

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Detuils	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DCI, DMA, I ² S, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gp202-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 2. "CPU" (DS70204) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

3.1 Overview

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for DSP. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies by device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any time.

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can serve as a data, address or address offset register. The 16th working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls.

There are two classes of instruction in the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices: MCU and DSP. These two instruction classes are seamlessly integrated into a single CPU. The instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and

a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing A + B = C operations to be executed in a single cycle.

A block diagram of the CPU is shown in Figure 3-1, and the programmer's model for the dsPIC33FJ32GP302/ 304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 is shown in Figure 3-2.

3.2 Data Addressing Overview

The data space can be addressed as 32K words or 64 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device-specific.

Overhead-free circular buffers (Modulo Addressing mode) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. Furthermore, the X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program-to-data-space mapping feature lets any instruction access program space as if it were data space.

3.3 DSP Engine Overview

The DSP engine features a high-speed 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value up to 16 bits right or left, in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal realtime performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory while multiplying two W registers and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner through dedicating certain working registers to each address space.

^{© 2007-2012} Microchip Technology Inc.

TABLE 4-10: UART2 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	_	—	_	—	_	_	UTX8			U	ART Transn	nit Register				XXXX
U2RXREG	0236	—	_	—	_	_	-	_	URX8			U	IART Receiv	e Register				0000
U2BRG	0238							Bau	d Rate Ger	erator Presc	aler							0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-11: SPI1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	_	SPISIDL	—	_	—				SPIROV	—	-	_		SPITBF	SPIRBF	0000
SPI1CON1	0242	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	_	—	—	_	_	_	_	—	_	_	_	FRMDLY	_	0000
SPI1BUF	0248							SPI1 Trans	mit and Red	ceive Buffer	Register							0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-12: SPI2 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI2STAT	0260	SPIEN	-	SPISIDL	_	—	—		—		SPIROV	_	-	—	_	SPITBF	SPIRBF	0000
SPI2CON1	0262	_	_	-	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI2CON2	0264	FRMEN	SPIFSD	FRMPOL	_	_	—	_	_	_	_	_	—	_	_	FRMDLY	_	0000
SPI2BUF	0268							SPI2 Trans	mit and Rec	eive Buffer	Register							0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bite	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset
C1CTRL1	0400	—	—	CSIDL	ABAT	—		REQOP<2	:0>	(OPMODE<	2:0>	_	CANCAF	° —	—	WIN	0480
C1CTRL2	0402	_	-	_	_	_	_	_	_	-	_	_		I	DNCNT<4:	0>		0000
C1VEC	0404	_	-	_			FILHIT<4:	0>		_				ICODE<6:	0>			0000
C1FCTRL	0406		DMABS<2	:0>		—	-	-	—	-	—	—			FSA<4:0	>		000
C1FIFO	0408	_	_			FBF	D<5:0>			—	_		FNRB<5:0>				000	
C1INTF	040A	. —	_	ТХВО	TXBP	RXBP	TXWA	R RXWAF	R EWARN	IVRIF	WAK	F ERRIF		FIFOIF	RBOVIE	RBIF	TBIF	000
C1INTE	040C		_	_	_	—	_	_	_	IVRIE	WAK	e errie	- 1	FIFOIE	RBOVIE	RBIE	TBIE	000
C1EC	040E				TERRO	CNT<7:0>							RERRC	NT<7:0>				000
C1CFG1	0410	—	-		_		_	-	_	SJ	W<1:0>			BRF	P<5:0>			000
C1CFG2	0412	_	WAKFIL	. —	_	_		SEG2PH<2	2:0>	SEG2PH	TS SAM	1	SEG1PH<	2:0>		PRSEG<2:0)>	000
C1FEN1	0414	FLTEN1	5 FLTEN14	FLTEN1	3 FLTEN12	2 FLTEN1	1 FLTEN1	0 FLTEN	FLTEN8	FLTEN	7 FLTEN	6 FLTEN	5 FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0	FFF
C1FMSKSEL1	0418	F7M	ISK<1:0>	F6M	ISK<1:0>	E5M	1SK<1.0>	E4M	SK<1.0>	E3M	SK<1.0>	F2M	ISK<1.0>	E1MS	SK<1.0>	FOMS	K<1:0>	000
								1 01010										
Ū	— = unin	nplemente	,	F14N '. Reset va	/ISK<1:0> lues are sho	F13N wn in hexa	//SK<1:0> decimal.	F12M	1SK<1:0>	F11M	ISK<1:0>	F10M	/ISK<1:0>	F9MS	SK<1:0>	F8MS	-	
Legend: -	— = unin	nplemente	d, read as '0	F14N '. Reset va	/ISK<1:0>	F13N wn in hexa	//SK<1:0> decimal.	F12M	1SK<1:0>	F11M	ISK<1:0>	F10M	/ISK<1:0>	F9MS	SK<1:0>	F8MS	-	000 Al
Legend: -	— = unin 8:	nplemente	d, read as 'd REGIS	F14N '. Reset va	/ISK<1:0> lues are sho	F13N wn in hexa	//SK<1:0> decimal.	F12M N = 0 (F Bit 9	15K<1:0> OR dsF Bit 8	F11№ PIC33FJ	1SK<1:0> 128GP8 Bit 6	F10M	AND dsl	F9MS PIC33FJ	64GP8	F8MS	K<1:0>	000 AI
Legend: -	— = unin 8: I Addr 0400- 041E	nplemente ECAN1 Bit 15	d, read as 'o REGIS Bit 14	F14N '. Reset va FER MA Bit 13	/ISK<1:0> lues are sho	F13N wn in hexa N C1CTI Bit 11	ASK<1:0> decimal. RL1.WII Bit 10	F12M N = 0 (F Bit 9	15K<1:0> OR dsF Bit 8	F11M PIC33FJ ² Bit 7	1SK<1:0> 128GP8 Bit 6	F10M	AND dsl	F9MS PIC33FJ	64GP8	F8MS	K<1:0>	OOO Al Rese
Legend: - TABLE 4-1 File Name (C1RXFUL1	— = unin 8: I Addr 0400- 041E 0420 F	Bit 15	d, read as 'o REGIS Bit 14	F14N Reset va FER MA Bit 13 RXFUL13	ISK<1:0> lues are sho P WHEN Bit 12 RXFUL12	F13N wn in hexa N C1CTI Bit 11 RXFUL11	ASK<1:0> decimal. RL1.WII Bit 10	F12M N = 0 (F Bit 9 See	ISK<1:0> OR dsF Bit 8	F11M PIC33FJ Bit 7 when WIN	128GP8 Bit 6	F10M 02/804 / Bit 5	AND dsl Bit 4	F9MS PIC33FJ Bit 3 RXFUL3	64GP8 Bit 2	F8MS 02/804) Bit 1 RXFUL1	K<1:0> Bit 0	0000 0000 All Rese
Legend: - TABLE 4-1 File Name (C1RXFUL1 C1RXFUL2	- = unin 8: Addr 0400- 041E 0420 0422	Bit 15 RXFUL15 RXFUL31	d, read as 'C REGIS Bit 14 RXFUL14 RXFUL130	F14N . Reset va FER MA Bit 13 RXFUL13 RXFUL29	ISK<1:0> Iues are sho Bit 12 RXFUL12 RXFUL12	F13N wn in hexa N C1CTI Bit 11 RXFUL11	ASK<1:0> decimal. Bit 10 RXFUL10 RXFUL26	F12M N = 0 (F Bit 9 See RXFUL9	ISK<1:0> OR dsF Bit 8 definition RXFUL8	F11M PIC33FJ7 Bit 7 when WIN RXFUL7	128GP8 Bit 6 = x RXFUL6	F10M 02/804 / Bit 5 RXFUL5	AND dsl Bit 4 RXFUL4	F9MS PIC33FJ Bit 3 RXFUL3	64GP8 Bit 2 RXFUL2	F8MS 02/804) Bit 1 RXFUL1 RXFUL17	K<1:0> Bit 0 RXFUL0	All Rese
Legend: - File Name / C1RXFUL1 / C1RXFUL2 / C1RXOVF1 /	- = unin 8: I Addr 0400- 041E 0420 F 0422 F 0428 F	RXFUL15 RXFUL31 RXOVF15	d, read as 'C REGIS Bit 14 RXFUL14 RXFUL30 RXOVF14	F14N . Reset va FER MA Bit 13 RXFUL13 RXFUL29 RXOVF13	ISK<1:0> Iues are sho Bit 12 RXFUL12 RXFUL12	F13N wn in hexa N C1CT Bit 11 RXFUL11 RXFUL27 RXOVF11	ASK<1:0> decimal. Bit 10 RXFUL10 RXFUL26 RXOVF10	F12M N = 0 (F Bit 9 See RXFUL9 RXFUL25 RXOVF9	ISK<1:0> OR dsF Bit 8 e definition RXFUL8 RXFUL24	F11M PIC33FJ7 Bit 7 when WIN RXFUL7 RXFUL23 RXOVF7	128GP8 Bit 6 = x RXFUL6 RXFUL22 RXOVF6	EXFUL5 RXFUL21	AND dsl Bit 4 RXFUL4 RXFUL20	F9MS PIC33FJ Bit 3 RXFUL3 RXFUL19 RXOVF3	64GP8 Bit 2 RXFUL2 RXFUL18 RXOVF2	F8MS 02/804) Bit 1 RXFUL1 RXFUL17	Bit 0 RXFUL0 RXFUL16 RXOVF0	000 Al Reso 000
Legend: - File Name / C1RXFUL1 (C1RXFUL2 (C1RXOVF1 (- = unin 8: I Addr 0400- 041E 0420 F 0422 F 0428 F	RXFUL15 RXFUL31 RXOVF15	d, read as 'C REGIS Bit 14 RXFUL14 RXFUL30 RXOVF14	F14N . Reset va FER MA Bit 13 RXFUL13 RXFUL29 RXOVF13	ASK<1:0> lues are sho P WHEN Bit 12 RXFUL12 RXFUL12 RXFUL28 RXOVF12	F13N wn in hexa N C1CT Bit 11 RXFUL11 RXFUL27 RXOVF11	ASK<1:0> decimal. Bit 10 RXFUL10 RXFUL26 RXOVF10	F12M N = 0 (F Bit 9 See RXFUL9 RXFUL25 RXOVF9	ISK<1:0> OR dsF Bit 8 e definition RXFUL8 RXFUL24 RXOVF8 RXOVF24	F11M PIC33FJ7 Bit 7 when WIN RXFUL7 RXFUL23 RXOVF7	128GP8 Bit 6 = x RXFUL6 RXFUL22 RXOVF6	RXFUL5 RXFUL21 RXOVF5	AND dsl Bit 4 RXFUL4 RXFUL20 RXOVF4	F9MS PIC33FJ Bit 3 RXFUL3 RXFUL19 RXOVF3	64GP8 Bit 2 RXFUL2 RXFUL18 RXOVF2	F8MS 02/804) Bit 1 RXFUL1 RXFUL17 RXOVF1 RXOVF17	Bit 0 RXFUL0 RXFUL16 RXOVF0	000 Al Reso 000 000
Legend: - File Name - File Name - C1RXFUL1 - C1RXFUL2 - C1RXOVF1 - C1RXOVF2 - C1RTO1CON -	- = unin 8: I Addr 0400- 041E 0420 F 0422 F 0428 F 042A F	RXFUL15 RXFUL31 RXOVF15 RXOVF31	d, read as 'C REGIS Bit 14 RXFUL14 RXFUL30 RXOVF14 RXOVF30	F14N . Reset va FER MA Bit 13 RXFUL13 RXFUL29 RXOVF13 RXOVF29	ASK<1:0> lues are sho P WHEN Bit 12 RXFUL12 RXFUL28 RXOVF12 RXOVF28	F13M wn in hexa N C1CTI Bit 11 RXFUL11 RXFUL27 RXOVF11 RXOVF27	ASK<1:0> decimal. RL1.WII Bit 10 RXFUL10 RXFUL26 RXOVF10 RXOVF26	F12M F12M	OR dsF Bit 8 definition RXFUL8 RXFUL24 RXOVF8 RXOVF24 RXOVF24	F11M PIC33FJ Bit 7 when WIN RXFUL7 RXFUL23 RXOVF7 RXOVF23	ISK<1:0> I28GP8 Bit 6 = x RXFUL6 RXFUL22 RXOVF6 RXOVF22	RXFUL5 RXFUL21 RXOVF5 RXOVF21	AND dsl Bit 4 RXFUL4 RXFUL20 RXOVF4 RXOVF20	RXFUL3 RXFUL3 RXFUL19 RXOVF3 RXOVF19	64GP8 Bit 2 RXFUL2 RXFUL18 RXOVF2 RXOVF18	F8MS D2/804) Bit 1 RXFUL1 RXFUL17 RXOVF17 TX0PF	Bit 0 RXFUL0 RXFUL16 RXOVF0 RXOVF16	000 Al Reso 000 000 000
Legend: - File Name - File Name - C1RXFUL1 - C1RXFUL2 - C1RXOVF1 - C1RXOVF2 -		RXFUL15 RXFUL15 RXFUL31 RXOVF15 RXOVF31 TXEN1	d, read as 'C REGIS Bit 14 RXFUL14 RXFUL30 RXOVF14 RXOVF30 TXABT1	F14N Reset va ER MA Bit 13 RXFUL13 RXFUL29 RXOVF13 RXOVF29 TXLARB1	ASK<1:0> lues are sho P WHEN Bit 12 RXFUL12 RXFUL28 RXOVF12 RXOVF28 TXERR1	F13N wn in hexa C1CTI Bit 11 RXFUL11 RXFUL27 RXOVF11 RXOVF27 TXREQ1	ASK<1:0> decimal. RL1.WII Bit 10 RXFUL10 RXFUL26 RXOVF10 RXOVF26 RTREN1	F12M N = 0 (F Bit 9 See RXFUL9 RXFUL25 RXOVF25 TX1PF	ISK<1:0> ISK<1:0> Bit 8 e definition RXFUL8 RXFUL24 RXOVF8 RXOVF24 RXOVF24 RXOVF24 RXOVF24 RXOVF24	F11M PIC33FJ ⁷ Bit 7 when WIN RXFUL7 RXFUL23 RXOVF7 RXOVF23 TXEN0	128GP8 Bit 6 = x RXFUL6 RXFUL22 RXOVF6 RXOVF22 TXABT0	F10M 02/804 / Bit 5 RXFUL5 RXFUL21 RXOVF5 RXOVF21 TXLARB0	AND dsl Bit 4 RXFUL4 RXFUL20 RXOVF4 RXOVF20 TXERR0	RXFUL3 RXFUL3 RXFUL19 RXOVF3 RXOVF19 TXREQ0	64GP8 Bit 2 RXFUL2 RXFUL18 RXOVF12 RXOVF18 RTREN0	F8MS D2/804) Bit 1 RXFUL1 RXFUL17 RXOVF17 TX0PF TX2PF	Bit 0 RXFUL0 RXFUL16 RXOVF16 RXOVF16 RI<1:0>	0000 Al Res 0000 0000 0000 0000
Legend: - File Name / File Name / C1RXFUL1 C1RXFUL2 C1RXOVF1 C1RXOVF2 / C1TR01CON C1TR23CON C1TR45CON	= unin 8: I Addr 0400- 041E 0400- 0420 F 0420 F 0422 F 0428 F 0420 F 0422 F 0423 F	Bit 15 Bit 15 RXFUL15 RXFUL31 RXOVF15 RXOVF31 TXEN1 TXEN3	d, read as 'C REGIS Bit 14 RXFUL14 RXFUL30 RXOVF14 RXOVF30 TXABT1 TXABT3	F14M CER MA Bit 13 RXFUL13 RXFUL29 RXOVF13 RXOVF29 TXLARB1 TXLARB3	ASK<1:0> lues are sho P WHEN Bit 12 RXFUL12 RXFUL28 RXOVF12 RXOVF12 RXOVF28 TXERR1 TXERR3	F13M wn in hexa C1CT Bit 11 RXFUL11 RXFUL27 RXOVF11 RXOVF27 TXREQ1 TXREQ3	ASK<1:0> decimal. RL1.WII Bit 10 RXFUL10 RXFUL26 RXOVF10 RXOVF26 RTREN1 RTREN3	F12M F12M N = 0 (F Bit 9 See RXFUL9 RXFUL25 RXOVF25 TX1PF TX3PF	SOR dsF Bit 8 e definition RXFUL8 RXFUL24 RXOVF8 RXOVF24 RXOVF	F11M PIC33FJ ⁷ Bit 7 when WIN RXFUL7 RXFUL23 RXOVF7 RXOVF23 TXEN0 TXEN2	ISK<1:0> I28GP8 Bit 6 = x RXFUL6 RXFUL22 RXOVF6 RXOVF22 TXABT0 TXABT2	RXFUL5 RXFUL21 RXOVF21 TXLARB0 TXLARB2	AND dsl Bit 4 RXFUL4 RXFUL20 RXOVF4 RXOVF20 TXERR0 TXERR2	F9MS PIC33FJ Bit 3 RXFUL3 RXFUL19 RXOVF3 RXOVF19 TXREQ0 TXREQ2	64GP8 Bit 2 RXFUL2 RXFUL18 RXOVF18 RXOVF18 RTREN0 RTREN2	F8MS D2/804) Bit 1 RXFUL1 RXFUL17 RXOVF1 RXOVF17 TX0PF TX2PF TX4PF	Bit 0 RXFUL0 RXFUL16 RXOVF16 RI<1:0> RI<1:0>	0000 Al Res 0000 0000 0000 0000 0000
Legend: - File Name File Name C1RXFUL1 C1RXFUL2 C1RXOVF1 C1RXOVF2 C1TR01CON C1TR23CON C1TR45CON C1TR67CON	= unin 8: I Addr 0400- 041E 0420 0422 I 0422 I 0428 F 0430 0432 0434 I	Bit 15 Bit 15 RXFUL15 RXFUL31 RXOVF15 RXOVF31 TXEN1 TXEN3 TXEN5	d, read as 'C REGIS Bit 14 RXFUL14 RXFUL30 RXOVF14 RXOVF30 TXABT1 TXABT3 TXABT5	F14N Reset va FER MA Bit 13 RXFUL13 RXFUL29 RXOVF13 RXOVF29 TXLARB1 TXLARB3 TXLARB5	ASK<1:0> lues are sho P WHEN Bit 12 RXFUL12 RXFUL28 RXOVF12 RXOVF12 RXOVF28 TXERR1 TXERR3 TXERR5	F13M wn in hexa N C1CT Bit 11 RXFUL11 RXFUL27 RXOVF11 RXOVF27 TXREQ1 TXREQ3 TXREQ5	ASK<1:0> decimal. RL1.WII Bit 10 RXFUL10 RXFUL26 RXOVF10 RXOVF26 RTREN1 RTREN3 RTREN5	F12M F12M N = 0 (F Bit 9 See RXFUL9 RXFUL25 RXOVF9 RXOVF25 TX1PF TX3PF TX5PF	ISK<1:0> ISK<1:0> Bit 8 e definition RXFUL8 RXFUL24 RXOVF24 RXOVF24 RXOVF24 RXOVF24 RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0> RI<1:0 RI<1:0> RI<1:0 RI<1:0> RI<1:0> RI<1:0 RI<1:0> RI<1:0 RI<1:0> RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1:0 RI<1	F11M PIC33FJ Bit 7 when WIN RXFUL7 RXFUL23 RXOVF7 RXOVF23 TXEN0 TXEN2 TXEN4	ISK<1:0> I28GP8 Bit 6 = x RXFUL6 RXFUL22 RXOVF6 RXOVF22 TXABT0 TXABT2 TXABT4	F10M 02/804 I Bit 5 I RXFUL5 I RXFUL21 I RXOVF5 I RXOVF21 I TXLARB0 I TXLARB4 I	AND dsl Bit 4 RXFUL4 RXFUL20 RXOVF4 RXOVF20 TXERR0 TXERR0 TXERR2 TXERR4	F9MS Bit 3 RXFUL3 RXFUL19 RXOVF3 RXOVF19 TXREQ0 TXREQ2 TXREQ4	64GP8 Bit 2 RXFUL2 RXFUL18 RXOVF2 RXOVF18 RTREN0 RTREN2 RTREN4	F8MS D2/804) Bit 1 RXFUL1 RXFUL17 RXOVF1 RXOVF17 TX0PF TX2PF TX4PF	Bit 0 RXFUL0 RXFUL16 RXOVF16 RXOVF16 RI<1:0> RI<1:0> RI<1:0>	000 A Res 000 000 000 000 000 000 000

DS70292G-page 52

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.6.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

It is important to realize that the address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected effective address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the effective address. When an address offset (such as [W7 + W2]) is used, Modulo Address correction is performed but the contents of the register remain unchanged.

4.7 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.7.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled in any of these situations:

- BWM bits (W register selection) in the MODCON register are any value other than '15' (the stack cannot be accessed using Bit-Reversed Addressing)
- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the Bit-Reversed Address modifier, or 'pivot point,' which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note: All bit-reversed EA calculations assume word-sized data (LSb of every EA is always clear). The XB value is scaled accordingly to generate compatible (byte) addresses.

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It does not function for any other addressing mode or for byte-sized data, and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB), and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note: Modulo Addressing and Bit-Reversed Addressing should not be enabled together. If an application attempts to do so, Bit-Reversed Addressing assumes priority when active for the X WAGU and X WAGU, Modulo Addressing is disabled. However, Modulo Addressing continues to function in the X RAGU.

If Bit-Reversed Addressing has already been enabled by setting the BREN bit (XBREV<15>), a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the bit-reversed pointer.

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP302/304 dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Programming" (DS70191) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

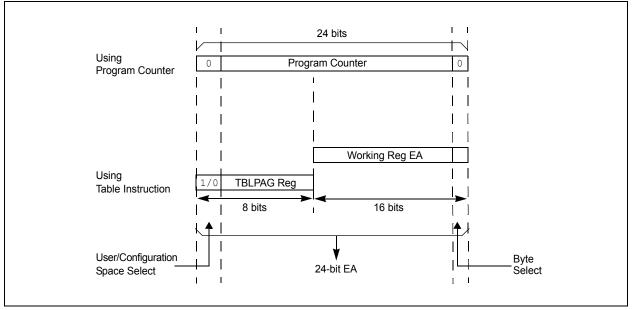
The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows any of the following devices, dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04, to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and three other lines for power (VDD), ground (Vss) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user application can write program memory data either in blocks or 'rows' of 64 instructions (192 bytes) at a time or a single program memory word, and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.


5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits <7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits <15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits <23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

Symbol	Parameter	Value
VPOR	POR threshold	1.8V nominal
TPOR	POR extension time	30 μs maximum
VBOR	BOR threshold	2.5V nominal
TBOR	BOR extension time	100 μs maximum
TPWRT	Programmable power-up time delay	0-128 ms nominal
TFSCM	Fail-Safe Clock Monitor Delay	900 μs maximum

When the device exits the Reset condi-Note: tion (begins normal operation), the device operating parameters (voltage, frequency, temperature, etc.) must be within their operating ranges, otherwise the device may not function correctly. The user application must ensure that the delay between the time power is first applied, and the time SYSRST becomes inactive, is long enough to get all operating parameters within specification.

6.4 **Power-on Reset (POR)**

A Power-on Reset (POR) circuit ensures the device is reset from power-on. The POR circuit is active until VDD crosses the VPOR threshold and the delay TPOR has elapsed. The delay TPOR ensures the internal device bias circuits become stable.

The device supply voltage characteristics must meet the specified starting voltage and rise rate requirements to generate the POR. Refer to Section 30.0 "Electrical Characteristics" for details.

The POR status bit (POR) in the Reset Control register (RCON<0>) is set to indicate the Power-on Reset.

6.4.1 Brown-out Reset (BOR) and Power-up timer (PWRT)

The on-chip regulator has a Brown-out Reset (BOR) circuit that resets the device when the VDD is too low (VDD < VBOR) for proper device operation. The BOR circuit keeps the device in Reset until VDD crosses VBOR threshold and the delay TBOR has elapsed. The delay TBOR ensures the voltage regulator output becomes stable.

The BOR status bit (BOR) in the Reset Control register (RCON<1>) is set to indicate the Brown-out Reset.

The device will not run at full speed after a BOR as the VDD should rise to acceptable levels for full-speed operation. The PWRT provides power-up time delay (TPWRT) to ensure that the system power supplies have stabilized at the appropriate levels for full-speed operation before the SYSRST is released.

The power-up timer delay (TPWRT) is programmed by the Power-on Reset Timer Value Select bits (FPWRT<2:0>) in the POR Configuration register (FPOR<2:0>), which provides eight settings (from 0 ms to 128 ms). Refer to **Section 27.0 "Special Features"** for further details.

Figure 6-3 shows the typical brown-out scenarios. The reset delay (TBOR + TPWRT) is initiated each time VDD rises above the VBOR trip point

U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
_	DMA4IF	PMPIF			_	—	_
oit 15							bit
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	DMA3IF	C1IF ⁽¹⁾	C1RXIF ⁽¹⁾	SPI2IF	SPI2EIF
bit 7							bit
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15	Unimplemen						
bit 14				Complete Interr	upt Flag Status I	bit	
	1 = Interrupt r						
	0 = Interrupt r	•					
bit 13			t Interrupt Flag	Status bit			
	1 = Interrupt r 0 = Interrupt r						
bit 12-5	Unimplemen	•					
bit 4	-			`omplete Interr	upt Flag Status I	nit	
	1 = Interrupt r				upt i lug olatus i		
	0 = Interrupt r						
bit 3		-	pt Flag Status	bit ⁽¹⁾			
	1 = Interrupt r						
	0 = Interrupt r	equest has no	ot occurred				
bit 2	C1RXIF: ECA	N1 Receive D	ata Ready Inte	errupt Flag Sta	tus bit ⁽¹⁾		
	1 = Interrupt r						
	0 = Interrupt r	•					
bit 1			ot Flag Status b	oit			
	1 = Interrupt r	•					
	0 = Interrupt r	•					
bit 0			pt Flag Status	bit			
	1 = Interrupt r	•					
	0 = Interrupt r	equest has no	loccurrea				

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

Note 1: Interrupts are disabled on devices without ECAN[™] modules.

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
	_	_		_		C1TXIP<2:0>(1)	
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		DMA7IP<2:0>		—		DMA6IP<2:0>	
bit 7							bit
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
L:4 7 44		nted: Deed as (~'				
bit 15-11	•	nted: Read as '			(4)		
bit 10-8				autor of laterations			
011 10-0		>: ECAN1 Trans			Priority bits		
DIL 10-0		upt is priority 7 (l			Priority bits		
bit 10-0					Priority dits."		
Dit 10-0					Priority bits		
Dit 10-0	111 = Intern • •				Priority bits."		
DIL 10-0	111 = Intern • • • • •	upt is priority 7 (l	highest priorit				
bit 7	111 = Intern • • • • • • • • • • • • • • • • • • •	upt is priority 7 (l upt is priority 1	highest priorif abled				
	111 = Intern • • • • • • • • • • • • • • • • • • •	upt is priority 7 (l upt is priority 1 upt source is dis	highest priorif abled	ty interrupt)		rity bits	
bit 7	111 = Intern • • 001 = Intern 000 = Intern Unimpleme DMA7IP<2:0	upt is priority 7 (I upt is priority 1 upt source is dis inted: Read as '(highest priorit abled o' el 7 Data Tra	ty interrupt) nsfer Complete		rity bits	
bit 7	111 = Intern • • 001 = Intern 000 = Intern Unimpleme DMA7IP<2:0	upt is priority 7 (l upt is priority 1 upt source is dis ented: Read as '(0>: DMA Channe	highest priorit abled o' el 7 Data Tra	ty interrupt) nsfer Complete		rity bits	
bit 7	111 = Intern • • 001 = Intern 000 = Intern Unimpleme DMA7IP<2:0	upt is priority 7 (l upt is priority 1 upt source is dis ented: Read as '(0>: DMA Channe	highest priorit abled o' el 7 Data Tra	ty interrupt) nsfer Complete		rity bits	
bit 7	111 = Intern 001 = Intern 000 = Intern Unimpleme DMA7IP<2:0 111 = Intern	upt is priority 7 (l upt is priority 1 upt source is dis ented: Read as 'd 0>: DMA Chann upt is priority 7 (l	highest priorit abled o' el 7 Data Tra	ty interrupt) nsfer Complete		rity bits	
bit 7	111 = Intern 001 = Intern 000 = Intern Unimpleme DMA7IP<2:0 111 = Intern 001 = Intern	upt is priority 7 (l upt is priority 1 upt source is dis inted: Read as 'ú 0>: DMA Chann upt is priority 7 (l upt is priority 1	abled _D ' el 7 Data Tra highest priorit	ty interrupt) nsfer Complete		rity bits	
bit 7 bit 6-4	111 = Intern 001 = Intern 000 = Intern Unimpleme DMA7IP<2:(111 = Intern 001 = Intern 000 = Intern	upt is priority 7 (l upt is priority 1 upt source is dis inted: Read as '(0>: DMA Chann upt is priority 7 (l upt is priority 1 upt source is dis	abled o [,] el 7 Data Tra highest priorit	ty interrupt) nsfer Complete		rity bits	
bit 7 bit 6-4 bit 3	111 = Intern 001 = Intern 000 = Intern Unimpleme DMA7IP<2:(111 = Intern 001 = Intern 000 = Intern Unimpleme	upt is priority 7 (l upt is priority 1 upt source is dis ented: Read as 'd 0>: DMA Channe upt is priority 7 (l upt is priority 1 upt source is dis ented: Read as 'd	abled ^{D'} el 7 Data Tra highest priorit abled	ty interrupt) nsfer Complete ty interrupt)	e Interrupt Prio		
bit 7 bit 6-4	111 = Intern 001 = Intern 000 = Intern Unimpleme DMA7IP<2:(111 = Intern 001 = Intern Unimpleme DMA6IP<2:(upt is priority 7 (l upt is priority 1 upt source is dis inted: Read as '(0>: DMA Chann upt is priority 7 (l upt source is dis inted: Read as '(0>: DMA Chann	abled ^{D'} el 7 Data Tra highest priorit abled D' el 6 Data Tra	ty interrupt) nsfer Complete ty interrupt)	e Interrupt Prio		
bit 7 bit 6-4 bit 3	111 = Intern 001 = Intern 000 = Intern Unimpleme DMA7IP<2:(111 = Intern 001 = Intern Unimpleme DMA6IP<2:(upt is priority 7 (l upt is priority 1 upt source is dis ented: Read as 'd 0>: DMA Channe upt is priority 7 (l upt is priority 1 upt source is dis ented: Read as 'd	abled ^{D'} el 7 Data Tra highest priorit abled D' el 6 Data Tra	ty interrupt) nsfer Complete ty interrupt)	e Interrupt Prio		
bit 7 bit 6-4 bit 3	111 = Intern 001 = Intern 000 = Intern Unimpleme DMA7IP<2:(111 = Intern 001 = Intern Unimpleme DMA6IP<2:(upt is priority 7 (l upt is priority 1 upt source is dis inted: Read as '(0>: DMA Chann upt is priority 7 (l upt source is dis inted: Read as '(0>: DMA Chann	abled ^{D'} el 7 Data Tra highest priorit abled D' el 6 Data Tra	ty interrupt) nsfer Complete ty interrupt)	e Interrupt Prio		
bit 7 bit 6-4 bit 3	111 = Intern 001 = Intern 000 = Intern Unimpleme DMA7IP<2:(111 = Intern 001 = Intern 000 = Intern Unimpleme DMA6IP<2:(111 = Intern	upt is priority 7 (l upt is priority 1 upt source is dis inted: Read as '(0>: DMA Chann upt is priority 7 (l upt source is dis inted: Read as '(0>: DMA Chann	abled ^{D'} el 7 Data Tra highest priorit abled D' el 6 Data Tra	ty interrupt) nsfer Complete ty interrupt)	e Interrupt Prio		

Note 1: Interrupts are disabled on devices without ECAN[™] modules.

REGISTER 7	7-31: INTTR	EG: INTERR	UPT CONTI	ROL AND STA	ATUS REGI	STER	
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
_	—	—	_		ILF	<3:0>	
bit 15							bit 8
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
_				VECNUM<6:0	>		
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, rea	ad as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-12	Unimplomon	ted: Read as '	`				
	-			-1			
bit 11-8		w CPU Interru	-	el bits			
	1111 = CPU	Interrupt Priorit	y Level is 15				
	•						
	•						
		Interrupt Priorit Interrupt Priorit					
bit 7		•	•				
	Unimplemen	ted: Read as '	0.				

0111111 = Interrupt Vector pending is number 135

0000001 = Interrupt Vector pending is number 9 0000000 = Interrupt Vector pending is number 8

•

14.2 Input Capture Registers

REGISTER 14-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER (x = 1, 2, 7 OR 8)

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
—	—	ICSIDL	—	—			—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R-0, HC	R-0, HC	R/W-0	R/W-0	R/W-0
ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	ICSIDL: Input Capture Module Stop in Idle Control bit
	1 = Input capture module halts in CPU Idle mode
	0 = Input capture module continues to operate in CPU Idle mode
bit 12-8	Unimplemented: Read as '0'
bit 7	ICTMR: Input Capture Timer Select bits
	 1 = TMR2 contents are captured on capture event 0 = TMR3 contents are captured on capture event
bit 6-5	ICI<1:0>: Select Number of Captures per Interrupt bits
	11 = Interrupt on every fourth capture event
	 10 = Interrupt on every third capture event 01 = Interrupt on every second capture event
	00 = Interrupt on every capture event
bit 4	ICOV: Input Capture Overflow Status Flag bit (read-only)
	1 = Input capture overflow occurred
	0 = No input capture overflow occurred
bit 3	ICBNE: Input Capture Buffer Empty Status bit (read-only)
	 1 = Input capture buffer is not empty, at least one more capture value can be read 0 = Input capture buffer is empty
bit 2-0	ICM<2:0>: Input Capture Mode Select bits
	 111 = Input capture functions as interrupt pin only when device is in Sleep or Idle mode (Rising edge detect only, all other control bits are not applicable.) 110 = Unused (module disabled) 101 = Capture mode, every 16th rising edge 100 = Capture mode, every 4th rising edge 011 = Capture mode, every rising edge 010 = Capture mode, every falling edge 010 = Capture mode, every falling edge 001 = Capture mode, every edge (rising and falling)
	(ICI<1:0> bits do not control interrupt generation for this mode.) 000 = Input capture module turned off

16.1 SPI Helpful Tips

- 1. In Frame mode, if there is a possibility that the master may not be initialized before the slave:
 - a) If FRMPOL (SPIxCON2<13>) = 1, use a pull-down resistor on SSx.
 - b) If FRMPOL = 0, use a pull-up resistor on $\frac{1}{SSx}$.

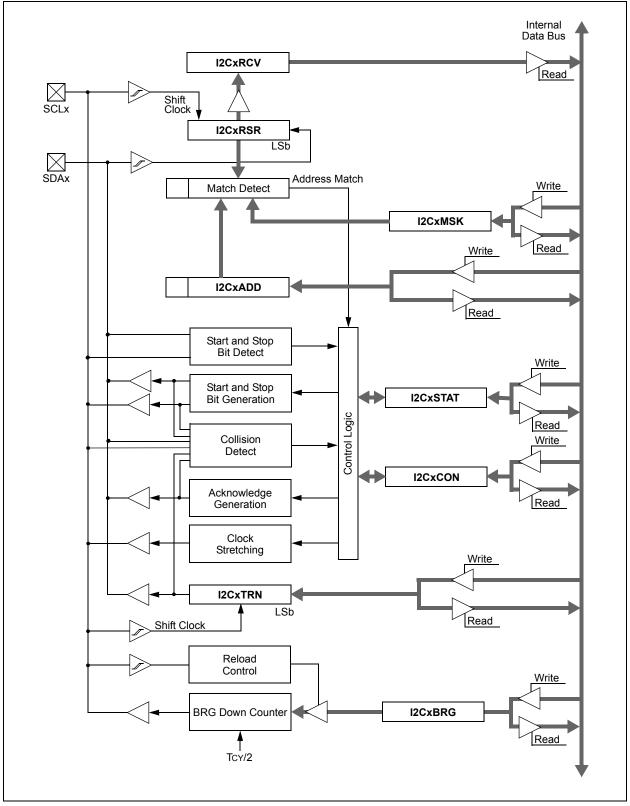
Note:	This	insures	that	the	first	fra	ame
	transr	nission a	after i	nitializa	ation	is	not
	shifted or corrupted.						

- 2. In non-framed 3-wire mode, (i.e., not using SSx from a master):
 - a) If CKP (SPIxCON1<6>) = 1, always place a pull-up resistor on SSx.
 - b) If CKP = <u>0</u>, always place a pull-down resistor on SSx.
 - **Note:** This will insure that during power-up and initialization the master/slave will not lose sync due to an errant SCK transition that would cause the slave to accumulate data shift errors for both transmit and receive appearing as corrupted data.
- FRMEN (SPIxCON2<15>) = 1 and SSEN (SPIxCON1<7>) = 1 are exclusive and invalid. In Frame mode, SCKx is continuous and the Frame sync pulse is active on the SSx pin, which indicates the start of a data frame.

Note: Not all third-party devices support Frame mode timing. Refer to the SPI electrical characteristics for details.

- In Master mode only, set the SMP bit (SPIxCON1<9>) to a '1' for the fastest SPI data rate possible. The SMP bit can only be set at the same time or after the MSTEN bit (SPIxCON1<5>) is set.
- 5. To avoid invalid slave read data to the master, the user's master software must guarantee enough time for slave software to fill its write buffer before the user application initiates a master write/read cycle. It is always advisable to preload the SPIxBUF transmit register in advance of the next master transaction cycle. SPIxBUF is transferred to the SPI shift register and is empty once the data transmission begins.

16.2 SPI Resources


Many useful resources related to SPI are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en532311

16.2.1 KEY RESOURCES

- Section 18. "Serial Peripheral Interface (SPI)" (DS70206)
- Code Samples
- · Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

FIGURE 17-1: I^2C^{TM} BLOCK DIAGRAM (x = 1)

23.2 Comparator Control Register

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CMIDL	_	C2EVT	C1EVT	C2EN	C1EN	C2OUTEN ⁽¹⁾	C1OUTEN ⁽²⁾		
bit 15							bit 8		
R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
C2OUT	C10UT	C2INV	C1INV	C2NEG	C2POS	C1NEG	C1POS		
bit 7	01001	021111	Onite	OZINEO	021 00	Onles	bit (
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, rea	ad as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown		
bit 15	1 = When de	in Idle Mode b evice enters Idle e normal modul	e mode, modu		nerate interrup	ots. Module is stil	ll enabled.		
bit 14	Unimplemer	nted: Read as '	0'						
bit 13	C2EVT: Com	parator 2 Even	t bit						
		ator output chai ator output did i		ates					
bit 12		parator 1 Even							
	 1 = Comparator output changed states 0 = Comparator output did not change states 								
bit 11	1 = Compara	parator 2 Enable ator is enabled ator is disabled	e bit						
bit 10	C1EN: Comp	parator 1 Enable	e bit						
		ator is enabled ator is disabled							
bit 9	C2OUTEN: (Comparator 2 C	utput Enable	bit ⁽¹⁾					
		ator output is di ator output is no							
bit 8		Comparator 1 C							
		ator output is dr ator output is no							
bit 7	C2OUT: Con	nparator 2 Outp	ut bit						
	When C2INV = 0:								
	1 = C2 VIN+ > C2 VIN-0 = C2 VIN+ < C2 VIN-								
	0 02 111								
	When C2INV	′ = 1:							
	When C2INV 0 = C2 VIN+ 1 = C2 VIN+	> C2 VIN-							

REGISTER 23-1: CMCON: COMPARATOR CONTROL REGISTER

- **Note 1:** If C2OUTEN = 1, the C2OUT peripheral output must be configured to an available RPx pin. See **Section 11.6 "Peripheral Pin Select"** for more information.
 - 2: If C1OUTEN = 1, the C1OUT peripheral output must be configured to an available RPx pin. See Section 11.6 "Peripheral Pin Select" for more information.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—		—				—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
	_	—	_		—	RTSECSEL ⁽¹⁾	PMPTTL
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			oit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at POR (1' = Bit is set (0' = Bit is)			'0' = Bit is cle	ared	x = Bit is unkno	wn	

utput Select bit ⁽¹⁾
for the RTCC pin the RTCC pin
the RICC pill
fer Select bit
ers
er input buffers
f

Note 1: To enable the actual RTCC output, the RTCOE bit (RCFGCAL<10>) needs to be set.

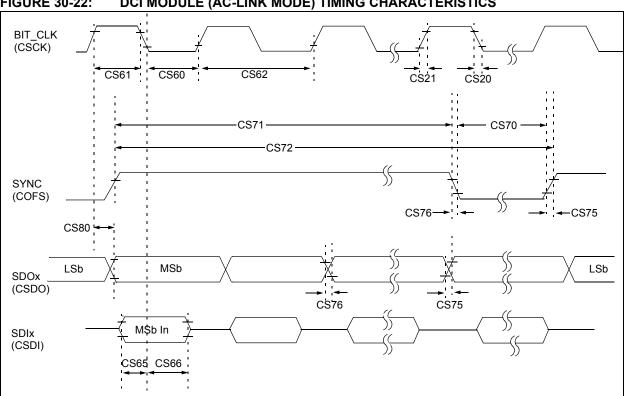

Bit Field	Register	RTSP Effect	Description
RSS<1:0> ⁽¹⁾	FSS ⁽¹⁾	Immediate	Secure Segment RAM Code Protection 11 = No Secure RAM defined 10 = Secure RAM is 256 Bytes less BS RAM 01 = Secure RAM is 2048 Bytes less BS RAM 00 = Secure RAM is 4096 Bytes less BS RAM
GSS<1:0>	FGS	Immediate	General Segment Code-Protect bit 11 = User program memory is not code-protected 10 = Standard security 0x = High security
GWRP	FGS	Immediate	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected
IESO	FOSCSEL	Immediate	 Two-speed Oscillator Start-up Enable bit 1 = Start-up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start-up device with user-selected oscillator source
FNOSC<2:0>	FOSCSEL	If clock switch is enabled, RTSP effect is on any device Reset; otherwise, Immediate	Initial Oscillator Source Selection bits 111 = Internal Fast RC (FRC) oscillator with postscaler 110 = Internal Fast RC (FRC) oscillator with divide-by-16 101 = LPRC oscillator 100 = Secondary (LP) oscillator 011 = Primary (XT, HS, EC) oscillator with PLL 010 = Primary (XT, HS, EC) oscillator 001 = Internal Fast RC (FRC) oscillator with PLL 000 = FRC oscillator
FCKSM<1:0>	FOSC	Immediate	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY	FOSC	Immediate	Peripheral pin select configuration 1 = Allow only one reconfiguration 0 = Allow multiple reconfigurations
OSCIOFNC	FOSC	Immediate	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is clock output 0 = OSC2 is general purpose digital I/O pin
POSCMD<1:0>	FOSC	Immediate	Primary Oscillator Mode Select bits 11 = Primary oscillator disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode
FWDTEN	FWDT	Immediate	 Watchdog Timer Enable bit 1 = Watchdog Timer always enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register has no effect.) 0 = Watchdog Timer enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register)
WINDIS	FWDT	Immediate	Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode

TABLE 27-2:	dsPIC CONFIGURATION BITS DESCRIPTION (CONTINUED

Note 1: This Configuration register is not available on dsPIC33FJ32GP302/304 devices.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
30	DIVF	DIVF	Wm,Wn	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV
31	DO	DO	#lit14,Expr	Do code to PC + Expr, lit14 + 1 times	2	2	None
		DO	Wn,Expr	Do code to PC + Expr, (Wn) + 1 times	2	2	None
32	ED	ED Wm*Wm, Acc, Wx, Wy, Wxd E		Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB
33	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB
34	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
35	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
36	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
37	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
38	GOTO	GOTO	Expr	Go to address	2	2	None
		GOTO	Wn	Go to indirect	1	2	None
39	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
40	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
41	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	None
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
45	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd , AWB	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
		MAC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	N,Z
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
47	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB	Prefetch and store accumulator	1	1	None

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

FIGURE 30-22: DCI MODULE (AC-LINK MODE) TIMING CHARACTERISTICS

			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended								
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions				
ADC Accuracy (10-bit Mode) – Measurements with external VREF+/VREF-											
AD20b	Nr	Resolution ⁽¹⁾	10 data bits		bits						
AD21b	INL	Integral Nonlinearity	-1.5	_	+1.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V				
AD22b	DNL	Differential Nonlinearity	> -1	_	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V				
AD23b	Gerr	Gain Error	—	3	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V				
AD24b	EOFF	Offset Error	—	2	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V				
AD25b	—	Monotonicity	—	—	_	—	Guaranteed				
ADC Accuracy (10-bit Mode) – Measurements with internal VREF+/VREF-											
AD20b	Nr	Resolution ⁽¹⁾	10 data bits		bits	—					
AD21b	INL	Integral Nonlinearity	-1	—	+1	LSb	VINL = AVSS = 0V, AVDD = 3.6V				
AD22b	DNL	Differential Nonlinearity	> -1	—	< 1	LSb	VINL = AVSS = 0V, AVDD = 3.6V				
AD23b	Gerr	Gain Error	3	7	15	LSb	VINL = AVSS = 0V, AVDD = 3.6V				
AD24b	EOFF	Offset Error	1.5	3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V				
AD25b	_	Monotonicity	—	—		—	Guaranteed				
		Dynamic	Performa	nce (10-	bit Mode	e)					
AD30b	THD	Total Harmonic Distortion	—	—	-64	dB					
AD31b	SINAD	Signal to Noise and Distortion	57	58.5	_	dB	_				
AD32b	SFDR	Spurious Free Dynamic Range	72	_	_	dB	_				
AD33b	Fnyq	Input Signal Bandwidth	_	_	550	kHz					
AD34b	ENOB	Effective Number of Bits	9.16	9.4	_	bits					

TABLE 30-43: ADC MODULE SPECIFICATIONS (10-BIT MODE)

Note 1: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

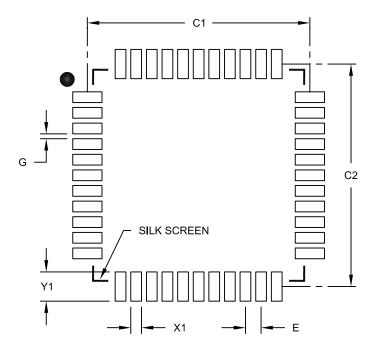
31.0 HIGH TEMPERATURE ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 electrical characteristics for devices operating in an ambient temperature range of -40°C to +150°C.

The specifications between -40° C to $+150^{\circ}$ C are identical to those shown in **Section 30.0 "Electrical Characteristics"** for operation between -40° C to $+125^{\circ}$ C, with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, parameter DC10 in **Section 30.0 "Electrical Characteristics**" is the Industrial and Extended temperature equivalent of HDC10.

Absolute maximum ratings for the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 high temperature devices are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.


Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias ⁽⁴⁾	40°C to +150°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽⁵⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD < 3.0V^{(5)}$	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $V_{DD} \ge 3.0V^{(5)}$	0.3V to 5.6V
Maximum current out of Vss pin	60 mA
Maximum current into Vod pin ⁽²⁾	60 mA
Maximum junction temperature	+155°C
Maximum current sourced/sunk by any 2x I/O pin ⁽³⁾	2 mA
Maximum current sourced/sunk by any 4x I/O pin ⁽³⁾	4 mA
Maximum current sourced/sunk by any 8x I/O pin ⁽³⁾	8 mA
Maximum current sunk by all ports combined	70 mA
Maximum current sourced by all ports combined ⁽²⁾	70 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 31-2).
 - **3:** Unlike devices at 125°C and below, the specifications in this section also apply to the CLKOUT, VREF+, VREF-, SCLx, SDAx, PGCx, and PGDx pins.
 - 4: AEC-Q100 reliability testing for devices intended to operate at 150°C is 1,000 hours. Any design in which the total operating time from 125°C to 150°C will be greater than 1,000 hours is not warranted without prior written approval from Microchip Technology Inc.
 - 5: Refer to the "Pin Diagrams" section for 5V tolerant pins.

44-Lead Plastic Thin Quad Flatpack (PT) 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E		0.80 BSC		
Contact Pad Spacing	C1		11.40		
Contact Pad Spacing	C2		11.40		
Contact Pad Width (X44)	X1			0.55	
Contact Pad Length (X44)	Y1			1.50	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B