

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detalls	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DCI, DMA, I ² S, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gp202-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.5 CPU Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en532311

3.5.1 KEY RESOURCES

- Section 2. "CPU" (DS70204)
- Code Samples
- Application Notes
- · Software Libraries
- · Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
_	_		US	EDT ⁽¹⁾		DL<2:0>	
pit 15		·					bit 8
R/W-0	D/M/ O		R/W-0			R/W-0	
SATA	R/W-0 SATB	R/W-1 SATDW	ACCSAT	R/C-0 IPL3 ⁽²⁾	R/W-0 PSV	R/W-0	R/W-0 IF
bit 7	SAID	SAIDW	ACCSAT	IFL3' /	F3V	RND	bit
Legend:		C = Clear on	y bit				
R = Readable	e bit	W = Writable	bit	-n = Value at	-	'1' = Bit is set	
0' = Bit is cle	ared	ʻx = Bit is unk	nown	U = Unimplen	nented bit, rea	ad as '0'	
bit 15-13	Unimplemer	nted: Read as	0'				
bit 12	•	Itiply Unsigned		ol bit			
		ine multiplies a	-				
	•	ine multiplies a	•				
bit 11	EDT: Early D	O Loop Termina	ation Control b	it ⁽¹⁾			
	1 = Terminate 0 = No effect	e executing DO	loop at end of	current loop ite	eration		
bit 10-8	DL<2:0>: DO	Loop Nesting	Level Status bi	its			
	111 = 7 do k	oops active					
	•						
	• 001 = 1 DO lo	oon active					
	000 = 0 DO lo	•					
bit 7	SATA: ACCA	Saturation En	able bit				
		ator A saturatio ator A saturatio					
bit 6	SATB: ACCE	3 Saturation En	able bit				
		ator B saturatio ator B saturatio					
bit 5	SATDW: Dat	a Space Write	from DSP Eng	ine Saturation	Enable bit		
		ce write satura ce write satura					
bit 4	ACCSAT: Ac	cumulator Satu	ration Mode S	elect bit			
		iration (super s iration (normal					
bit 3		nterrupt Priority					
		rrupt priority le rrupt priority le	0				
bit 2	PSV: Program	m Space Visibil	ity in Data Spa	ice Enable bit			
		space visible in					
L:1 1	•	space not visit	•	ce			
bit 1		ing Mode Sele		d			
	0 = Unbiased	conventional) ro d (convergent)	rounding enab	led			
bit 0	-	Fractional Mu	-				
	1 = Integer m	node enabled for	or DSP multiply d for DSP mult				

Note 1: This bit is always read as '0'.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

TABLE 4-2:CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ128GP202/802, dsPIC33FJ64GP202/802 AND dsPIC33FJ32GP302

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	_	_	_	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062		CN30IE	CN29IE	-	CN27IE		—	CN24IE	CN23IE	CN22IE	CN21IE	—	_	_	-	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE		_	-	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_	CN30PUE	CN29PUE		CN27PUE	_	_	CN24PUE	CN23PUE	CN22PUE	CN21PUE	—			_	CN16PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-3: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ128GP204/804, dsPIC33FJ64GP204/804 AND dsPIC33FJ32GP304

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	CN30IE	CN29IE	CN28IE	CN27IE	CN26IE	CN25IE	CN24IE	CN23IE	CN22IE	CN21IE	CN20IE	CN19IE	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_	CN30PUE	CN29PUE	CN28PUE	CN27PUE	CN26PUE	CN25PUE	CN24PUE	CN23PUE	CN22PUE	CN21PUE	CN20PUE	CN19PUE	CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

REGISTER 5-2	: NVM	KEY: NONVOLA	TILE ME	MORY KEY RI	EGISTER		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—	—	—	—
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVM	(EY<7:0>			
bit 7							bit 0
Legend:							
R = Readable bi	t	W = Writable bi	it	U = Unimplem	nented bit, rea	ad as '0'	
-n = Value at PC	R	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 NVMKEY<7:0>: Key Register (write-only) bits

8.0 DIRECT MEMORY ACCESS (DMA)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 38. "Direct Memory Access (DMA) (Part III)" (DS70215) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Direct Memory Access (DMA) is a very efficient mechanism of copying data between peripheral SFRs (e.g., UART Receive register, Input Capture 1 buffer), and buffers or variables stored in RAM, with minimal CPU intervention. The DMA controller can automatically copy entire blocks of data without requiring the user software to read or write the peripheral Special Function Registers (SFRs) every time a peripheral interrupt occurs. The DMA controller uses a dedicated bus for data transfers and therefore, does not steal cycles from the code execution flow of the CPU. To exploit the DMA capability, the corresponding user buffers or variables must be located in DMA RAM.

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 peripherals that can utilize DMA are listed in Table 8-1.

Peripheral to DMA Association	DMAxREQ Register IRQSEL<6:0> Bits	DMAxPAD Register Values to Read from Peripheral	DMAxPAD Register Values to Write to Peripheral
INT0 – External Interrupt 0	0000000	—	—
IC1 – Input Capture 1	000001	0x0140 (IC1BUF)	—
OC1 – Output Compare 1 Data	0000010	—	0x0182 (OC1R)
OC1 – Output Compare 1 Secondary Data	0000010	—	0x0180 (OC1RS)
IC2 – Input Capture 2	0000101	0x0144 (IC2BUF)	—
OC2 – Output Compare 2 Data	0000110	—	0x0188 (OC2R)
OC2 – Output Compare 2 Secondary Data	0000110	—	0x0186 (OC2RS)
TMR2 – Timer2	0000111	—	—
TMR3 – Timer3	0001000	—	—
SPI1 – Transfer Done	0001010	0x0248 (SPI1BUF)	0x0248 (SPI1BUF)
UART1RX – UART1 Receiver	0001011	0x0226 (U1RXREG)	—
UART1TX – UART1 Transmitter	0001100	—	0x0224 (U1TXREG)
ADC1 – ADC1 convert done	0001101	0x0300 (ADC1BUF0)	—
UART2RX – UART2 Receiver	0011110	0x0236 (U2RXREG)	—
UART2TX – UART2 Transmitter	0011111	—	0x0234 (U2TXREG)
SPI2 – Transfer Done	0100001	0x0268 (SPI2BUF)	0x0268 (SPI2BUF)
ECAN1 – RX Data Ready	0100010	0x0440 (C1RXD)	—
PMP – Master Data Transfer	0101101	0x0608 (PMDIN1)	0x0608 (PMDIN1)
ECAN1 – TX Data Request	1000110	—	0x0442 (C1TXD)
DCI – Codec Transfer Done	0111100	0x0290 (RXBUF0)	0x0298 (TXBUF0)
DAC1 – Right Data Output	1001110	—	0x03F6 (DAC1RDAT)
DAC2 – Left Data Output	1001111	—	0x03F8 (DAC1LDAT)

TABLE 8-1: DMA CHANNEL TO PERIPHERAL ASSOCIATIONS

REGISTER	9-2: CLKD	DIV: CLOCK DI	VISOR RE	GISTER ⁽²⁾			
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ROI		DOZE<2:0>		DOZEN ⁽¹⁾		FRCDIV<2:0>	
bit 15							bit 8
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PLLPC	ST<1:0>	—			PLLPRE<4:0	>	
bit 7							bit C
Legend:		v = Value set f	rom Configu	ration bits on P	OR		
R = Readable	a bit	W = Writable b	-		nented bit, rea	d as '0'	
-n = Value at		'1' = Bit is set	Л	'0' = Bit is cle			
	PUR	I = DILIS SEL			areu	x = Bit is unki	IOWII
bit 15	ROI: Recove	er on Interrupt bit					
		ts clears the DO		the processor c	lock/periphera	l clock ratio is s	et to 1:1
		ts have no effect					
bit 14-12	DOZE<2:0>	Processor Cloc	k Reduction	Select bits			
	111 = Fcy/1	28					
	110 = Fcy/6						
	101 = Fcy/3						
	100 = Fcy/1 011 = Fcy/8						
	010 = Fcy/4						
	001 = Fcy/2						
	000 = Fcy/1						
bit 11	DOZEN: Doz	ze Mode Enable	bit ⁽¹⁾				
		2:0> field specifie			ipheral clocks	and the process	or clocks
bit 10-8		>: Internal Fast			S		
	111 = FRC (divide by 256					
	110 = FRC d						
	101 = FRC d						
	100 = FRC (
	011 = FRC o 010 = FRC o						
	010 = FRC (001 = FRC (-					
		divide by 1 (defai	ult)				
bit 7-6		I:0>: PLL VCO C	-	er Select bits (al	so denoted as	'N2', PLL posts	caler)
	11 = Output/					, .	,
	10 = Reserv						
	01 = Output/						
	00 = Output/	2					
bit 5	Unimpleme	nted: Read as '0	,				
bit 4-0	PLLPRE<4:	0>: PLL Phase D	etector Inpu	ıt Divider bits (a	lso denoted as	s 'N1', PLL pres	caler)
	11111 = Inp	ut/33					
	•						
	•						
	•						
	00000 = Inp	ut/2 (default)					
	00001 = Inp						

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER⁽²⁾

Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.

2: This register is reset only on a Power-on Reset (POR).

11.9 Peripheral Pin Select Registers

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 family of devices implement 33 registers for remappable peripheral configuration:

- 16 Input Remappable Peripheral Registers:
 - RPINR0-RPINR1, RPINR3-RPINR4, RPINR7, RPINR10-RPINR11 and PRINR18-RPINR26
- 13 Output Remappable Peripheral Registers:
 - RPOR0-RPOR12

Note:	Inpu	t and Output	t Re	gister	valu	es can	only
	be	changed	if	the	IOI	_OCK	bit
	(OS	CCON<6>)	is	set	to	'0'.	See
	Sec	tion 11.6.3.1		"Cont	rol	Reg	ister
	Loc	k" for a spec	cific	comm	and	seque	nce.

REGISTER 11-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	_	—			INT1R<4:0>		
bit 15			•				bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0	Inimplemented: Read as '0'
-------------------------------------	----------------------------

```
      bit 12-8
      INT1R<4:0>: Assign External Interrupt 1 (INTR1) to the corresponding RPn pin

      1111 = Input tied to Vss

      11001 = Input tied to RP25

      •

      •

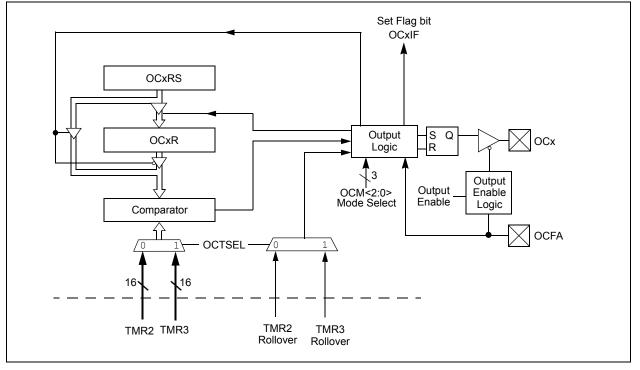
      00001 = Input tied to RP1

      00000 = Input tied to RP0

      bit 7-0

      Unimplemented: Read as '0'
```

15.0 OUTPUT COMPARE


- This data sheet summarizes the features Note 1: of the dsPIC33FJ32GP302/304. dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. "Output Compare" (DS70209) of the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Output Compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the compare register value. The Output Compare module generates either a single output pulse or a sequence of output pulses, by changing the state of the output pin on the compare match events. The Output Compare module can also generate interrupts on compare match events.

The Output Compare module has multiple operating modes:

- Active-Low One-Shot mode
- Active-High One-Shot mode
- Toggle mode
- · Delayed One-Shot mode
- Continuous Pulse mode
- PWM mode without Fault protection
- PWM mode with Fault protection

FIGURE 15-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

R/W-0	U-0	R/W-0	R/W-1 HC	R/W-0	R/W-0	R/W-0	R/W-0			
I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN			
bit 15						·	bit 8			
R/W-0	R/W-0	R/W-0	R/W-0 HC	R/W-0 HC	R/W-0 HC	R/W-0 HC	R/W-0 HC			
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN			
bit 7	SITCEN	ACRET	ACKEN	ROEN	I LIN	ROLIN	bit (
				1						
Legend:		•	mented bit, read							
R = Readable		W = Writable		HS = Set in h		HC = Cleared				
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	IOWN			
bit 15	12CEN: 12Cx	Enable bit								
			le and configure ile. All l ² C™ pir			as serial port pir tions	าร			
bit 14	Unimplemer	ted: Read as	ʻ0 '							
bit 13	I2CSIDL: Sto	p in Idle Mode	bit							
			eration when de tion in Idle mod		n Idle mode					
bit 12	SCLREL: SCLx Release Control bit (when operating as I^2C slave)									
	1 = Release SCLx clock 0 = Hold SCLx clock low (clock stretch)									
	If STREN = 1: Bit is R/W (i.e., software can write '0' to initiate stretch and write '1' to release clock). Hardware clear									
	at beginning of slave transmission. Hardware clear at end of slave reception.									
	If STREN = 0									
	Bit is R/S (i.e transmission.		only write '1' to	o release cloc	k). Hardware cl	ear at beginning	g of slave			
bit 11	IPMIEN: Inte	lligent Peripher	ral Managemer	nt Interface (IP	MI) Enable bit					
	1 = IPMI mod 0 = IPMI mod		all addresses A	cknowledged						
bit 10	A10M: 10-bit	Slave Address	s bit							
) is a 10-bit slav) is a 7-bit slave								
bit 9	DISSLW: Dis	able Slew Rate	e Control bit							
		control disable control enable								
bit 8	SMEN: SMB	us Input Levels	s bit							
		O pin threshold MBus input th	ls compliant wi resholds	th SMBus spe	cification					
bit 7			e bit (when ope	rating as I ² C s	slave)					
	1 = Enable in (module i		general call ac	•	,	RSR				
bit 6			h Enable bit (wi	hon operating	$ac l^2 C alove)$					
	SINCH SUL		i Litable bit (Wi	nen operating	as i U Slave)					
	Llood in achi	unction with SC								

REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER

REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected.
bit 2	R_W: Read/Write Information bit (when operating as I^2C slave)
	1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I^2C device address byte.
bit 1	RBF: Receive Buffer Full Status bit 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit 1 = Transmit in progress, I2CxTRN is full 0 = Transmit complete, I2CxTRN is empty Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

	n (n =	0-15)					
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 15							bit 8
DAA							
R/W-x SID2	R/W-x SID1	R/W-x SID0	U-0	R/W-x EXIDE	U-0	R/W-x EID17	R/W-x EID16
bit 7	5101	SIDU	_	EXIDE			bit 0
							bit 0
Legend:		C = Writable b	oit, but only 'C)' can be writte	n to clear the bi	t	
R = Readable bit W = Writable bit U = Unimplemented bit, read as					d as '0'		
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						nown	
bit 15-5 bit 4 bit 3	SID<10:0>: Standard Identifier bits Message address bit SIDx must be '1' to match filter Message address bit SIDx must be '0' to match filter Mimplemented: Read as '0' EXIDE: Extended Identifier Enable bit If MIDE = 1: Match only messages with extended identifier addresses Match only messages with standard identifier addresses 						
bit 2 bit 1-0	•	E bit. I ted: Read as 'i Extended Iden					

1 = Message address bit EIDx must be '1' to match filter 0 = Message address bit EIDx must be '0' to match filter

REGISTER 19-16: CIRXFnSID: ECAN[™] ACCEPTANCE FILTER STANDARD IDENTIFIER REGISTER n (n = 0-15)

21.6 **ADC Control Registers**

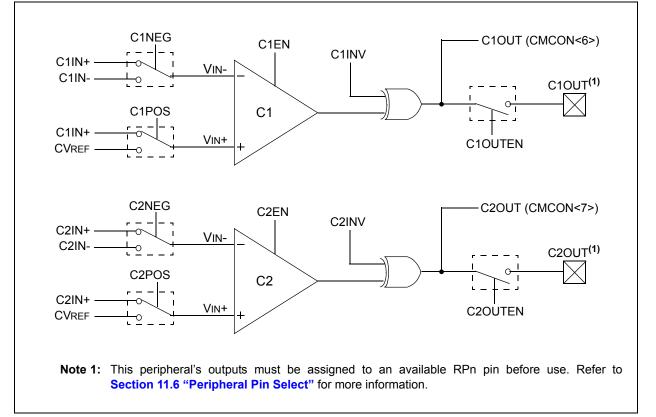
R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
ADON	-	ADSIDL	ADDMABM	_	AD12B	FORM	1<1:0>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/C-0
						HC,HS	HC, HS
	SSRC<2:0>		_	SIMSAM	ASAM	SAMP	DONE
bit 7							bit 0

REGISTER 21-1: AD1CON1: ADC1 CONTROL REGISTER 1

L :1	-
T III	
DIL	

Legend:	HC = Cleared by hardware	HS = Set by hardware	C = Clear only bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	ADON: ADC Operating Mode bit 1 = ADC module is operating
	0 = ADC is off
bit 14	Unimplemented: Read as '0'
bit 13	 ADSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode
bit 12	ADDMABM: DMA Buffer Build Mode bit
	 1 = DMA buffers are written in the order of conversion. The module provides an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer 0 = DMA buffers are written in Scatter/Gather mode. The module provides a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer
bit 11	Unimplemented: Read as '0'
bit 10	AD12B: 10-bit or 12-bit Operation Mode bit
	 1 = 12-bit, 1-channel ADC operation 0 = 10-bit, 4-channel ADC operation
bit 9-8	FORM<1:0>: Data Output Format bits
	For 10-bit operation: 11 = Signed fractional (Dout = sddd dddd dd00 0000, where s =.NOT.d<9>) 10 = Fractional (Dout = dddd dddd dd00 0000) 01 = Signed integer (Dout = ssss sssd dddd dddd, where s = .NOT.d<9>) 00 = Integer (Dout = 0000 00dd dddd dddd)
	For 12-bit operation:
	11 = Signed fractional (Dout = sddd dddd dddd 0000, where s = .NOT.d<11>)
	10 = Fractional (Douт = dddd dddd dddd 0000) 01 = Signed Integer (Douт = ssss sddd dddd dddd, where s = .NOT.d<11>)
	00 = Integer (Dout = 0000 ddd dddd dddd)
bit 7-5	SSRC<2:0>: Sample Clock Source Select bits
	 111 = Internal counter ends sampling and starts conversion (auto-convert) 110 = Reserved 101 = Reserved
	100 = GP timer (Timer5 for ADC1) compare ends sampling and starts conversion
	011 = Reserved 010 = GP timer (Timer3 for ADC1) compare ends sampling and starts conversion
	001 = Active transition on INT0 pin ends sampling and starts conversion
	000 = Clearing sample bit ends sampling and starts conversion
bit 4	Unimplemented: Read as '0'


23.0 COMPARATOR MODULE

- Note 1: This data sheet summarizes the features dsPIC33FJ32GP302/304. of the dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 34. "Comparator" (DS70212) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Comparator module provides a set of dual input comparators. The inputs to the comparator can be configured to use any one of the four pin inputs (C1IN+, C1IN-, C2IN+ and C2IN-) as well as the Comparator Voltage Reference Input (CVREF).

Note: This peripheral contains output functions that may need to be configured by the peripheral pin select feature. For more information, see Section 11.6 "Peripheral Pin Select".

FIGURE 23-1: COMPARATOR I/O OPERATING MODES

NOTES:

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
1	ADD	ADD	Acc	Add Accumulators	1	1	OA,OB,SA,SB
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,SB
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
-		BRA	GE, Expr	Branch if greater than or equal	1	1 (2)	None
		BRA	GEU, Expr	Branch if unsigned greater than or equal	1	1 (2)	None
		BRA	GT, Expr	Branch if greater than	1	1 (2)	None
		BRA	GTU, Expr	Branch if unsigned greater than	1	1 (2)	None
		BRA	LE, Expr	Branch if less than or equal	1	1 (2)	None
		BRA	LEU, Expr	Branch if unsigned less than or equal	1	1 (2)	None
		BRA	LT,Expr	Branch if less than	1	1 (2)	None
		BRA	LTU, Expr	Branch if unsigned less than	1	1 (2)	None
		BRA		Branch if Negative	1	1 (2)	None
		BRA	N, Expr	Branch if Not Carry	1	1 (2)	None
		BRA	NC, Expr	Branch if Not Negative	1	1 (2)	None
		BRA	NN, Expr NOV, Expr	Branch if Not Overflow	1	1 (2)	None
				Branch if Not Zero	1	1 (2)	None
		BRA	NZ,Expr	Branch if Accumulator A overflow	1	1 (2)	None
		BRA	OA, Expr	Branch if Accumulator B overflow	1	1 (2)	None
		BRA	OB, Expr	Branch if Overflow	1		None
		BRA	OV, Expr			1 (2)	None
		BRA	SA, Expr	Branch if Accumulator A saturated	1	1 (2)	
		BRA	SB,Expr	Branch if Accumulator B saturated	1	1 (2)	None
		BRA	Expr	Branch Unconditionally	1	2	None
		BRA	Z,Expr	Branch if Zero	1	1 (2)	None
7	DODE	BRA	Wn	Computed Branch	1	2	None
7	BSET	BSET	f,#bit4	Bit Set f	1	1	None
		BSET	Ws,#bit4	Bit Set Ws	1	1	None
8	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
		BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
9	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None

TABLE 28-2: INSTRUCTION SET OVERVIEW

30.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 electrical characteristics. Additional information is provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 family are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽⁴⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(4)}$	-0.3V to +5.6V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V ⁽⁴⁾	-0.3V to 3.6V
Maximum current out of Vss pin	
Maximum current into VDD pin ⁽²⁾	
Maximum current sourced/sunk by any 2x I/O pin ⁽³⁾	8 mA
Maximum current sourced/sunk by any 4x I/O pin ⁽³⁾	15 mA
Maximum current sourced/sunk by any 8x I/O pin ⁽³⁾	
Maximum current sunk by all ports	
Maximum current sourced by all ports ⁽²⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 30-2).
 - 3: Exceptions are CLKOUT, which is able to sink/source 25 mA, and the VREF+, VREF-, SCLx, SDAx, PGECx and PGEDx pins, which are able to sink/source 12 mA.
 - 4: See the "Pin Diagrams" section for 5V tolerant pins.

31.1 High Temperature DC Characteristics

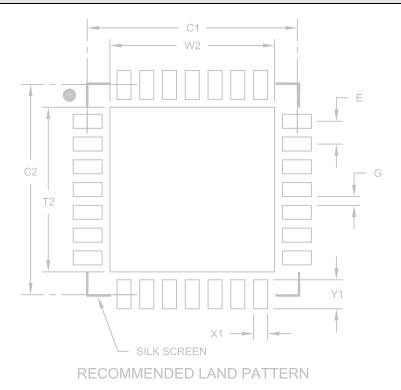
TABLE 31-1: OPERATING MIPS VS. VOLTAGE

			Max MIPS
Characteristic	VDD Range (in Volts)	Temperature Range (in °C)	dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04
	3.0V to 3.6V ⁽¹⁾	-40°C to +150°C	20

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules such as the ADC will have degraded performance. Device functionality is tested but not characterized.

TABLE 31-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
High Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+155	°C
Operating Ambient Temperature Range	TA	-40	—	+150	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD	I	Pint + Pi/c)	W
Maximum Allowed Power Dissipation	Pdmax	(TJ - TA)/θJ	A	W


TABLE 31-3: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+150°C for High Temperature						
Parameter No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions		
Operating Voltage									
HDC10	Supply Voltage								
	Vdd	_	3.0	3.3	3.6	V	-40°C to +150°C		

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules such as the ADC will have degraded performance. Device functionality is tested but not characterized.

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensi	MIN	NOM	MAX	
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	W2			4.70
Optional Center Pad Length	T2			4.70
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.40
Contact Pad Length (X28)	Y1			0.85
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A

Section Name	Update Description		
Section 31.0 "High Temperature Electrical Characteristics"	Updated all ambient temperature end range values to +150°C throughout the chapter.		
	Updated the storage temperature end range to +160°C.		
	Updated the maximum junction temperature from +145°C to +155°C.		
	Updated the maximum values for High Temperature Devices in the Thermal Operating Conditions (see Table 31-2).		
	Updated the ADC Module Specifications (12-bit Mode) (see Table 31-14).		
	Updated the ADC Module Specifications (10-bit Mode) (see Table 31-15).		
"Product Identification System"	Updated the end range temperature value for H (High) devices.		

TABLE A-4: MAJOR SECTION UPDATES (CONTINUED)

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Tape and Reel FI Temperature Rar	amily - y Size (ag (if a nge	(KB)		Examples: a) dsPIC33FJ32GP302-E/SP: General Purpose dsPIC33, 32 KB program memory, 28-pin, Extended temperature, SPDIP package.
Architecture:	33	=	16-bit Digital Signal Controller	
Flash Memory Family:	FJ	=	Flash program memory, 3.3V	
Product Group:	GP3	=	General Purpose family General Purpose family General Purpose family	
Pin Count:	02 04	=	28-pin 44-pin	
Temperature Range:	I E H	= = =	-40° C to+85° C (Industrial) -40° C to+125° C (Extended) -40° C to+150° C (High)	
Package:	SP SO ML MM PT	= = =	Skinny Plastic Dual In-Line - 300 mil body (SPDIP) Plastic Small Outline - Wide - 7.5 mil body (SOIC) Plastic Quad, No Lead Package - 8x8 mm body (QFN) Plastic Quad, No Lead Package - 6x6x0.9 mm body (QFN-S) Plastic Thin Quad Flatpack - 10x10x1 mm body (TQFP)	

٦