

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DCI, DMA, I ² S, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gp302t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04 PRODUCT **FAMILIES**

The device names, pin counts, memory sizes, and peripheral availability of each device are listed below. The following pages show their pinout diagrams.

TABLE 1: dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04 **CONTROLLER FAMILIES**

						Rem	appabl	e Peri	phera	al								r)			
Device	Pins	Program Flash Memory (Kbyte)	RAM (Kbyte) ⁽¹⁾	Remappable Pins	16-bit Timer ⁽²⁾	Input Capture	Output Compare Standard PWM	Data Converter Interface	UART	IdS	ECAN™	External Interrupts ⁽³⁾	RTCC	I ² C TM	CRC Generator	10-bit/12-bit ADC (Channels)	16-bit Audio DAC (Pins)	Analog Comparator (2 Channels/Voltage Regulator)	8-bit Parallel Master Port (Address Lines)	I/O Pins	Packages
dsPIC33FJ128GP804	44	128	16	26	5	4	4	1	2	2	1	3	1	1	1	13	6	1/1	11	35	QFN TQFP
dsPIC33FJ128GP802	28	128	16	16	5	4	4	1	2	2	1	3	1	1	1	10	4	1/0	2	21	SPDIP SOIC QFN-S
dsPIC33FJ128GP204	44	128	8	26	5	4	4	1	2	2	0	3	1	1	1	13	0	1/1	11	35	QFN TQFP
dsPIC33FJ128GP202	28	128	8	16	5	4	4	1	2	2	0	3	1	1	1	10	0	1/0	2	21	SPDIP SOIC QFN-S
dsPIC33FJ64GP804	44	64	16	26	5	4	4	1	2	2	1	3	1	1	1	13	6	1/1	11	35	QFN TQFP
dsPIC33FJ64GP802	28	64	16	16	5	4	4	1	2	2	1	3	1	1	1	10	4	1/0	2	21	SPDIP SOIC QFN-S
dsPIC33FJ64GP204	44	64	8	26	5	4	4	1	2	2	0	3	1	1	1	13	0	1/1	11	35	QFN TQFP
dsPIC33FJ64GP202	28	64	8	16	5	4	4	1	2	2	0	3	1	1	1	10	0	1/0	2	21	SPDIP SOIC QFN-S
dsPIC33FJ32GP304	44	32	4	26	5	4	4	1	2	2	0	3	1	1	1	13	0	1/1	11	35	QFN TQFP
dsPIC33FJ32GP302	28	32	4	16	5	4	4	1	2	2	0	3	1	1	1	10	0	1/0	2	21	SPDIP SOIC QFN-S

Note RAM size is inclusive of 2 Kbytes of DMA RAM for all devices except dsPIC33FJ32GP302/304, which include 1 Kbyte of DMA RAM. 1:

2: 3: Only four out of five timers are remappable.

Only two out of three interrupts are remappable.

TABLE 1-1:	PINOUT I/O DESCRIPTIONS	(CONTINUED)	
------------	-------------------------	-------------	--

Pin Name	Pin Type	Buffer Type	PPS	Description
AVss	Р	Р	No	Ground reference for analog modules.
Vdd	Р	—	No	Positive supply for peripheral logic and I/O pins.
VCAP	Р	_	No	CPU logic filter capacitor connection.
Vss	Р	_	No	Ground reference for logic and I/O pins.
VREF+	I	Analog	No	Analog voltage reference (high) input.
VREF-	I	Analog	No	Analog voltage reference (low) input.

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer Analog = Analog inputP = PowerO = OutputI = InputPPS = Peripheral Pin Select

2.5 ICSP Pins

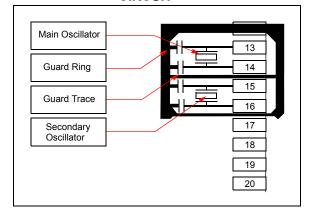
The PGECx and PGEDx pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 3 or MPLAB REAL ICE[™].

For more information on ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip website.

- "Using MPLAB[®] ICD 3 In-Circuit Debugger" (poster) DS51765
- "MPLAB[®] ICD 3 Design Advisory" DS51764
- "MPLAB[®] REAL ICE™ In-Circuit Emulator User's Guide" DS51616
- *"Using MPLAB[®] REAL ICE™"* (poster) DS51749


2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 9.0 "Oscillator Configuration**" for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3. Recommendations for crystals and ceramic resonators are provided in Table 2-1 and Table 2-2, respectively.

FIGURE 2-3:

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

Part Number	Vendor	Freq.	Load Cap.	Package Case	Frequency Tolerance	Mounting Type	Operating Temperature
ECS-40-20-4DN	ECS Inc.	4 MHz	20 pF	HC49/US	±30 ppm	TH	-40°C to +85°C
ECS-80-18-4DN	ECS Inc.	8 MHz	18 pF	HC49/US	±30 ppm	TH	-40°C to +85°C
ECS-100-18-4-DN	ECS Inc.	10 MHz	18 pF	HC49/US	±30 ppm	TH	-40°C to +85°C
ECS-200-20-4DN	ECS Inc.	20 MHz	20 pF	HC49/US	±30 ppm	TH	-40°C to +85°C
ECS-40-20-5G3XDS-TR	ECS Inc.	4 MHz	20 pF	HC49/US	±30 ppm	SM	-40°C to +125°C
ECS-80-20-5G3XDS-TR	ECS Inc.	8 MHz	20 pF	HC49/US	±30 ppm	SM	-40°C to +125°C
ECS-100-20-5G3XDS-TR	ECS Inc.	10 MHz	20 pF	HC49/US	±30 ppm	SM	-40°C to +125°C
ECS-200-20-5G3XDS-TR	ECS Inc.	20 MHz	20 pF	HC49/US	±30 ppm	SM	-40°C to 125°C
NX3225SA 20MHZ AT-W	NDK	20 MHz	8 pF	3.2 mm x 2.5 mm	±50 ppm	SM	-40°C to 125°C
Legend: TH = Through I	Hole	SM	= Surface I	Nount			

TABLE 2-1: CRYSTAL RECOMMENDATIONS

TABLE 4	4-5:	TIMEF	R REGIS	TER MA	٨P													
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	Register								0000
PR1	0102								Period F	Register 1								FFFF
T1CON	0104	TON	_	TSIDL	_	_	_	_	—	—	TGATE	TCKP	S<1:0>		TSYNC	TCS		0000
TMR2	0106								Timer2	Register								0000
TMR3HLD	0108						Tin	ner3 Holding	Register (fo	r 32-bit timeı	operations o	only)						XXXX
TMR3	010A								Timer3	Register								0000
PR2	010C								Period F	Register 2								FFFF
PR3	010E								Period F	Register 3								FFFF
T2CON	0110	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	T32	_	TCS		0000
T3CON	0112	TON		TSIDL				_	—	—	TGATE	TCKP	S<1:0>	—	_	TCS	—	0000
TMR4	0114								Timer4	Register								0000
TMR5HLD	0116						Tin	ner5 Holding	Register (fo	r 32-bit timeı	operations o	only)						XXXX
TMR5	0118								Timer5	Register								0000
PR4	011A								Period F	Register 4								FFFF
PR5	011C								Period F	Register 5								FFFF
T4CON	011E	TON		TSIDL				_	_	-	TGATE	TCKP	S<1:0>	T32	—	TCS	_	0000
T5CON	0120	TON		TSIDL				_	_	-	TGATE	TCKP	S<1:0>	—	—	TCS	_	0000
Legend:	x = un	known valu	e on Reset,	— = unimp	lemented, r	ead as '0'. F	Reset value	s are showr	in hexadeo	cimal.								

TABLE 4-6: INPUT CAPTURE REGISTER MAP

			•/			· ••••												
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1BUF	0140								Input 1 Ca	pture Regist	er							XXXX
IC1CON	0142	—		ICSIDL	—		-			ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC2BUF	0144								Input 2 Ca	pture Regist	er							XXXX
IC2CON	0146	—		ICSIDL	—		_			ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC7BUF	0158								Input 7 Ca	pture Regist	er							XXXX
IC7CON	015A	—	_	ICSIDL	—					ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC8BUF	015C								Input 8Ca	pture Registe	er							XXXX
IC8CON	015E	—		ICSIDL	—		_			ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>		0000

Legend: x = unknown value on Reset, -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-22:PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ128GP202/802, dsPIC33FJ64GP202/802 AND
dsPIC33FJ32GP302

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06C0	_	_	—			RP1R<4:0	>		—	_	_			RP0R<4:0>			0000
RPOR1	06C2	_	_	_			RP3R<4:0>	>		_	_	_			RP2R<4:0>			0000
RPOR2	06C4	_	_	_			RP5R<4:0>	>		_	_	_			RP4R<4:0>			0000
RPOR3	06C6		_	_			RP7R<4:0>	>		-	_	_			RP6R<4:0>			0000
RPOR4	06C8	_	_	_			RP9R<4:0>	>		_	_	_			RP8R<4:0>			0000
RPOR5	06CA	_	_	_			RP11R<4:0	>		_	_	_		I	RP10R<4:0>			0000
RPOR6	06CC	_	_	_			RP13R<4:0	>		_		_			RP12R<4:0>			0000
RPOR7	06CE	_	_	_			RP15R<4:0	>		_	_	_			RP14R<4:0>			0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-23: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ128GP204/804, dsPIC33FJ64GP204/804 AND dsPIC33FJ32GP304

		401 100	51 552															
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06C0	_	—	—			RP1R<4:0>	>		_	—	—			RP0R<4:0>			0000
RPOR1	06C2	_	—	_			RP3R<4:0>	>		-	_	_			RP2R<4:0>			0000
RPOR2	06C4	_	_	_			RP5R<4:0	>		_	_	_			RP4R<4:0>			0000
RPOR3	06C6	_	_	_			RP7R<4:0	>		_	_				RP6R<4:0>			0000
RPOR4	06C8	_		_			RP9R<4:0>	>		_	_				RP8R<4:0>			0000
RPOR5	06CA	_	_	_			RP11R<4:0	>		_	_				RP10R<4:0>			0000
RPOR6	06CC	_	_	_			RP13R<4:0	>		_	_	_			RP12R<4:0>			0000
RPOR7	06CE	_	_	_			RP15R<4:0	>		_	_	_			RP14R<4:0>			0000
RPOR8	06D0	_	_	_			RP17R<4:0	>		_	_				RP16R<4:0>			0000
RPOR9	06D2	_	_	_			RP19R<4:0	>		_	_				RP18R<4:0>			0000
RPOR10	06D4	_	_	_			RP21R<4:0	>		_	_	_			RP20R<4:0>			0000
RPOR11	06D6	_	_	_			RP23R<4:0	>		_	_	_			RP22R<4:0>			0000
RPOR12	06D8	_	_	—			RP25R<4:0	>		_	_	_			RP24R<4:0>			0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

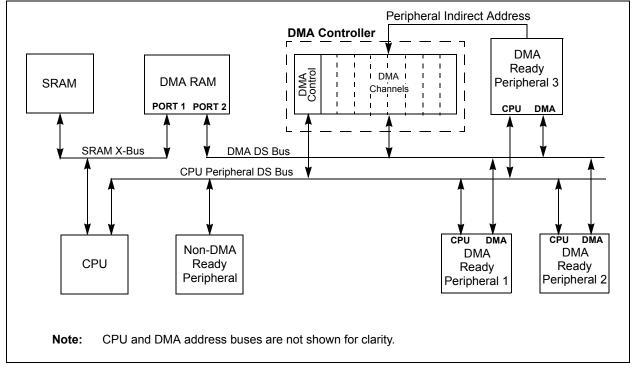
REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 3	ADDRERR: Address Error Trap Status bit
	1 = Address error trap has occurred0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit
	 Stack error trap has occurred
	0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred
	0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

REGISTER	7-11: IEC1:	INTERRUPT	ENABLE CO		GISTER 1		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE
bit 15							bit 8
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC8IE	IC7IE		INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE
bit 7	IGHE			ONIL	OWIL	WIZOTIE	bit 0
Legend:			L :4			-l (O'	
R = Readable		W = Writable			nented bit, rea		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN
bit 15	U2TXIE: UAF	RT2 Transmitter	r Interrupt Ena	able bit			
		request enable					
	0 = Interrupt i	request not ena	abled				
bit 14		RT2 Receiver Ir	•	e bit			
		request enable					
h:+ 40	•	request not ena					
bit 13		rnal Interrupt 2 request enable					
		request enable					
bit 12	T5IE: Timer5	Interrupt Enab	le bit				
		request enable					
	•	request not ena					
bit 11		Interrupt Enab					
		request enable request not ena					
bit 10	-	ut Compare Ch		upt Enable bit			
	•	request enable					
		request not ena					
bit 9	OC3IE: Output	ut Compare Ch	annel 3 Interr	upt Enable bit			
		request enable request not ena					
bit 8	DMA2IE: DM	IA Channel 2 D	ata Transfer C	Complete Interr	upt Enable bit		
	•	request enable					
		request not ena					
bit 7		Capture Chann	-	Enable bit			
		request enable request not ena					
bit 6	-	Capture Chann		Enable bit			
	•	request enable					
	0 = Interrupt i	request not ena	abled				
bit 5	Unimplemen	ted: Read as '	0'				
bit 4		rnal Interrupt 1					
		request enable					
bit 3	-	request not ena Change Notifica		Enable bit			
DIL D	-	request enable	-				
		request not ena					

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
	—	—	—	—		DMA1IP<2:0>	
oit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	N/W-1	AD1IP<2:0>	N/W-U	0-0	FV/ V V = 1	U1TXIP<2:0>	N/ VV-U
bit 7		7.D m 32.0				011701 42.02	bit (
Legend:							
R = Readab	le hit	W = Writable	hit	U = Unimplen	nented bit rea	ad as '0'	
-n = Value a		'1' = Bit is set	5 N	'0' = Bit is cle		x = Bit is unkn	own
bit 15-11	Unimpleme	nted: Read as ')'				
bit 10-8	-	0>: DMA Channe		nsfer Complete	Interrupt Prio	ritv bits	
		upt is priority 7 (I				,	
	•		•				
	•						
	•	untin mainaite d					
		upt is priority 1 upt source is dis	abled				
bit 7	Unimpleme	-					
	-	nted: Read as ')'	e Interrupt Prior	itv bits		
	AD1IP<2:0>	nted: Read as '(ADC1 Converse)' sion Complet	•	ity bits		
	AD1IP<2:0>	nted: Read as ')' sion Complet	•	ity bits		
	AD1IP<2:0>	nted: Read as '(ADC1 Converse)' sion Complet	•	ity bits		
	AD1IP<2:0> 111 = Intern	nted: Read as '(ADC1 Converse upt is priority 7 (I)' sion Complet	•	ity bits		
	AD1IP<2:0> 111 = Intern	nted: Read as '(ADC1 Convers upt is priority 7 (I upt is priority 1	₎ ' sion Complet nighest priori	•	ity bits		
bit 6-4	AD1IP<2:0> 111 = Intern	nted: Read as ' ADC1 Converse upt is priority 7 (I upt is priority 1 upt source is disc	₎ ' sion Complet nighest priori abled	•	ity bits		
bit 6-4 bit 3	AD1IP<2:0> 111 = Intern	nted: Read as '(: ADC1 Convers upt is priority 7 (I upt is priority 1 upt source is dis nted: Read as '(₎ , sion Complet nighest priori abled	ty interrupt)	ity bits		
bit 6-4 bit 3	AD1IP<2:0> 111 = Intern	nted: Read as '(ADC1 Converse upt is priority 7 (I) upt is priority 1 upt source is disa nted: Read as '()>: UART1 Trans	^{o'} sion Complet nighest priori abled o' smitter Interru	ty interrupt) upt Priority bits	ity bits		
bit 6-4 bit 3	AD1IP<2:0> 111 = Intern	nted: Read as '(: ADC1 Convers upt is priority 7 (I upt is priority 1 upt source is dis nted: Read as '(^{o'} sion Complet nighest priori abled o' smitter Interru	ty interrupt) upt Priority bits	ity bits		
bit 6-4 bit 3	AD1IP<2:0> 111 = Intern	nted: Read as '(ADC1 Converse upt is priority 7 (I) upt is priority 1 upt source is disa nted: Read as '()>: UART1 Trans	^{o'} sion Complet nighest priori abled o' smitter Interru	ty interrupt) upt Priority bits	ity bits		
bit 6-4 bit 3	AD1IP<2:0> 111 = Intern	nted: Read as '(ADC1 Conversion upt is priority 7 (I) upt source is disting nted: Read as '()>: UART1 Trans upt is priority 7 (I)	^{o'} sion Complet nighest priori abled o' smitter Interru	ty interrupt) upt Priority bits	ity bits		
bit 7 bit 6-4 bit 3 bit 2-0	AD1IP<2:0> 111 = Intern	nted: Read as '(ADC1 Converse upt is priority 7 (I) upt is priority 1 upt source is disa nted: Read as '()>: UART1 Trans	^{)'} sion Complet nighest priori abled ^{)'} smitter Interru nighest priori	ty interrupt) upt Priority bits	ity bits		

The DMA controller features eight identical data transfer channels.


Each channel has its own set of control and status registers. Each DMA channel can be configured to copy data either from buffers stored in dual port DMA RAM to peripheral SFRs, or from peripheral SFRs to buffers in DMA RAM.

The DMA controller supports the following features:

- Eight DMA channels
- Register Indirect With Post-increment Addressing mode
- Register Indirect Without Post-increment Addressing mode
- Peripheral Indirect Addressing mode (peripheral generates destination address)
- CPU interrupt after half or full block transfer complete

- · Byte or word transfers
- · Fixed priority channel arbitration
- Manual (software) or Automatic (peripheral DMA requests) transfer initiation
- One-Shot or Auto-Repeat block transfer modes
- Ping-Pong mode (automatic switch between two DPSRAM start addresses after each block transfer complete)
- DMA request for each channel can be selected from any supported interrupt source
- · Debug support features

For each DMA channel, a DMA interrupt request is generated when a block transfer is complete. Alternatively, an interrupt can be generated when half of the block has been filled.

FIGURE 8-1: TOP LEVEL SYSTEM ARCHITECTURE USING A DEDICATED TRANSACTION BUS

REGISTER 11-21: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			iown	
R = Readable bit W = Writable b			bit U = Unimplemented bit, read as '0'				
Legend:							
bit 7							bit 0
—	_	—			RP8R<4:0>		
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15			•				bit 8
_		_			RP9R<4:0>		
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 12-8 **RP9R<4:0>:** Peripheral Output Function is Assigned to RP9 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP8R<4:0>:** Peripheral Output Function is Assigned to RP8 Output Pin bits (see Table 11-2 for peripheral function numbers)

REGISTER 11-22: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP11R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP10R<4:0>		
bit 7							bit 0

Legend:					
R = Readable bit	Readable bit W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP11R<4:0>:** Peripheral Output Function is Assigned to RP11 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP10R<4:0>:** Peripheral Output Function is Assigned to RP10 Output Pin bits (see Table 11-2 for peripheral function numbers)

REGISTER 20	-5: RSCO	N: DCI RECE	EIVE SLOT C	ONTROL RE	GISTER	
						P///_0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RSE15	RSE14	RSE13	RSE12	RSE11	RSE10	RSE9	RSE8
bit 15		·					bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RSE7	RSE6	RSE5	RSE4	RSE3	RSE2	RSE1	RSE0
bit 7		·				•	bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' =		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

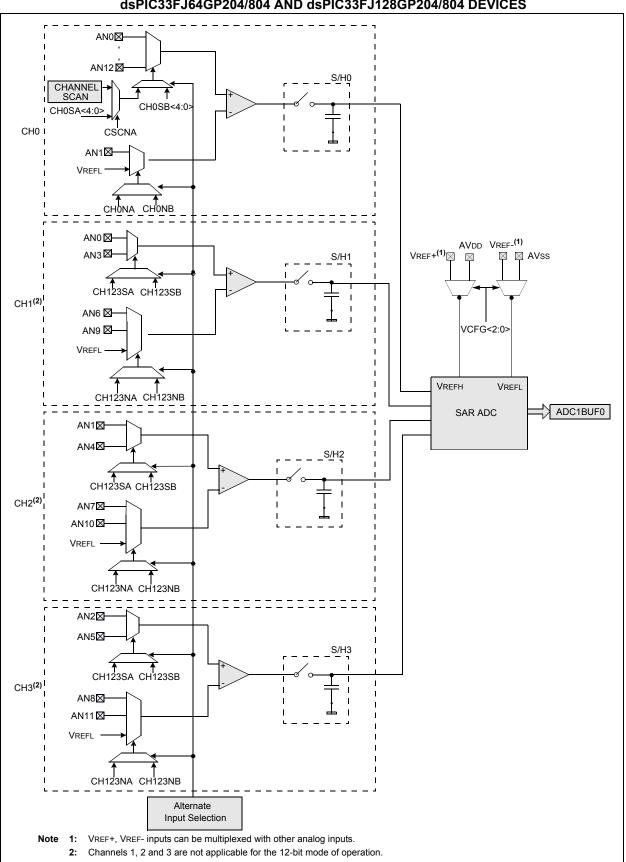
bit 15-0

RSE<15:0>: Receive Slot Enable bits

1 = CSDI data is received during the individual time slot n

0 = CSDI data is ignored during the individual time slot n

REGISTER 20-6: TSCON: DCI TRANSMIT SLOT CONTROL REGISTER


R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TSE15	TSE14	TSE13	TSE12	TSE11	TSE10	TSE9	TSE8
bit 15		-			•		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TSE7	TSE6	TSE5	TSE4	TSE3	TSE2	TSE1	TSE0
bit 7					•		bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	

bit 15-0

TSE<15:0>: Transmit Slot Enable Control bits

1 = Transmit buffer contents are sent during the individual time slot n

0 = CSDO pin is tri-stated or driven to logic '0', during the individual time slot, depending on the state of the CSDOM bit

TABLE 27-2:	ABLE 27-2: dsPIC CONFIGURATION BITS DESCRIPTION							
Bit Field	Register	RTSP Effect	Description					
BWRP	FBS	Immediate	Boot Segment Program Flash Write Protection 1 = Boot segment can be written 0 = Boot segment is write-protected					
BSS<2:0>	FBS	Immediate	Boot Segment Program Flash Code Protection Size x11 = No Boot program Flash segment					
			Boot space is 1K Instruction Words (except interrupt vectors) 110 = Standard security; boot program Flash segment ends at 0x0007FE					
			010 = High security; boot program Flash segment ends at 0x0007FE					
			Boot space is 4K Instruction Words (except interrupt vectors) 101 = Standard security; boot program Flash segment, ends at 0x001FFE					
			001 = High security; boot program Flash segment ends at 0x001FFE					
			Boot space is 8K Instruction Words (except interrupt vectors) 100 = Standard security; boot program Flash segment ends at 0x003FFE					
			000 = High security; boot program Flash segment ends at 0x003FFE					
RBS<1:0> ⁽¹⁾	FBS	Immediate	Boot Segment RAM Code Protection Size 11 = No Boot RAM defined 10 = Boot RAM is 128 bytes 01 = Boot RAM is 256 bytes					
SWRP ⁽¹⁾	FSS ⁽¹⁾	Immediate	00 = Boot RAM is 1024 bytes Secure Segment Program Flash Write-Protect bit 1 = Secure Segment can bet written 0 = Secure Segment is write-protected					
SSS<2:0> ⁽¹⁾	FSS ⁽¹⁾	Immediate	Secure Segment Program Flash Code Protection Size (Secure segment is not implemented on 32K devices) X11 = No Secure program flash segment					
			Secure space is 4K IW less BS 110 = Standard security; secure program flash segment starts at End of BS, ends at 0x001FFE					
			010 = High security; secure program flash segment starts at End of BS, ends at 0x001FFE					
			Secure space is 8K IW less BS 101 = Standard security; secure program flash segment starts at End of BS, ends at 0x003FFE					
			001 = High security; secure program flash segment starts at End of BS, ends at 0x003FFE					
			Secure space is 16K IW less BS 100 = Standard security; secure program flash segment starts at End of BS, ends at 007FFEh					
			000 = High security; secure program flash segment starts at End of BS, ends at 0x007FFE					

TABLE 27-2:	dsPIC CONFIGURATION BITS DESCRIPTION

Note 1: This Configuration register is not available on dsPIC33FJ32GP302/304 devices.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
66	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
67	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
68	SE	SE	Ws,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z
69	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
70	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB SA,SB,SAB
71	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
72	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAE SA,SB,SAE
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,
		SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C,DC,N,OV,
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,
		SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C,DC,N,OV,
73	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,
		SUBB	f,WREG	WREG = f – WREG – (\overline{C})	1	1	C,DC,N,OV,
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,
74	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,
75	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,
		SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C,DC,N,OV,
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,
76	SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None
		SWAP	Wn	Wn = byte swap Wn	1	1	None
77	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
78	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
79	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
30	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
81	ULNK	ULNK		Unlink Frame Pointer	1	1	None
82	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
83	ZE	ZE	Ws,Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N

TABLE 30-7:	DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)
-------------	--

TABLE 30-7:		ACIERIS	11C2: 50M	ER-DOWN	CURREN	I (IPD)
DC CHARACI	TERISTICS		(unless oth	Dperating Content of C	e d) -40°C ≤TA	0V to 3.6V ≤+85°C for Industrial ≤+125°C for Extended
Parameter No. ⁽³⁾	Typical ⁽²⁾	Max	Units			Conditions
Power-Down	Current (IPD)	(1)				
DC60d	24	68	μA	-40°C		
DC60a	28	87	μA	+25°C	3.3∨	Base Power-Down Current ^(3,4)
DC60b	124	292	μA	+85°C	3.3V	Base Power-Down Currents?
DC60c	350	1000	μA	+125°C		
DC61d	8	13	μA	-40°C		
DC61a	10	15	μA	+25°C	3.3V	Watchdog Timer Current: ΔIWDT ^(3,5)
DC61b	12	20	μA	+85°C	3.3V	
DC61c	13	25	μA	+125°C	1	

Note 1: IPD (Sleep) current is measured as follows:

 CPU core is off (i.e., Sleep mode), oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

• CLKO is configured as an I/O input pin in the Configuration word

· All I/O pins are configured as inputs and pulled to Vss

• MCLR = VDD, WDT and FSCM are disabled, all peripheral modules are disabled (PMDx bits are all '1's)

- RTCC is disabled
- · JTAG is disabled
- 2: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.
- **3:** The Watchdog Timer Current is the additional current consumed when the WDT module is enabled. This current should be added to the base IPD current.
- 4: These currents are measured on the device containing the most memory in this family.
- 5: These parameters are characterized, but are not tested in manufacturing.

	DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)					
DC CH				Operating temperature			5°C for Industrial 25°C for Extended		
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions		
DI50	lı∟	Input Leakage Current ^(2,3) I/O pins 5V Tolerant ⁽⁴⁾	_	_	±2	μΑ	Vss ⊴VPiN ⊴VDD, Pin at high-impedance		
DI51		I/O Pins Not 5V Tolerant ⁽⁴⁾ (Excluding AN9 through AN12)	_	-	±1	μA	Vss ⊴VPIN ⊴VDD, Pin at high-impedance, 40°C ≤ Ta ≤+85°C		
DI51a		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	_	±2	μA	Shared with external reference pins, 40°C ≤TA ≤+85°C		
DI51b		I/O Pins Not 5V Tolerant ⁽⁴⁾ (Excluding AN9 through AN12)	_	_	±3.5	μA	Vss ≤VPIN ≤VDD, Pin at high-impedance, -40°C ≤TA ≤+125°C		
DI51c		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	_	±8	μA	Analog pins shared with external reference pins, -40°C ≤TA ≤+125°C		
DI51d		AN9 through AN12	_	_	±11	μA	Vss ≤VPIN ≤VDD, Pin at high-impedance, -40°C ≤TA ≤+85°C		
DI51e		AN9 through AN12	_	-	±13	μA	Vss ⊴VPıN ⊴VDD, Pin at high-impedance, -40°C ≤TA ≤+125°C		
DI55		MCLR	_	-	±2	μA	Vss ⊴Vpin ⊴Vdd		
DI56		OSC1	_	-	±2	μA	Vss ⊴VPIN ⊴VDD, XT and HS modes		

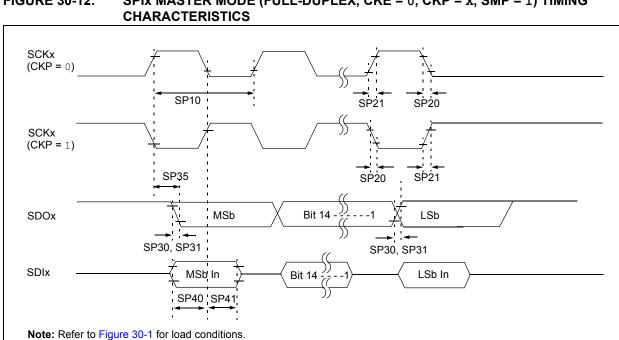
TABLE 30-9: DC C	HARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)
------------------	--

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: See the "Pin Diagrams" section for the 5V tolerant I/O pins.
- **5:** VIL source < (Vss 0.3). Characterized but not tested.
- **6:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

TABLE 30-23:	TIMER2 AND T	IMER 4 EXTERNAL	L CLOCK TIMING REQUIREME	NTS
--------------	--------------	------------------------	--------------------------	-----


AC CHARACTERISTICS				(unles	ard Operating C s otherwise stat ting temperature	t ed) -40°C		Industria	
Param No.	Symbol	Charao	cteristic ⁽	[1]	Min	Тур	Мах	Units	Conditions
TB10	TtxH	TxCK High Time	Synchro mode	onous	Greater of: 20 or (Tcy + 20)/N		_	ns	Must also meet parameter TB15 N = prescale value (1, 8, 64, 256)
TB11	TtxL	TxCK Low Time	Synchro mode	onous	Greater of: 20 or (Tcy + 20)/N	_		ns	Must also meet parameter TB15 N = prescale value (1, 8, 64, 256)
TB15	TtxP	TxCK Input Period	Synchro mode	onous	Greater of: 40 or (2 Tcy + 40)/N	_	—	ns	N = prescale value (1, 8, 64, 256)
TB20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Incre- ment		0.75 Tcy + 40	_	1.75 Tcy + 40	ns	_	

Note 1: These parameters are characterized, but are not tested in manufacturing.

TABLE 30-24:	TIMER3 AND	TIMER5 EXTERNAL CLOCK TIMING REQUIREMENTS
--------------	------------	---

АС СНА	RACTERIST	rics	(ui	andard Operating C nless otherwise sta perating temperature	ted) e -40°C	ns: 3.0V to 3.6V C ≤TA ≤+85°C for C ≤TA ≤+125°C fo	Industri	
Param No.	Symbol	Characteristic ⁽¹⁾		Min	Тур	Мах	Units	Conditions
TC10	TtxH	TxCK High Time	Synchrono	us TCY + 20	—	_	ns	Must also meet parameter TC15
TC11	TtxL	TxCK Low Time	Synchrono	us Tcy + 20	—	—	ns	Must also meet parameter TC15
TC15	TtxP	TxCK Input Period	Synchronol with presca		_	_	ns	N = prescale value (1, 8, 64, 256)
TC20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Incre- ment			—	1.75 Tcy + 40	ns	—

Note 1: These parameters are characterized, but are not tested in manufacturing.

SPIx MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING **FIGURE 30-12:**

TABLE 30-31: SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING REQUIREMENTS

АС СНА	RACTERIST	ICS	Standard (unless o Operating	therwise	stated) ture -40°	°C ≤Ta ≤+8	to 3.6V 35°C for Industrial 125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Мах	Units	Conditions
SP10	TscP	Maximum SCK Frequency			9	MHz	-40°C to +125°C and see Note 3
SP20	TscF	SCKx Output Fall Time	_	—	_	ns	See parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	_	—	_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	_	—	_	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	_	_	_	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	_
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—		ns	_
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns	_

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

Assumes 50 pF load on all SPIx pins. 4:

^{3:} The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manage Reader Response	Total Pages Sent
	-	
11011		
	Telephone: ()	FAX: ()
	ication (optional):	
Wou	Id you like a reply? Y N	
Devi	ce: dsPIC33FJ32GP302/304, dsPIC33FJ128GPX02/X04	dsPIC33FJ64GPX02/X04, and Literature Number: DS70292G
Que	stions:	
1. \	What are the best features of this	document?
-		
2. I	How does this document meet you	r hardware and software development needs?
-		
3. I	Do you find the organization of this	document easy to follow? If not, why?
-		
4. \	What additions to the document do	you think would enhance the structure and subject?
_		
5. \	What deletions from the document	could be made without affecting the overall usefulness?
-		
6. I	s there any incorrect or misleading	a information (what and where)?
	,	
-		
7. I	How would you improve this docu	nent?
-		
-		

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

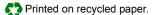
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2007-2012, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-62076-235-6

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC[®] MCUs and dsPIC[®] DSCs, KEELOQ[®] code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.