12: IEC2:	INTERRUPT	ENABLE CO	UN I ROL RE	GISTER 2		
U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	DMA4IE	PMPIE		—		—	_
bit 15							bit 8
[
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—		—	DMA3IE	C1IE ⁽¹⁾	C1RXIE ⁽¹⁾	SPI2IE	SPI2EIE
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14	DMA4IE: DM	IA Channel 4 D	ata Transfer C	complete Interi	rupt Enable bit		
	1 = Interrupt	request enable	d				
	0 = Interrupt	request not ena	abled				
bit 13	PMPIE: Para	llel Master Port	Interrupt Ena	ble bit			
	$\perp = Interrupt I$ 0 = Interrupt I	request enable	u abled				
bit 12-5	Unimplemen	ited: Read as '	0'				
bit 4	DMA3IE: DM	IA Channel 3 D	ata Transfer C	complete Interi	rupt Enable bit		
	1 = Interrupt	request enable	d				
	0 = Interrupt	request has en	abled				
bit 3	C1IE: ECAN	1 Event Interrup	ot Enable bit ⁽¹⁾				
	1 = Interrupt	request enable	d				
h # 0		request not ena	abied etc. Decely lints	www.unt.Fin.ch.lo.l	ь:4(1)		
DIL Z		ANT Receive D	ala Ready Inte	errupt Enable I	DIL		
	0 = Interrupt I	request enable	abled				
bit 1	SPI2IE: SPI2	Event Interrup	t Enable bit				
	1 = Interrupt	request enable	d				
	0 = Interrupt	request not ena	abled				
bit 0	SPI2EIE: SPI	12 Error Interru	ot Enable bit				
	1 = Interrupt	request enable	d				
	0 = Interrupt	request enable	abled				

7 4 2 ---

Note 1: Interrupts are disabled on devices without ECAN[™] modules.

REGISTER	7-20: IPC5:	INTERRUPT	PRIORITY	CONTROL R	EGISTER 5		
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		IC8IP<2:0>				IC7IP<2:0>	
bit 15							bit
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	_	—	_	—		INT1IP<2:0>	
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit. rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	Unimpleme	nted: Read as ')'				
oit 14-12	IC8IP<2:0>:	Input Capture C	hannel 8 Int	errupt Priority b	its		
	111 = Interro	upt is priority 7 (l	nighest priori	ty interrupt)			
	•						
	•						
	001 = Interru	upt is priority 1					
	000 = Interru	upt source is dis	abled				
bit 11	Unimpleme	nted: Read as ')'				
bit 10-8	IC7IP<2:0>:	Input Capture C	hannel 7 Int	errupt Priority b	its		
	111 = Interro	upt is priority 7 (I	nighest priori	ty interrupt)			
	•						
	•						
	001 = Interri	upt is priority 1					
	000 = Interru	upt source is dis	abled				
bit 7-3	Unimpleme	nted: Read as ')'				
bit 2-0	INT1IP<2:0>	: External Interr	upt 1 Priority	/ bits			
	111 = Interro	upt is priority 7 (l	nighest priori	ty interrupt)			
	•						
	•						
	001 = Interru	upt is priority 1					

000 = Interrupt source is disabled

REGISTER 11-7: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	_	—	_	—	_
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	_	_			OCFAR<4:0>	•	
bit 7	·						bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown

bit 15-5 Unimplemented: Read as '0'

bit 4-0 OCFAR<4:0>: Assign Output Compare A (OCFA) to the corresponding RPn pin

11111 = Input tied to Vss 11001 = Input tied to RP25

•

•

00001 = Input tied to RP1 00000 = Input tied to RP0

REGISTER 11-17: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			RP1R<4:0>		
bit 15		•					bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP0R<4:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown

bit 15-13	Unimplemented: Read as '0'
-----------	----------------------------

bit 12-8 **RP1R<4:0>:** Peripheral Output Function is Assigned to RP1 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP0R<4:0>:** Peripheral Output Function is Assigned to RP0 Output Pin bits (see Table 11-2 for peripheral function numbers)

REGISTER 11-18: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP3R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP2R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP3R<4:0>:** Peripheral Output Function is Assigned to RP3 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP2R<4:0>:** Peripheral Output Function is Assigned to RP2 Output Pin bits (see Table 11-2 for peripheral function numbers)

REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive)
	Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Send NACK during Acknowledge 0 = Send ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit (when operating as I ² C master, applicable during master receive)
	 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence a Acknowledge sequence not in progress
bit 3	BCEN: Receive Enable bit (when operating as I^2C master)
	1 = Enables Receive mode for l^2C . Hardware clear at end of eighth bit of master receive data byte 0 = Receive sequence not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master)
	1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence 0 = Stop condition not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence
	0 = Repeated Start condition not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master)
	1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence0 = Start condition not in progress

	n (n =	0-15)						
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x	
SID2	SID1	SID0	—	EXIDE		EID17	EID16	
bit 7							bit 0	
Legend:		C = Writable b	oit, but only 'C)' can be writter	n to clear the bit			
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at F	POR	'1' = Bit is set	(1' = Bit is set (0' = Bit is cleared x = Bit is unknown				nown	
bit 15-5 bit 4 bit 3	SID<10:0>: Standard Identifier bits Message address bit SIDx must be '1' to match filter Message address bit SIDx must be '0' to match filter Unimplemented: Read as '0' EXIDE: Extended Identifier Enable bit If MIDE = 1: Match only messages with extended identifier addresses Match only messages with standard identifier addresses 							
bit 2	Unimplemen	ted: Read as '	0'					
bit 1-0	EID<17:16>: Extended Identifier bits							

1 = Message address bit EIDx must be '1' to match filter 0 = Message address bit EIDx must be '0' to match filter

REGISTER 19-16: CIRXFnSID: ECAN[™] ACCEPTANCE FILTER STANDARD IDENTIFIER REGISTER n (n = 0-15)

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

	n (n =	0-15)					
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0
bit 7							bit 0

REGISTER 19-17:	CIRXFnEID: ECAN™ ACCEPTANCE FILTER EXTENDED IDENTIFIER REGISTER
	n (n = 0-15)

Legend:	C = Writable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0

EID<15:0>: Extended Identifier bits

1 = Message address bit EIDx must be '1' to match filter

0 = Message address bit EIDx must be '0' to match filter

REGISTER 19-18: CiFMSKSEL1: ECAN™ FILTER 7-0 MASK SELECTION REGISTER

bit 7							bit 0
F3MSK<1:0>		F2MSł	<<1:0>	F1MS	K<1:0>	F0MSI	<<1:0>
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
F7MSK<1:0>		F6MSK<1:0>		F5MSK<1:0>		F4MSK<1:0>	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

Legend:	C = Writable bit, but only '0' can be written to clear the bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14	F7MSK<1:0>: Mask Source for Filter 7 bit
	11 = No mask
	10 = Acceptance Mask 2 registers contain mask
	01 = Acceptance Mask 1 registers contain mask
	00 = Acceptance Mask 0 registers contain mask
bit 13-12	F6MSK<1:0>: Mask Source for Filter 6 bit (same values as bit 15-14)
bit 11-10	F5MSK<1:0>: Mask Source for Filter 5 bit (same values as bit 15-14)
bit 9-8	F4MSK<1:0>: Mask Source for Filter 4 bit (same values as bit 15-14)
bit 7-6	F3MSK<1:0>: Mask Source for Filter 3 bit (same values as bit 15-14)
bit 5-4	F2MSK<1:0>: Mask Source for Filter 2 bit (same values as bit 15-14)
bit 3-2	F1MSK<1:0>: Mask Source for Filter 1 bit (same values as bit 15-14)
bit 1-0	F0MSK<1:0>: Mask Source for Filter 0 bit (same values as bit 15-14)

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

REGISTER	REGISTER 13-24. CIRAOVET. ECAN TRECEIVE BUFFER OVERFLOW REGISTER I								
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0		
RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8		
bit 15							bit 8		
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0		
RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0		
bit 7							bit 0		
Legend: C = Writable bit, but only '0' can be written to clear the bit									
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'					

'0' = Bit is cleared

x = Bit is unknown

DECIOTED 40.04. CODVOVE4. FOANIM DECENCE DUFFED OVEDELOW DECIOTED 4

bit 15-0

-n = Value at POR

RXOVF<15:0>: Receive Buffer n Overflow bits

'1' = Bit is set

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition

REGISTER 19-25: CIRXOVF2: ECAN™ RECEIVE BUFFER OVERFLOW REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF31 | RXOVF30 | RXOVF29 | RXOVF28 | RXOVF27 | RXOVF26 | RXOVF25 | RXOVF24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF23 | RXOVF22 | RXOVF21 | RXOVF20 | RXOVF19 | RXOVF18 | RXOVF17 | RXOVF16 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Writable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0

RXOVF<31:16>: Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition

REGISTER 2	2-2: DAC1	STAT: DAC S	IAIUS REG	JISTER			
R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R-0	R-0
LOEN	_	LMVOEN		_	LITYPE	LFULL	LEMPTY
bit 15							bit 8
R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R-0	R-0
ROEN	—	RMVOEN	—	—	RITYPE	RFULL	REMPTY
bit 7							bit 0
Legend:	L :4		L 14			-1 (0)	
R = Readable		vv = vvritable	DIT		mented bit, rea		
-n = Value at P	VOR	'1' = Bit is set		0° = Bit is cle	eared	x = Bit is unk	nown
bit 15	LOEN: Left C 1 = Positive 0 = DAC out	Channel DAC O and negative D puts are disable	utput Enable AC outputs a ed	bit re enabled			
bit 14	Unimplemen	ted: Read as '	0'				
bit 13	LMVOEN: Le	eft Channel Mid	point DAC Ou	utput Voltage E	Enable bit		
	1 = Midpoint 0 = Midpoint	DAC output is output is disab	enabled led				
bit 12-11	Unimplemen	ted: Read as '	0'				
bit 10	LITYPE: Left 1 = Interrupt 0 = Interrupt	Channel Type if FIFO is Emp if FIFO is not F	of Interrupt b ty [:] ull	it			
bit 9	LFULL: Statu 1 = FIFO is F 0 = FIFO is r	us, Left Channe ⁻ ull not full	l Data Input F	FIFO is Full bit			
bit 8	LEMPTY: Sta 1 = FIFO is E 0 = FIFO is r	atus, Left Chanı Empty not Empty	nel Data Inpu	t FIFO is Empt	y bit		
bit 7	ROEN: Right 1 = Positive 0 = DAC out	Channel DAC and negative D puts are disable	Output Enabl AC outputs a ed	le bit re enabled			
bit 6	Unimplemen	ted: Read as '	0'				
bit 5	RMVOEN: Ri 1 = Midpoint 0 = Midpoint	ight Channel M DAC output is output is disab	idpoint DAC (enabled led	Output Voltage	Enable bit		
bit 4-3	Unimplemen	ted: Read as '	0'				
bit 2	RITYPE: Rig	ht Channel Typ	e of Interrupt	bit			
	1 = Interrupt 0 = Interrupt	if FIFO is Emp if FIFO is not F	ty Full				
bit 1	RFULL: Statu 1 = FIFO is	us, Right Chanı Full	nel Data Inpu	t FIFO is Full b	bit		
hit O			nnal Data Isa				
DILU	1 = FIFO is E 0 = FIFO is r	aius, Right Cha Empty not Empty	nnei Data Inp	DUL FIFU IS EM	אין אונ		

~ ~~

REGISTER 24-10: ALRMVAL (WHEN ALRMPTR<1:0> = 00): ALARM MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	MINTEN<2:0> MINONE<3:0>						
bit 15							bit 8
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	SECTEN<2:0>				SECON	VE<3:0>	
bit 7							bit 0
l egend:							

Logona.					
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15 Unimplemented: Read as '0'

bit 14-12 MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit; contains a value from 0 to 5

bit 11-8MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit; contains a value from 0 to 9bit 7Unimplemented: Read as '0'

bit 6-4 SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit; contains a value from 0 to 5

bit 3-0 SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit; contains a value from 0 to 9

26.0 PARALLEL MASTER PORT (PMP)

- Note 1: This data sheet summarizes the features the dsPIC33FJ32GP302/304, of dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 35. "Parallel Master (PMP)" (DS70299) Port of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com). 2: Some registers and associated bits
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Parallel Master Port (PMP) module is a parallel 8-bit I/O module, specifically designed to communicate with a wide variety of parallel devices, such as communication peripherals, LCDs, external memory

FIGURE 26-1: PMP MODULE OVERVIEW

devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP is highly configurable.

Key features of the PMP module include:

- · Fully multiplexed address/data mode
- Demultiplexed or partially multiplexed address/ data mode:
 - Up to 11 address lines with single chip select
 - Up to 12 address lines without chip select
- One Chip Select Line
- · Programmable Strobe Options
 - Individual Read and Write Strobes or;
 - Read/Write Strobe with Enable Strobe
- Address Auto-Increment/Auto-Decrement
- Programmable Address/Data Multiplexing
- Programmable Polarity on Control Signals
- · Legacy Parallel Slave Port Support
- Enhanced Parallel Slave Support:
 - Address Support
 - 4-Byte Deep Auto-Incrementing Buffer
- · Programmable Wait States
- · Selectable Input Voltage Levels

REGISTER 26-6:	PADCFG1: PAD CONFIGURATION CONTROL REGISTER
----------------	---

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_			—	—	
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
	—	—	_	_	—	RTSECSEL ⁽¹⁾	PMPTTL
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			

bit 1	RTSECSEL: RTCC Seconds Clock Output Select bit ⁽¹⁾
	 1 = RTCC seconds clock is selected for the RTCC pin 0 = RTCC alarm pulse is selected for the RTCC pin
bit 0	PMPTTL: PMP Module TTL Input Buffer Select bit
	1 = PMP module uses TTL input buffers
	0 = PMP module uses Schmitt Trigger input buffers

Note 1: To enable the actual RTCC output, the RTCOE bit (RCFGCAL<10>) needs to be set.

FIGURE 30-11: SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 30-30:SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING
REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP10	TscP	Maximum SCK Frequency	_	_	9	MHz	See Note 3
SP20	TscF	SCKx Output Fall Time	-	_	—	ns	See parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	-	_	—	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	_	—	_	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	_	—	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		6	20	ns	—
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—		ns	_
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	_
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—		ns	—

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

TABLE 30-36:	12Cx BUS DATA TIMING REQUIREMENTS	(MASTER MODE)
		(

АС СНА	ARACTER	ISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Charac	teristic	Min ⁽¹⁾	Max	Units	Conditions	
IM10 TLO:SC		Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	—	
			400 kHz mode	Tcy/2 (BRG + 1)	—	μs	_	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μs	_	
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)		μs	—	
			400 kHz mode	Tcy/2 (BRG + 1)		μs	—	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μs	—	
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	—	100	ns		
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	—	300	ns		
IM25	TSU:DAT	Data Input	100 kHz mode	250	—	ns	—	
		Setup Time	400 kHz mode	100	—	ns		
			1 MHz mode ⁽²⁾	40	—	ns		
IM26	THD:DAT	Data Input	100 kHz mode	0	—	μs	—	
		Hold Time	400 kHz mode	0	0.9	μs		
			1 MHz mode ⁽²⁾	0.2	—	μs		
IM30	TSU:STA	Start Condition	100 kHz mode	TCY/2 (BRG + 1)	—	μs	Only relevant for	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	—	μs	Repeated Start	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs	condition	
IM31	THD:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	After this period the	
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	—	μs	first clock pulse is	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs	generated	
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	—	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)		μs		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs		
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	ns	_	
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	—	ns		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	ns		
IM40	TAA:SCL	Output Valid	100 kHz mode	—	3500	ns	_	
		From Clock	400 kHz mode		1000	ns	—	
			1 MHz mode ⁽²⁾	—	400	ns	_	
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μs	Time the bus must be	
			400 kHz mode	1.3	_	μs	free before a new	
			1 MHz mode ⁽²⁾	0.5		μs	transmission can start	
IM50	Св	Bus Capacitive Loading			400	pF	_	
IM51	TPGD	Pulse Gobbler Delay		65	390	ns	See Note 3	

Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195) in the "*dsPIC33F/PIC24H Family Reference Manual*". Please see the Microchip website (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual chapters.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.

44-Lead Plastic Thin Quad Flatpack (PT) 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Contact Pitch	E		0.80 BSC			
Contact Pad Spacing	C1		11.40			
Contact Pad Spacing	C2		11.40			
Contact Pad Width (X44)	X1			0.55		
Contact Pad Length (X44)	Y1			1.50		
Distance Between Pads	G	0.25				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B

Revision D (November 2009)

The revision includes the following global update:

• Added Note 2 to the shaded table that appears at the beginning of each chapter. This new note provides information regarding the availability of registers and their associated bits

This revision also includes minor typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in the following table.

TABLE A-3: MAJOR SECTION UPDATES

Section Name	Update Description
"High-Performance, 16-bit Digital Signal Controllers"	Added information on high temperature operation (see "Operating Range:").
Section 11.0 "I/O Ports"	Changed the reference to digital-only pins to 5V tolerant pins in the second paragraph of Section 11.2 " Open-Drain Configuration ".
Section 18.0 "Universal Asynchronous Receiver Transmitter (UART)"	Updated the two baud rate range features to: 10 Mbps to 38 bps at 40 MIPS.
Section 21.0 "10-bit/12-bit Analog-to-Digital Converter (ADC)"	Updated the ADC block diagrams (see Figure 21-1 and Figure 21-2).
Section 22.0 "Audio Digital-to-Analog	Removed last sentence of the first paragraph in the section.
Converter (DAC)"	Added a shaded note to Section 22.2 "DAC Module Operation".
	Updated Figure 22-2: "Audio DAC Output for Ramp Input (Unsigned)".
Section 27.0 "Special Features"	Updated the second paragraph and removed the fourth paragraph in Section 27.1 "Configuration Bits" .
	Updated the Device Configuration Register Map (see Table 27-1).
Section 30.0 "Electrical Characteristics"	Updated the Absolute Maximum Ratings for high temperature and added Note 4.
	Removed parameters DI26, DI28, and DI29 from the I/O Pin Input Specifications (see Table 30-9).
	Updated the SPIx Module Slave Mode (CKE = 1) Timing Characteristics (see Figure 30-12).
	Removed Table 30-43: Audio DAC Module Specifications. Original contents were updated and combined with Table 30-42 of the same name.
Section 31.0 "High Temperature Electrical Characteristics"	Added new chapter with high temperature specifications.
"Product Identification System"	Added the "H" definition for high temperature.