
Welcome to **E-XFL.COM** 

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

| Details                   |                                                                                  |
|---------------------------|----------------------------------------------------------------------------------|
| Product Status            | Active                                                                           |
| Core Processor            | dsPIC                                                                            |
| Core Size                 | 16-Bit                                                                           |
| Speed                     | 40 MIPs                                                                          |
| Connectivity              | I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                                  |
| Peripherals               | Brown-out Detect/Reset, DCI, DMA, I2S, POR, PWM, WDT                             |
| Number of I/O             | 21                                                                               |
| Program Memory Size       | 32KB (32K x 8)                                                                   |
| Program Memory Type       | FLASH                                                                            |
| EPROM Size                | -                                                                                |
| RAM Size                  | 4K x 8                                                                           |
| oltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                        |
| Data Converters           | A/D 10x10b/12b                                                                   |
| Oscillator Type           | Internal                                                                         |
| perating Temperature      | -40°C ~ 85°C (TA)                                                                |
| Mounting Type             | Surface Mount                                                                    |
| Package / Case            | 28-VQFN Exposed Pad                                                              |
| Supplier Device Package   | 28-QFN-S (6x6)                                                                   |
| Purchase URL              | https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gp302t-i-mm |



DATA MEMORY MAP FOR dsPIC33FJ32GP302/304 DEVICES WITH 4 KB RAM FIGURE 4-3:

#### 5.0 FLASH PROGRAM MEMORY

Note 1: This data sheet summarizes the features the dsPIC33FJ32GP302/304. dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Programming" (DS70191) of the "dsPIC33F/PIC24H Family Reference Manual". which is available from the Microchip website (www.microchip.com).

> 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming™ (ICSP™) programming capability
- Run-Time Self-Programming (RTSP)

allows any of the following devices, dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04, to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user application can write program memory data either in blocks or 'rows' of 64 instructions (192 bytes) at a time or a single program memory word, and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.

#### 5.1 Table Instructions and Flash **Programming**

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits <7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits <15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits <23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

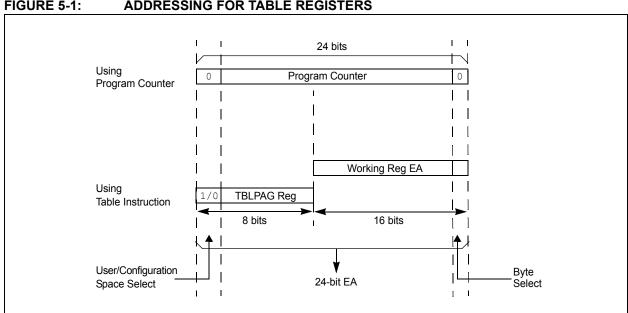



FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

#### REGISTER 7-13: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3

| U-0    | R/W-0 | R/W-0  | R/W-0 | R/W-0  | U-0 | U-0 | U-0   |
|--------|-------|--------|-------|--------|-----|-----|-------|
| _      | RTCIE | DMA5IE | DCIIE | DCIEIE | _   | _   | _     |
| bit 15 |       |        |       |        |     |     | bit 8 |

| U-0   | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | U-0   |
|-------|-----|-----|-----|-----|-----|-----|-------|
| _     | _   | _   | _   | _   | _   |     | _     |
| bit 7 |     |     |     |     |     |     | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14 RTCIE: Real-Time Clock and Calendar Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 13 DMA5IE: DMA Channel 5 Data Transfer Complete Interrupt Enable bit

1 = Interrupt request enabled 0 = Interrupt request not enabled

bit 12 DCI Event Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 11 DCIEIE: DCI Error Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 10-0 **Unimplemented:** Read as '0'

#### REGISTER 7-18: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

| U-0    | U-0 | U-0 | U-0 | U-0 | R/W-1 | R/W-0       | R/W-0 |
|--------|-----|-----|-----|-----|-------|-------------|-------|
| _      | _   | _   | _   | _   |       | DMA1IP<2:0> |       |
| bit 15 |     |     |     |     |       |             | bit 8 |

| U-0   | R/W-1 | R/W-0      | R/W-0 | U-0 | R/W-1 | R/W-0       | R/W-0 |
|-------|-------|------------|-------|-----|-------|-------------|-------|
| _     |       | AD1IP<2:0> |       | _   |       | U1TXIP<2:0> |       |
| bit 7 |       |            |       |     |       |             | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-11 **Unimplemented:** Read as '0'

bit 10-8 DMA1IP<2:0>: DMA Channel 1 Data Transfer Complete Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

.

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 7 **Unimplemented:** Read as '0'

bit 6-4 AD1IP<2:0>: ADC1 Conversion Complete Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 3 **Unimplemented:** Read as '0'

bit 2-0 U1TXIP<2:0>: UART1 Transmitter Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

.

001 = Interrupt is priority 1

000 = Interrupt source is disabled

#### REGISTER 8-2: DMAXREQ: DMA CHANNEL x IRQ SELECT REGISTER

| R/W-0                | U-0   |
|----------------------|-----|-----|-----|-----|-----|-----|-------|
| FORCE <sup>(1)</sup> | _   | _   | _   | _   | _   | _   | _     |
| bit 15               |     |     |     |     |     |     | bit 8 |

| U-0   | R/W-0 | R/W-0 | R/W-0 | R/W-0       | R/W-0 | R/W-0 | R/W-0 |
|-------|-------|-------|-------|-------------|-------|-------|-------|
| _     |       |       | I     | RQSEL6<6:0> | (2)   |       |       |
| bit 7 |       |       |       |             |       |       | bit 0 |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | l as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15 FORCE: Force DMA Transfer bit<sup>(1)</sup>

1 = Force a single DMA transfer (Manual mode)

0 = Automatic DMA transfer initiation by DMA request

bit 14-7 **Unimplemented:** Read as '0'

bit 6-0 IRQSEL<6:0>: DMA Peripheral IRQ Number Select bits<sup>(2)</sup>

1111111 = DMAIRQ127 selected to be Channel DMAREQ

.

0000000 = DMAIRQ0 selected to be Channel DMAREQ

**Note 1:** The FORCE bit cannot be cleared by the user. The FORCE bit is cleared by hardware when the forced DMA transfer is complete.

2: Refer to Table 7-1 for a complete listing of IRQ numbers for all interrupt sources.

# 10.5 Power-Saving Resources

Many useful resources related to Power-Saving are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser:

http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en532311

#### 10.5.1 KEY RESOURCES

- Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196)
- · Code Samples
- · Application Notes
- · Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- · Development Tools

TABLE 11-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)(1)

| Input Name              | Function Name | Register | Configuration<br>Bits |
|-------------------------|---------------|----------|-----------------------|
| External Interrupt 1    | INT1          | RPINR0   | INT1R<4:0>            |
| External Interrupt 2    | INT2          | RPINR1   | INT2R<4:0>            |
| Timer2 External Clock   | T2CK          | RPINR3   | T2CKR<4:0>            |
| Timer3 External Clock   | T3CK          | RPINR3   | T3CKR<4:0>            |
| Timer4 External Clock   | T4CK          | RPINR4   | T4CKR<4:0>            |
| Timer5 External Clock   | T5CK          | RPINR4   | T5CKR<4:0>            |
| Input Capture 1         | IC1           | RPINR7   | IC1R<4:0>             |
| Input Capture 2         | IC2           | RPINR7   | IC2R<4:0>             |
| Input Capture 7         | IC7           | RPINR10  | IC7R<4:0>             |
| Input Capture 8         | IC8           | RPINR10  | IC8R<4:0>             |
| Output Compare Fault A  | OCFA          | RPINR11  | OCFAR<4:0>            |
| UART1 Receive           | U1RX          | RPINR18  | U1RXR<4:0>            |
| UART1 Clear To Send     | U1CTS         | RPINR18  | U1CTSR<4:0>           |
| UART2 Receive           | U2RX          | RPINR19  | U2RXR<4:0>            |
| UART2 Clear To Send     | U2CTS         | RPINR19  | U2CTSR<4:0>           |
| SPI1 Data Input         | SDI1          | RPINR20  | SDI1R<4:0>            |
| SPI1 Clock Input        | SCK1          | RPINR20  | SCK1R<4:0>            |
| SPI1 Slave Select Input | SS1           | RPINR21  | SS1R<4:0>             |
| SPI2 Data Input         | SDI2          | RPINR22  | SDI2R<4:0>            |
| SPI2 Clock Input        | SCK2          | RPINR22  | SCK2R<4:0>            |
| SPI2 Slave Select Input | SS2           | RPINR23  | SS2R<4:0>             |
| DCI Serial Data Input   | CSDI          | RPINR24  | CSDIR<4:0>            |
| DCI Serial Clock Input  | CSCK          | RPINR24  | CSCKR<4:0>            |
| DCI Frame Sync Input    | COFS          | RPINR25  | COFSR<4:0>            |
| ECAN1 Receive           | CIRX          | RPINR26  | CIRXR<4:0>            |

Note 1: Unless otherwise noted, all inputs use Schmitt input buffers.

#### 11.6.2.2 Output Mapping

In contrast to inputs, the outputs of the peripheral pin select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 5-bit fields, with each set associated with one RPn pin (see Register 11-17 through Register 11-29). The value of the bit field corresponds to one of the peripherals, and that peripheral's output is mapped to the pin (see Table 11-2 and Figure 11-3).

The list of peripherals for output mapping also includes a null value of '00000' because of the mapping technique. This permits any given pin to remain unconnected from the output of any of the pin selectable peripherals.

FIGURE 11-3: MULTIPLEXING OF REMAPPABLE OUTPUT FOR RPn

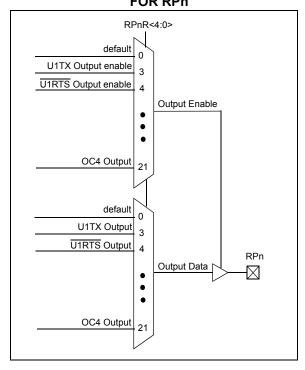



TABLE 11-2: OUTPUT SELECTION FOR REMAPPABLE PIN (RPn)

| Function | RPnR<4:0> | Output Name                          |
|----------|-----------|--------------------------------------|
| NULL     | 00000     | RPn tied to default port pin         |
| C1OUT    | 00001     | RPn tied to Comparator1 Output       |
| C2OUT    | 00010     | RPn tied to Comparator2 Output       |
| U1TX     | 00011     | RPn tied to UART1 Transmit           |
| U1RTS    | 00100     | RPn tied to UART1 Ready To Send      |
| U2TX     | 00101     | RPn tied to UART2 Transmit           |
| U2RTS    | 00110     | RPn tied to UART2 Ready To Send      |
| SDO1     | 00111     | RPn tied to SPI1 Data Output         |
| SCK1     | 01000     | RPn tied to SPI1 Clock Output        |
| SS1      | 01001     | RPn tied to SPI1 Slave Select Output |
| SDO2     | 01010     | RPn tied to SPI2 Data Output         |
| SCK2     | 01011     | RPn tied to SPI2 Clock Output        |
| SS2      | 01100     | RPn tied to SPI2 Slave Select Output |
| CSDO     | 01101     | RPn tied to DCI Serial Data Output   |
| CSCK     | 01110     | RPn tied to DCI Serial Clock Output  |
| COFS     | 01111     | RPn tied to DCI Frame Sync Output    |
| C1TX     | 10000     | RPn tied to ECAN1 Transmit           |
| OC1      | 10010     | RPn tied to Output Compare 1         |
| OC2      | 10011     | RPn tied to Output Compare 2         |
| OC3      | 10100     | RPn tied to Output Compare 3         |
| OC4      | 10101     | RPn tied to Output Compare 4         |

# 17.0 INTER-INTEGRATED CIRCUIT™ (I<sup>2</sup>C™)

Note 1: This data sheet summarizes the features of the dsPlC33FJ32GP302/304, dsPlC33FJ64GPX02/X04, and dsPlC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195) of the "dsPlC33F/PlC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Inter-Integrated Circuit ( $I^2C$ ) module provides complete hardware support for both Slave and Multi-Master modes of the  $I^2C$  serial communication standard, with a 16-bit interface.

The I<sup>2</sup>C module has a 2-pin interface:

- · The SCLx pin is clock.
- · The SDAx pin is data.

The I<sup>2</sup>C module offers the following key features:

- I<sup>2</sup>C interface supporting both Master and Slave modes of operation.
- I<sup>2</sup>C Slave mode supports 7-bit and 10-bit addressing
- I<sup>2</sup>C Master mode supports 7 and 10-bit addressing
- I<sup>2</sup>C Port allows bidirectional transfers between master and slaves.
- Serial clock synchronization for I<sup>2</sup>C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control).
- I<sup>2</sup>C supports multi-master operation, detects bus collision and arbitrates accordingly.

## 17.1 Operating Modes

The hardware fully implements all the master and slave functions of the I<sup>2</sup>C Standard and Fast mode specifications, as well as 7 and 10-bit addressing.

The  $I^2C$  module can operate either as a slave or a master on an  $I^2C$  bus.

The following types of I<sup>2</sup>C operation are supported:

- I<sup>2</sup>C slave operation with 7-bit addressing
- I<sup>2</sup>C slave operation with 10-bit addressing
- I<sup>2</sup>C master operation with 7-bit or 10-bit addressing

For details about the communication sequence in each of these modes, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip website (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual chapters.

#### REGISTER 17-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

| U-0    | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 |
|--------|-----|-----|-----|-----|-----|-------|-------|
| _      | _   | _   | _   | _   | _   | AMSK9 | AMSK8 |
| bit 15 |     |     |     |     |     |       | bit 8 |

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| AMSK7 | AMSK6 | AMSK5 | AMSK4 | AMSK3 | AMSK2 | AMSK1 | AMSK0 |
| bit 7 |       |       |       |       |       |       | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-10 **Unimplemented:** Read as '0'

bit 9-0 AMSKx: Mask for Address Bit x Select bit

1 = Enable masking for bit x of incoming message address; bit match not required in this position

0 = Disable masking for bit x; bit match required in this position

#### BUFFER 19-7: ECAN™ MESSAGE BUFFER WORD 6

| R/W-x  | R/W-x  | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x |  |  |
|--------|--------|-------|-------|-------|-------|-------|-------|--|--|
|        | Byte 7 |       |       |       |       |       |       |  |  |
| bit 15 |        |       |       |       |       |       | bit 8 |  |  |

| R/W-x            | R/W-x | R/W-x            | R/W-x | R/W-x            | R/W-x            | R/W-x             | R/W-x |
|------------------|-------|------------------|-------|------------------|------------------|-------------------|-------|
|                  |       |                  | Ву    | te 6             |                  |                   |       |
| bit 7            |       |                  |       |                  |                  |                   | bit 0 |
| Legend:          |       |                  |       |                  |                  |                   |       |
| R = Readable b   | oit   | W = Writable bit |       | U = Unimpler     | nented bit, read | l as '0'          |       |
| -n = Value at Po | OR    | '1' = Bit is set |       | '0' = Bit is cle | ared             | x = Bit is unknow | า     |

bit 15-8 **Byte 7<15:8>:** ECAN™ Message Byte 7 bit 7-0 **Byte 6<7:0>:** ECAN Message Byte 6

# BUFFER 19-8: ECAN™ MESSAGE BUFFER WORD 7

| U-0    | U-0 | U-0 | R/W-x                      | R/W-x | R/W-x | R/W-x | R/W-x |  |  |
|--------|-----|-----|----------------------------|-------|-------|-------|-------|--|--|
| _      | _   | _   | FILHIT<4:0> <sup>(1)</sup> |       |       |       |       |  |  |
| bit 15 |     |     |                            |       |       |       | bit 8 |  |  |

| U-0   | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | U-0   |
|-------|-----|-----|-----|-----|-----|-----|-------|
| _     | _   | _   | _   | _   | _   | _   | _     |
| bit 7 |     |     |     |     |     |     | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 **Unimplemented:** Read as '0' bit 12-8 **FILHIT<4:0>:** Filter Hit Code bits<sup>(1)</sup>

Encodes number of filter that resulted in writing this buffer.

bit 7-0 **Unimplemented:** Read as '0'

Note 1: These bits are only written by the module for receive buffers, and are unused for transmit buffers.

#### REGISTER 21-1: AD1CON1: ADC1 CONTROL REGISTER 1 (CONTINUED)

bit 3 SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or 1x)

When AD12B = 1, SIMSAM is: U-0, Unimplemented, Read as '0'

1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or Samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01)

0 = Samples multiple channels individually in sequence

bit 2 ASAM: ADC Sample Auto-Start bit

1 = Sampling begins immediately after last conversion. SAMP bit is auto-set

0 = Sampling begins when SAMP bit is set

bit 1 SAMP: ADC Sample Enable bit

1 = ADC sample/hold amplifiers are sampling

0 = ADC sample/hold amplifiers are holding

If ASAM = 0, software can write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC = 000, software can write '0' to end sampling and start conversion. If SSRC  $\neq 000$ ,

automatically cleared by hardware to end sampling and start conversion.

bit 0 **DONE:** ADC Conversion Status bit

1 = ADC conversion cycle is completed.

0 = ADC conversion not started or in progress

Automatically set by hardware when ADC conversion is complete. Software can write '0' to clear DONE status (software not allowed to write '1'). Clearing this bit does NOT affect any operation in progress. Automatically cleared by hardware at start of a new conversion.

### 26.2 PMP Control Registers

#### REGISTER 26-1: PMCON: PARALLEL MASTER PORT CONTROL REGISTER

| R/W-0  | U-0 | R/W-0 | R/W-0   | R/W-0   | R/W-0  | R/W-0  | R/W-0  |
|--------|-----|-------|---------|---------|--------|--------|--------|
| PMPEN  | _   | PSIDL | ADRMUX1 | ADRMUX0 | PTBEEN | PTWREN | PTRDEN |
| bit 15 |     |       |         |         |        |        | bit 8  |

| R/W-0 | R/W-0 | R/W-0 <sup>(1)</sup> | U-0 | R/W-0 <sup>(1)</sup> | R/W-0 | R/W-0 | R/W-0 |
|-------|-------|----------------------|-----|----------------------|-------|-------|-------|
| CSF1  | CSF0  | ALP                  | _   | CS1P                 | BEP   | WRSP  | RDSP  |
| bit 7 |       |                      |     |                      |       |       | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **PMPEN:** Parallel Master Port Enable bit

1 = PMP enabled

0 = PMP disabled, no off-chip access performed

bit 14 **Unimplemented:** Read as '0'

bit 13 **PSIDL:** Stop in Idle Mode bit

1 = Discontinue module operation when device enters Idle mode

0 = Continue module operation in Idle mode

bit 12-11 ADRMUX1:ADRMUX0: Address/Data Multiplexing Selection bits<sup>(1)</sup>

11 = Reserved

10 = All 16 bits of address are multiplexed on PMD<7:0> pins

01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper 3 bits are multiplexed on PMA<10:8>

00 = Address and data appear on separate pins

bit 10 **PTBEEN:** Byte Enable Port Enable bit (16-bit Master mode)

1 = PMBE port enabled0 = PMBE port disabled

bit 9 PTWREN: Write Enable Strobe Port Enable bit

1 = PMWR/PMENB port enabled0 = PMWR/PMENB port disabled

bit 8 PTRDEN: Read/Write Strobe Port Enable bit

1 = PMRD/PMWR port enabled

0 = PMRD/PMWR port disabled

bit 7-6 **CSF1:CSF0:** Chip Select Function bits

11 = Reserved

10 = PMCS1 functions as chip select

0x = PMCS1 functions as address bit 14

bit 5 **ALP:** Address Latch Polarity bit<sup>(1)</sup>

1 = Active-high (PMALL and PMALH)

 $0 = Active-low (\overline{PMALL} \text{ and } \overline{PMALH})$ 

bit 4 Unimplemented: Read as '0'

bit 3 **CS1P:** Chip Select 1 Polarity bit<sup>(1)</sup>


1 = Active-high (PMCS1/PMCS1)

0 = Active-low (PMCS1/PMCS1)

Note 1: These bits have no effect when their corresponding pins are used as address lines.

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

| Base<br>Instr<br># | Assembly<br>Mnemonic |        | Assembly Syntax            | Description                                   | # of<br>Words | # of<br>Cycles | Status Flags<br>Affected |
|--------------------|----------------------|--------|----------------------------|-----------------------------------------------|---------------|----------------|--------------------------|
| 10                 | BTSC                 | BTSC   | f,#bit4                    | Bit Test f, Skip if Clear                     | 1             | 1<br>(2 or 3)  | None                     |
|                    |                      | BTSC   | Ws,#bit4                   | Bit Test Ws, Skip if Clear                    | 1             | 1<br>(2 or 3)  | None                     |
| 11                 | BTSS                 | BTSS   | f,#bit4                    | Bit Test f, Skip if Set                       | 1             | 1<br>(2 or 3)  | None                     |
|                    |                      | BTSS   | Ws,#bit4                   | Bit Test Ws, Skip if Set                      | 1             | 1<br>(2 or 3)  | None                     |
| 12                 | BTST                 | BTST   | f,#bit4                    | Bit Test f                                    | 1             | 1              | Z                        |
|                    |                      | BTST.C | Ws,#bit4                   | Bit Test Ws to C                              | 1             | 1              | С                        |
|                    |                      | BTST.Z | Ws,#bit4                   | Bit Test Ws to Z                              | 1             | 1              | Z                        |
|                    |                      | BTST.C | Ws,Wb                      | Bit Test Ws <wb> to C</wb>                    | 1             | 1              | С                        |
|                    |                      | BTST.Z | Ws,Wb                      | Bit Test Ws <wb> to Z</wb>                    | 1             | 1              | Z                        |
| 13                 | BTSTS                | BTSTS  | f,#bit4                    | Bit Test then Set f                           | 1             | 1              | Z                        |
|                    |                      |        | Ws,#bit4                   | Bit Test Ws to C, then Set                    | 1             | 1              | С                        |
|                    |                      |        | Ws,#bit4                   | Bit Test Ws to Z, then Set                    | 1             | 1              | Z                        |
| 14                 | CALL                 | CALL   | lit23                      | Call subroutine                               | 2             | 2              | None                     |
|                    | 01122                | CALL   | Wn                         | Call indirect subroutine                      | 1             | 2              | None                     |
| 15                 | CLR                  | CLR    | f                          | f = 0x0000                                    | 1             | 1              | None                     |
| 10                 | CHI                  | CLR    | WREG                       | WREG = 0x0000                                 | 1             | 1              | None                     |
|                    |                      | CLR    | Ws                         | Ws = 0x0000                                   | 1             | 1              | None                     |
|                    |                      |        |                            | Clear Accumulator                             | 1             | 1              | OA,OB,SA,SB              |
| 16                 | OT DEIDE             | CLR    | Acc, Wx, Wxd, Wy, Wyd, AWB |                                               | 1             | 1              |                          |
| 16                 | CLRWDT               | CLRWDT |                            | Clear Watchdog Timer                          | +             |                | WDTO,Sleep               |
| 17                 | COM                  | COM    | f                          | f = Ī                                         | 1             | 1              | N,Z                      |
|                    |                      | COM    | f,WREG                     | WREG = f                                      | 1             | 1              | N,Z                      |
|                    |                      | COM    | Ws,Wd                      | Wd = Ws                                       | 1             | 1              | N,Z                      |
| 18                 | CP                   | CP     | f                          | Compare f with WREG                           | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | CP     | Wb,#lit5                   | Compare Wb with lit5                          | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | CP     | Wb,Ws                      | Compare Wb with Ws (Wb – Ws)                  | 1             | 1              | C,DC,N,OV,Z              |
| 19                 | CP0                  | CP0    | f                          | Compare f with 0x0000                         | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | CP0    | Ws                         | Compare Ws with 0x0000                        | 1             | 1              | C,DC,N,OV,Z              |
| 20                 | CPB                  | CPB    | f                          | Compare f with WREG, with Borrow              | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | CPB    | Wb,#lit5                   | Compare Wb with lit5, with Borrow             | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | СРВ    | Wb,Ws                      | Compare Wb with Ws, with Borrow (Wb – Ws – C) | 1             | 1              | C,DC,N,OV,Z              |
| 21                 | CPSEQ                | CPSEQ  | Wb, Wn                     | Compare Wb with Wn, skip if =                 | 1             | 1<br>(2 or 3)  | None                     |
| 22                 | CPSGT                | CPSGT  | Wb, Wn                     | Compare Wb with Wn, skip if >                 | 1             | 1<br>(2 or 3)  | None                     |
| 23                 | CPSLT                | CPSLT  | Wb, Wn                     | Compare Wb with Wn, skip if <                 | 1             | 1<br>(2 or 3)  | None                     |
| 24                 | CPSNE                | CPSNE  | Wb, Wn                     | Compare Wb with Wn, skip if ≠                 | 1             | 1<br>(2 or 3)  | None                     |
| 25                 | DAW                  | DAW    | Wn                         | Wn = decimal adjust Wn                        | 1             | 1              | С                        |
| 26                 | DEC                  | DEC    | f                          | f = f - 1                                     | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | DEC    | f,WREG                     | WREG = f - 1                                  | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | DEC    | Ws,Wd                      | Wd = Ws - 1                                   | 1             | 1              | C,DC,N,OV,Z              |
| 27                 | DEC2                 | DEC2   | f                          | f = f - 2                                     | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | DEC2   | f,WREG                     | WREG = f - 2                                  | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | DEC2   | Ws, Wd                     | Wd = Ws - 2                                   | 1             | 1              | C,DC,N,OV,Z              |
| 28                 | DISI                 | DISI   | #lit14                     | Disable Interrupts for k instruction cycles   | 1             | 1              | None                     |



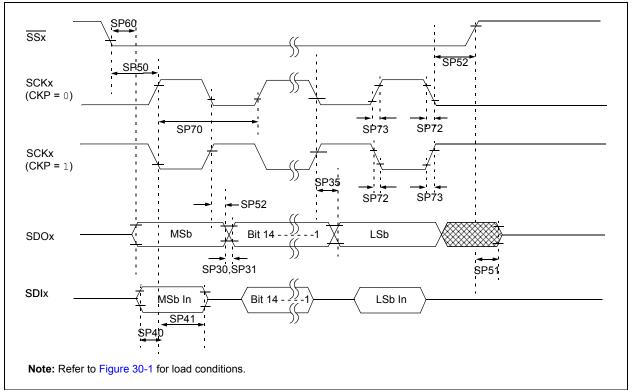



FIGURE 30-15: SPIX SLAVE MODE (FULL-DUPLEX CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

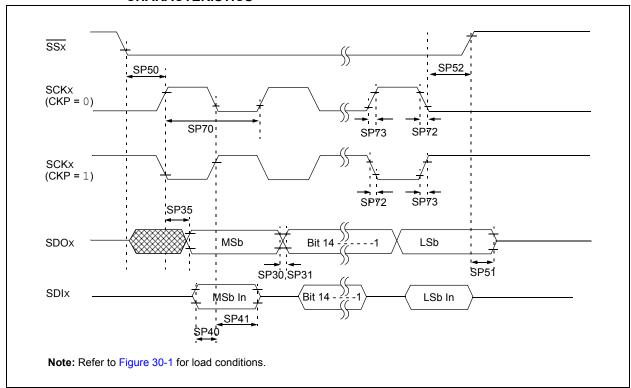
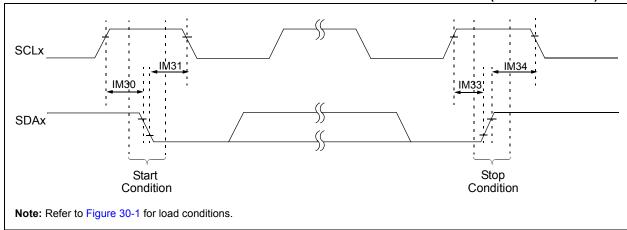
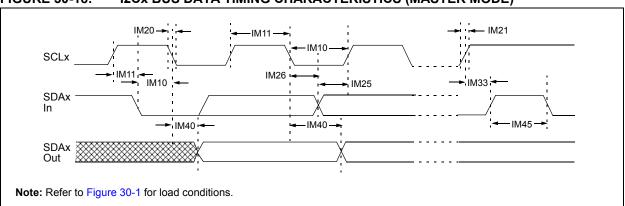




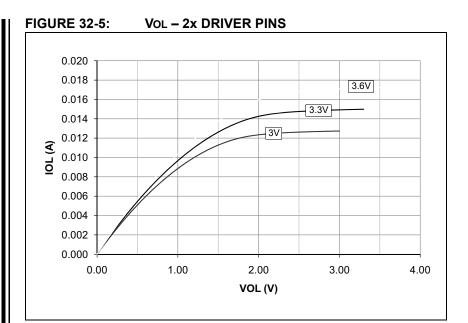

FIGURE 30-17: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)

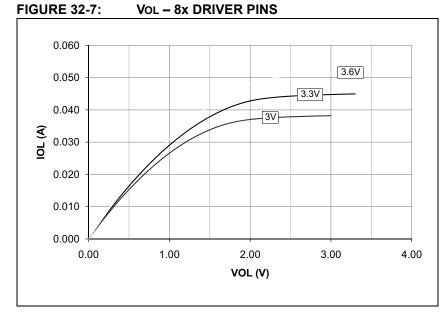


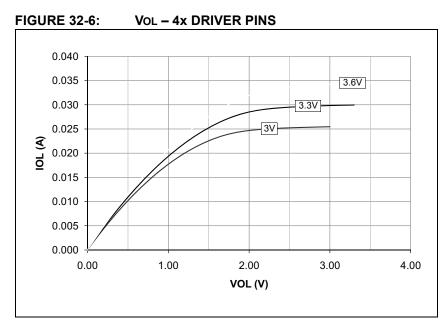
# FIGURE 30-18: I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE)

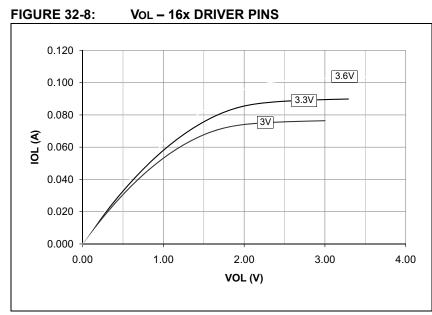


© 2007-2012 Microchip Technology Inc.


TABLE 30-36: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)


| AC CHA       | ARACTER | ISTICS           |                           | Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended |      |       |                        |  |
|--------------|---------|------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|------------------------|--|
| Param<br>No. | Symbol  | Charac           | teristic                  | Min <sup>(1)</sup>                                                                                                                                                                                                                                | Max  | Units | Conditions             |  |
| IM10         | TLO:SCL | Clock Low Time   | 100 kHz mode              | Tcy/2 (BRG + 1)                                                                                                                                                                                                                                   | _    | μs    | _                      |  |
|              |         |                  | 400 kHz mode              | Tcy/2 (BRG + 1)                                                                                                                                                                                                                                   | _    | μs    | _                      |  |
|              |         |                  | 1 MHz mode <sup>(2)</sup> | Tcy/2 (BRG + 1)                                                                                                                                                                                                                                   | _    | μs    | _                      |  |
| IM11         | THI:SCL | Clock High Time  | 100 kHz mode              | Tcy/2 (BRG + 1)                                                                                                                                                                                                                                   | _    | μs    | _                      |  |
|              |         |                  | 400 kHz mode              | Tcy/2 (BRG + 1)                                                                                                                                                                                                                                   | _    | μs    | _                      |  |
|              |         |                  | 1 MHz mode <sup>(2)</sup> | Tcy/2 (BRG + 1)                                                                                                                                                                                                                                   | _    | μs    | _                      |  |
| IM20         | TF:SCL  | SDAx and SCLx    | 100 kHz mode              | _                                                                                                                                                                                                                                                 | 300  | ns    | CB is specified to be  |  |
|              |         | Fall Time        | 400 kHz mode              | 20 + 0.1 CB                                                                                                                                                                                                                                       | 300  | ns    | from 10 to 400 pF      |  |
|              |         |                  | 1 MHz mode <sup>(2)</sup> | _                                                                                                                                                                                                                                                 | 100  | ns    |                        |  |
| IM21         | TR:SCL  | SDAx and SCLx    | 100 kHz mode              | _                                                                                                                                                                                                                                                 | 1000 | ns    | CB is specified to be  |  |
|              |         | Rise Time        | 400 kHz mode              | 20 + 0.1 CB                                                                                                                                                                                                                                       | 300  | ns    | from 10 to 400 pF      |  |
|              |         |                  | 1 MHz mode <sup>(2)</sup> | _                                                                                                                                                                                                                                                 | 300  | ns    |                        |  |
| IM25         | Tsu:dat | Data Input       | 100 kHz mode              | 250                                                                                                                                                                                                                                               | _    | ns    | _                      |  |
|              |         | Setup Time       | 400 kHz mode              | 100                                                                                                                                                                                                                                               | _    | ns    |                        |  |
|              |         |                  | 1 MHz mode <sup>(2)</sup> | 40                                                                                                                                                                                                                                                | _    | ns    |                        |  |
| IM26         | THD:DAT | Data Input       | 100 kHz mode              | 0                                                                                                                                                                                                                                                 | _    | μs    | _                      |  |
|              |         | Hold Time        | 400 kHz mode              | 0                                                                                                                                                                                                                                                 | 0.9  | μs    |                        |  |
|              |         |                  | 1 MHz mode <sup>(2)</sup> | 0.2                                                                                                                                                                                                                                               |      | μs    |                        |  |
| IM30         | Tsu:sta | Start Condition  | 100 kHz mode              | Tcy/2 (BRG + 1)                                                                                                                                                                                                                                   | _    | μs    | Only relevant for      |  |
|              |         | Setup Time       | 400 kHz mode              | Tcy/2 (BRG + 1)                                                                                                                                                                                                                                   | _    | μs    | Repeated Start         |  |
|              |         |                  | 1 MHz mode <sup>(2)</sup> | Tcy/2 (BRG + 1)                                                                                                                                                                                                                                   | _    | μs    | condition              |  |
| IM31         | THD:STA | Start Condition  | 100 kHz mode              | Tcy/2 (BRG + 1)                                                                                                                                                                                                                                   | _    | μs    | After this period the  |  |
|              |         | Hold Time        | 400 kHz mode              | Tcy/2 (BRG + 1)                                                                                                                                                                                                                                   | _    | μs    | first clock pulse is   |  |
|              |         |                  | 1 MHz mode <sup>(2)</sup> | Tcy/2 (BRG + 1)                                                                                                                                                                                                                                   | _    | μs    | generated              |  |
| IM33         | Tsu:sto | Stop Condition   | 100 kHz mode              | Tcy/2 (BRG + 1)                                                                                                                                                                                                                                   | _    | μs    | _                      |  |
|              |         | Setup Time       | 400 kHz mode              | Tcy/2 (BRG + 1)                                                                                                                                                                                                                                   | _    | μs    |                        |  |
|              |         |                  | 1 MHz mode <sup>(2)</sup> | Tcy/2 (BRG + 1)                                                                                                                                                                                                                                   | _    | μs    |                        |  |
| IM34         | THD:STO | Stop Condition   | 100 kHz mode              | Tcy/2 (BRG + 1)                                                                                                                                                                                                                                   | _    | ns    | _                      |  |
|              |         | Hold Time        | 400 kHz mode              | Tcy/2 (BRG + 1)                                                                                                                                                                                                                                   | _    | ns    |                        |  |
|              |         |                  | 1 MHz mode <sup>(2)</sup> | Tcy/2 (BRG + 1)                                                                                                                                                                                                                                   | _    | ns    |                        |  |
| IM40         | TAA:SCL | Output Valid     | 100 kHz mode              | _                                                                                                                                                                                                                                                 | 3500 | ns    | _                      |  |
|              |         | From Clock       | 400 kHz mode              | _                                                                                                                                                                                                                                                 | 1000 | ns    | _                      |  |
|              |         |                  | 1 MHz mode <sup>(2)</sup> | _                                                                                                                                                                                                                                                 | 400  | ns    | _                      |  |
| IM45         | TBF:SDA | Bus Free Time    | 100 kHz mode              | 4.7                                                                                                                                                                                                                                               | _    | μs    | Time the bus must be   |  |
|              |         |                  | 400 kHz mode              | 1.3                                                                                                                                                                                                                                               | _    | μs    | free before a new      |  |
|              |         |                  | 1 MHz mode <sup>(2)</sup> | 0.5                                                                                                                                                                                                                                               | _    | μs    | transmission can start |  |
| IM50         | Св      | Bus Capacitive L | oading                    | _                                                                                                                                                                                                                                                 | 400  | pF    | _                      |  |
| IM51         | TPGD    | Pulse Gobbler De | elav                      | 65                                                                                                                                                                                                                                                | 390  | ns    | See Note 3             |  |
|              |         |                  | •                         | nerator. Refer to <b>Se</b>                                                                                                                                                                                                                       |      |       |                        |  |


Note 1: BRG is the value of the I<sup>2</sup>C Baud Rate Generator. Refer to **Section 19**. "Inter-Integrated Circuit™ (I<sup>2</sup>C™)" (DS70195) in the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip website (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual chapters.


<sup>2:</sup> Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

<sup>3:</sup> Typical value for this parameter is 130 ns.









### **READER RESPONSE**

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

| RE:      | Reader Response                                   | ger                          |            | Total Pages Ser      | nt       |
|----------|---------------------------------------------------|------------------------------|------------|----------------------|----------|
| From:    | Name                                              |                              |            |                      |          |
|          | Company                                           |                              |            |                      |          |
|          | Address                                           |                              |            |                      |          |
|          | City / State / ZIP / Country _                    |                              |            |                      |          |
|          | Telephone: ()                                     |                              | FAX: (_    |                      |          |
| Applica  | ation (optional):                                 |                              |            |                      |          |
| Would    | you like a reply?YN                               |                              |            |                      |          |
| Device   | e: dsPIC33FJ32GP302/304,<br>dsPIC33FJ128GPX02/X04 | dsPIC33FJ64GPX02/X04         | and        | Literature Number:   | DS70292G |
| Questi   | ons:                                              |                              |            |                      |          |
| 1. W     | hat are the best features of this                 | s document?                  |            |                      |          |
|          |                                                   |                              |            |                      |          |
| 2. Ho    | ow does this document meet yo                     | our hardware and software c  | evelopme   | ent needs?           |          |
| _        |                                                   |                              |            |                      | _        |
| 3. Do    | you find the organization of the                  | nis document easy to follow? | If not, wi | ıy?                  |          |
|          |                                                   |                              |            |                      |          |
| 4. W     | hat additions to the document                     | do you think would enhance   | the struc  | ture and subject?    |          |
| _        |                                                   |                              |            |                      |          |
| 5. W     | hat deletions from the docume                     | nt could be made without af  | ecting the | e overall usefulness | ?        |
| _        |                                                   |                              |            |                      |          |
| <br>6 ls | there any incorrect or misleadi                   | ng information (what and wh  | nere)?     |                      |          |
| 0. 10    | and any modification midical                      | ng momation (what and wi     |            |                      |          |
|          |                                                   |                              |            |                      |          |
| 7. Ho    | ow would you improve this doc                     | ument?                       |            |                      |          |
|          |                                                   |                              |            |                      |          |
|          |                                                   |                              |            |                      |          |