

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DCI, DMA, I ² S, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gp202t-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 3-3: DSP ENGINE BLOCK DIAGRAM

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at 0x000000, with the actual address for the start of code at 0x000002.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices also have two interrupt vector tables, located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in **Section 7.1 "Interrupt Vector Table**".

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

4.6 Modulo Addressing

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or program space (since the data pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

4.6.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note: Y space Modulo Addressing EA calculations assume word-sized data (LSb of every EA is always clear).

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.6.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that operate with Modulo Addressing:

- If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled.
- If YWM = 15, Y AGU Modulo Addressing is disabled.

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>.

FIGURE 4-7: MODULO ADDRESSING OPERATION EXAMPLE

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

REGISTER 5-2:	NVM	(EY: NONVOL	ATILE ME	MORY KEY R	REGISTER		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—	—	—	—
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVMK	(EY<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable b	oit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			nown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 NVMKEY<7:0>: Key Register (write-only) bits

7.5 CPU Registers

REGISTER /-1: SR: CPU STATUS REGISTER "

bit 15							bit 8
OA	OB	SA	SB	OAB	SAB	DA	DC
R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R -0	R/W-0

R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	IPL<2:0> ^(2,3)		RA	Ν	OV	Z	С
bit 7							bit 0

Legend:			
C = Clear only bit	R = Readable bit	U = Unimplemented bit, read as '0'	
S = Set only bit	W = Writable bit	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits⁽²⁾

111 = CPU Interrupt Priority Level is 7 (15), user interrupts are disabled

- 110 = CPU Interrupt Priority Level is 6 (14)
- 101 = CPU Interrupt Priority Level is 5 (13)
- 100 = CPU Interrupt Priority Level is 4 (12)
- 011 = CPU Interrupt Priority Level is 3 (11)
- 010 = CPU Interrupt Priority Level is 2 (10)
- 001 = CPU Interrupt Priority Level is 1 (9)
- 000 = CPU Interrupt Priority Level is 0 (8)

Note 1: For complete register details, see Register 3-1.

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
- 3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
—	—	—	US	EDT		DL<2:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF
bit 7							bit 0
Legend:		C = Clear only	/ bit				
R = Readable	bit	W = Writable	bit	-n = Value at	POR	'1' = Bit is set	
0' = Bit is clear	ed	'x = Bit is unk	nown	U = Unimplei	mented bit, read	as '0'	
bit 3	IPL3: CPU Int	terrupt Priority	Level Status I	oit 3 ⁽²⁾			
	1 = CPU inter	rupt priority lev	el is greater t	han 7			

0 = CPU interrupt priority level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

					<u> </u>	<u> </u>				
	DMA4IF	PMPIF		—	<u> </u>					
bit 15							bit 8			
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—	—	DMA3IF	C1IF ⁽¹⁾	C1RXIF ⁽¹⁾	SPI2IF	SPI2EIF			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown			
			- 1							
DIT 15	Unimplement	ted: Read as "				.,				
bit 14		A Channel 4 D	ata Transfer C	complete Interi	rupt Flag Status t	Dit				
	\perp = Interrupt n	equest has oc equest has no	currea t occurred							
bit 13	PMPIF: Paral	lel Master Port	Interrupt Flac	ı Status bit						
	1 = Interrupt r	equest has oc	curred							
	0 = Interrupt r	equest has no	t occurred							
bit 12-5	Unimplement	ted: Read as '	0'							
bit 4	DMA3IF: DMA	A Channel 3 D	ata Transfer C	Complete Interr	rupt Flag Status b	pit				
	1 = Interrupt r	equest has oc	curred							
	0 = Interrupt r	equest has no	toccurred	(1)						
bit 3	C1IF: ECAN1	Event Interrup	ot Flag Status	bit ⁽¹⁾						
	1 = Interrupt request has occurred 0 = Interrupt request has not occurred									
hit 2	C1RXIE: ECA	N1 Receive D	ata Ready Inte	errunt Elan Sta	itus bit(1)					
SIL Z	1 = Interrupt r	equest has oc	curred	shupt hug old						
	0 = Interrupt r	equest has no	toccurred							
bit 1	SPI2IF: SPI2	Event Interrup	t Flag Status b	bit						
	1 = Interrupt r	equest has oc	curred							
	0 = Interrupt r	equest has no	t occurred							
bit 0	SPI2EIF: SPI2	2 Error Interrup	ot Flag Status	bit						
	1 = Interrupt n	equest has oc	curred							

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

Note 1: Interrupts are disabled on devices without ECAN[™] modules.

						D/M/ 0	D/M/ 0			
					R/W-0	R/W-0				
UZI XIE	UZRAIE	INTZIE	ISIE	141E	UC4IE	OC3IE	DIVIAZIE			
DIL 15							DIL O			
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
IC8IF	IC7IF	_	INT1IF	CNIE	CMIE	MI2C1IF	SI2C1IF			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	1 as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown			
bit 15	U2TXIE: UAF	RT2 Transmitte	r Interrupt Ena	able bit						
	1 = Interrupt r	request enable	d							
	0 = Interrupt r	request not ena	abled							
bit 14	U2RXIE: UAP	RI2 Receiver l	nterrupt Enab	le bit						
	1 = Interrupt r0 = Interrupt r	request enable	u abled							
bit 13	INT2IE: Exter	rnal Interrupt 2	Enable bit							
	1 = Interrupt r	request enable	d							
	0 = Interrupt r	request not ena	abled							
bit 12	T5IE: Timer5	Interrupt Enab	le bit							
	1 = Interrupt r	request enable	d abled							
bit 11	T4IE: Timer4	Interrupt Fnab	le bit							
	1 = Interrupt r	request enable	d							
	0 = Interrupt r	request not ena	abled							
bit 10	OC4IE: Output	ut Compare Ch	annel 4 Interi	rupt Enable bit						
	1 = Interrupt r	request enable	d abled							
bit 9	OC3IE: Outpu	ut Compare Ch	annel 3 Interi	upt Enable bit						
	1 = Interrupt r	request enable	d	· · · · · · ·						
	0 = Interrupt r	request not ena	abled							
bit 8	DMA2IE: DM	A Channel 2 D	ata Transfer (Complete Inter	rupt Enable bit					
	1 = Interrupt request enabled									
bit 7		Capture Chann	el 8 Interrupt	Enable bit						
5 CT	1 = Interrupt r	request enable	d							
	0 = Interrupt r	request not ena	abled							
bit 6	IC7IE: Input C	Capture Chann	el 7 Interrupt	Enable bit						
	1 = Interrupt r	request enable	d							
hit 5		tod. Dead as '	o'							
bit 4		rnal Interrunt 1	∪ Enable bit							
Sit 1	1 = Interrupt r	request enable	d							
	0 = Interrupt r	request not ena	abled							
bit 3	CNIE: Input C	Change Notifica	ation Interrupt	Enable bit						
	1 = Interrupt r 0 = Interrupt r	request enable request not ena	d abled							

7.6 Interrupt Setup Procedures

7.6.1 INITIALIZATION

To configure an interrupt source at initialization:

- 1. Set the NSTDIS bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level depends on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources can be programmed to the same non-zero value.

Note: At a device Reset, the IPCx registers are initialized such that all user interrupt sources are assigned to priority level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

7.6.2 INTERRUPT SERVICE ROUTINE

The method used to declare an ISR and initialize the IVT with the correct vector address depends on the programming language (C or assembler) and the language development tool suite used to develop the application.

In general, the user application must clear the interrupt flag in the appropriate IFSx register for the source of interrupt that the ISR handles. Otherwise, the program re-enters the ISR immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

7.6.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

7.6.4 INTERRUPT DISABLE

All user interrupts can be disabled using this procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to priority level 7 by inclusive ORing the value OEh with SRL.

To enable user interrupts, the POP instruction can be used to restore the previous SR value.

Note:	Only user interrupts with a priority level of
	7 or lower can be disabled. Trap sources
	(level 8-level 15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of priority levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

11.2 Open-Drain Configuration

In addition to the PORT, LAT and TRIS registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

Refer to **"Pin Diagrams"** for the available pins and their functionality.

11.3 Configuring Analog Port Pins

The AD1PCFGL and TRIS registers control the operation of the Analog-to-Digital (ADC) port pins. The port pins that are to function as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) is converted.

The AD1PCFGL register has a default value of 0x0000; therefore, all pins that share ANx functions are analog (not digital) by default.

When the PORT register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

11.4 I/O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be an NOP, as shown in Example 11-1.

11.5 Input Change Notification

The input change notification function of the I/O ports allows the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/ X04 devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature can detect input change-ofstates even in Sleep mode, when the clocks are disabled. Depending on the device pin count, up to 21 external signals (CNx pin) can be selected (enabled) for generating an interrupt request on a change-ofstate.

Four control registers are associated with the CN module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source connected to the pin, and eliminate the need for external resistors when push-button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on change notification pins should always be disabled when the port pin is configured as a digital output.

MOV0xFF00, W0; Configure PORTB<15:8> as inputsMOVW0, TRISBB; and PORTB<7:0> as outputsNOP; Delay 1 cyclebtssPORTB, #13; Next Instruction

PORT WRITE/READ EXAMPLE

EXAMPLE 11-1:

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
—	_	_			T5CKR<4:0	>				
bit 15							bit			
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
—	—	—		T4CKR<4:0>						
bit 7							bit			
Legend:	lo bit	W = Writabla	hit	II – Unimploi	montod bit ro	ad as '0'				
		(1) = Dit is set	DI	0' = 0		x = Dit is uply	2011/2			
		1 - Dit 13 3et			aleu					
	11001 = Inp • •	ut tied to RP25								
	00001 = lnp 00000 = lnp	00001 = Input tied to RP1 00000 = Input tied to RP0								
bit 7-5	Unimpleme	nted: Read as '	0'							
bit 4-0	T4CKR<4:0	Assign Timer	4 External Clo	ock (T4CK) to t	he correspond	ling RPn pin				
	11111 = Inp 11001 = Inp	11111 = Input tied to Vss 11001 = Input tied to RP25								
	•									
	•									
	00001 = Inp 00000 = Inp	ut tied to RP1 ut tied to RP0								

REGISTER 11-4: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP5R<4:0>		
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP4R<4:0>		
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15-13	Unimplemen	ted: Read as '	י ר				

bit 12-8	RP5R<4:0>: Peripheral Output Function is Assigned to RP5 Output Pin bits (see Table 11-2 for peripheral function numbers)
bit 7-5	Unimplemented: Read as '0'
hit 1 0	PD4D<1:0 : Paripharal Output Euroption is Assigned to PD4 Output Pin hits (see Table 11.2 for

bit 4-0 **RP4R<4:0>:** Peripheral Output Function is Assigned to RP4 Output Pin bits (see Table 11-2 for peripheral function numbers)

REGISTER 11-20: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP7R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	_			RP6R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP7R<4:0>:** Peripheral Output Function is Assigned to RP7 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP6R<4:0>:** Peripheral Output Function is Assigned to RP6 Output Pin bits (see Table 11-2 for peripheral function numbers)

21.6 **ADC Control Registers**

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
ADON	—	ADSIDL	ADDMABM	_	AD12B	FORM	1<1:0>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/C-0
						HC,HS	HC, HS
	SSRC<2:0>		_	SIMSAM	ASAM	SAMP	DONE
bit 7							bit 0

REGISTER 21-1: AD1CON1: ADC1 CONTROL REGISTER 1

L :1	~
- 111	

Legend:	HC = Cleared by hardware	HS = Set by hardware	C = Clear only bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	ADON: ADC Operating Mode bit
	1 = ADC module is operating
	0 = ADC is off
bit 14	Unimplemented: Read as '0'
bit 13	ADSIDL: Stop in Idle Mode bit
	 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode
bit 12	ADDMABM: DMA Buffer Build Mode bit
	 1 = DMA buffers are written in the order of conversion. The module provides an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer 0 = DMA buffers are written in Scatter/Gather mode. The module provides a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer
bit 11	Unimplemented: Read as '0'
bit 10	AD12B: 10-bit or 12-bit Operation Mode bit
	1 = 12-bit, 1-channel ADC operation
	0 = 10-bit, 4-channel ADC operation
bit 9-8	FORM<1:0>: Data Output Format bits
	For 10-bit operation: 11 = Signed fractional (Dout = sddd dddd dd00 0000, where s =.NOT.d<9>) 10 = Fractional (Dout = dddd dddd dd00 0000) 11 = Signed integer (Dout = agag, gagd dddd dddd where g = NOT.d<9>)
	00 = Integer (DOUT = 0000 00dd dddd dddd)
	For 12-bit operation:
	11 = Signed fractional (Dout = sddd dddd dddd 0000, where s = .NOT.d<11>) 10 = Fractional (Dout = dddd dddd dddd 0000)
	01 = Signed Integer (Dout = ssss sddd dddd dddd, where s = .NOT.d<11>) 00 = Integer (Dout = 0000 dddd dddd dddd)
bit 7-5	SSRC<2:0>: Sample Clock Source Select bits
	 111 = Internal counter ends sampling and starts conversion (auto-convert) 110 = Reserved 101 = Reserved
	100 = GP timer (Timer5 for ADC1) compare ends sampling and starts conversion011 = Reserved
	 010 = GP timer (Timer3 for ADC1) compare ends sampling and starts conversion 001 = Active transition on INT0 pin ends sampling and starts conversion 000 = Clearing sample bit ends sampling and starts conversion
bit 4	Unimplemented: Read as '0'

Bit Field	Register	RTSP Effect	Description
BWRP	FBS	Immediate	Boot Segment Program Flash Write Protection 1 = Boot segment can be written 0 = Boot segment is write-protected
BSS<2:0>	FBS	Immediate	Boot Segment Program Flash Code Protection Size X11 = No Boot program Flash segment
			110 = Standard security; boot program Flash segment ends at 0x0007FE
			010 = High security; boot program Flash segment ends at 0x0007FE
			Boot space is 4K Instruction Words (except interrupt vectors) 101 = Standard security; boot program Flash segment, ends at 0x001FFE
			001 = High security; boot program Flash segment ends at 0x001FFE
			Boot space is 8K Instruction Words (except interrupt vectors) 100 = Standard security; boot program Flash segment ends at 0x003FFE
			000 = High security; boot program Flash segment ends at 0x003FFE
RBS<1:0> ⁽¹⁾	FBS	Immediate	Boot Segment RAM Code Protection Size
			10 = Boot RAM is 128 bytes 01 = Boot RAM is 256 bytes 00 = Boot RAM is 1024 bytes
SWRP ⁽¹⁾	FSS ⁽¹⁾	Immediate	Secure Segment Program Flash Write-Protect bit 1 = Secure Segment can bet written 0 = Secure Segment is write-protected
SSS<2:0> ⁽¹⁾	FSS ⁽¹⁾	Immediate	Secure Segment Program Flash Code Protection Size (Secure segment is not implemented on 32K devices) X11 = No Secure program flash segment
			Secure space is 4K IW less BS 110 = Standard security; secure program flash segment starts at End of BS, ends at 0x001FFE 010 = High security; secure program flash segment starts at
			End of BS, ends at 0x001FFE
			Secure space is 8K IW less BS 101 = Standard security; secure program flash segment starts at End of BS, ends at 0x003FFE
			001 = High security; secure program flash segment starts at End of BS, ends at 0x003FFE
			Secure space is 16K IW less BS 100 = Standard security; secure program flash segment starts at End of BS, ends at 007FFEh
			000 = High security; secure program flash segment starts at End of BS, ends at 0x007FFE

TARI E 27-2.	dePIC CONFIGURATION BITS DESCRIPTION
IADLL ZI-Z.	USFIC CONFIGURATION BITS DESCRIPTION

Note 1: This Configuration register is not available on dsPIC33FJ32GP302/304 devices.

CONFIG BITS	BSS<2:0> = x11 0K	BSS<2:0> = x10 1K	BSS<2:0> = x01 4K	BSS<2:0> = x00 8K
SSS<2:0> = x11 0K	VS = 256 IW 0x000000h 0x0001FEh 0x000200h 0x0007FEh 0x000800h 0x0007FEh 0x001FEh 0x0017FEh 0x0017FEh 0x002000h 0x0017FEh 0x0017FEh 0x0017FEh 0x0017FEh 0x0017FEh 0x004000h 0x004000h 0x004000h 0x004000h 0x004000h 0x004000h 0x004000h 0x004000h 0x004000h 0x004000h 0x004000h 0x004000h	VS = 256 IW 0x000000h 0x0001FEh 0x000200h 0x0007FEh 0x0007FEh 0x001FFEh 0x001FFEh 0x001FFEh 0x002000h 0x001FFEh 0x002000h 0x007FFEh 0x004000h 0x007FFEh 0x008000h 0x008BFEh	VS = 256 IW 0x000000h 0x0001FEh BS = 3840 IW 0x000200h 0x0007FEh 0x000200h 0x0007FEh 0x0003FFEh 0x001FFEh 0x00200h 0x001FFEh 0x00200h 0x001FFEh 0x00200h 0x001FFEh 0x00200h 0x002000h 0x00200h 0x002000h 0x004000h 0x004000h 0x004000h 0x008000h 0x00400ABFEh 0x00ABFEh	VS = 256 IW 0x00000h 0x0001FEh 0x00020h 0x0007FEh 0x0007FEh 0x000800h 0x003FFEh 0x00200h 0x003FFEh 0x00200h 0x003FFEh 0x00400h 0x007FFEh GS = 13824 IW 0x0000h 0x003FFEh 0x008000h 0x003FFEh
	0x0157FEh	0x0157FEh	0x0157FEh	0x0157FEh
SSS<2:0> = x 10	VS = 256 IW 0x000000h 0x0001FEh 0x000200h 0x000200h 0x0007FEh 0x000800h 0x000800h 0x001FFEh 0x002000h	VS = 256 IW 0x000000h 0x0001FEh BS = 768 IW 0x000200h 0x0007FEh SS = 3072 IW 0x000800h 0x001FFEh 0x00200h 0x001FFEh	VS = 256 IW 0x00000h 0x0001FEh BS = 3840 IW 0x000200h 0x0007FEh 0x000800h 0x000800h 0x001FFEh 0x000800h 0x001FFEh 0x000800h	VS = 256 IW 0x00000h 0x0001FEh BS = 7936 IW 0x000200h 0x0007FEh 0x000200h 0x000800h 0x001FFEh 0x00200h
4К	GS = 17920 IW 0x004000h 0x007FFEh 0x008000h 0x00ABFEh 0x0157EEh	GS = 17920 IW 0x004000h 0x007FFEh 0x008000h 0x00ABFEh 0x0157FEh	GS = 17920 IW 0x004000h 0x007FFEh 0x008000h 0x00ABFEh 0x0157EEh	GS = 13824 IW 0x004000h 0x007FFEh 0x008000h 0x00ABFEh
SSS<2:0> = x01 8K	VS = 256 IW 0x00000h 0x0001FEh 0x000200h 0x000200h 0x001FFEh 0x00800h 0x001FFEh 0x002000h 0x003FFEh 0x004000h 0x007FFEh 0x004000h 0x007FFEh 0x00800h 0x00ABFEh	VS = 256 IW 0x000000h 0x0001FEh 0x000200h BS = 768 IW 0x000200h 0x0007FEh 0x000800h SS = 7168 IW 0x00200h 0x003FFEh 0x004000h GS = 13824 IW 0x00800h 0x00ABFEh	VS = 256 IW 0x000000h 0x0001FEh 0x000200h 0x0007FEh 0x000200h 0x0007FEh 0x000800h 0x001FFEh 0x000000h 0x003FFEh 0x004000h 0x007FFEh 0x004000h 0x007FFEh 0x00800h 0x00ABFEh	VS = 256 IW 0x000000h 0x0001FEh 0x000200h BS = 7936 IW 0x000200h 0x0007FEh 0x002000h 0x002000h 0x002000h 0x003FFEh 0x004000h 0x004000h 0x004000h 0x00800h 0x004000h 0x00800h 0x004000h 0x00800h 0x004000h 0x00800h 0x00800h 0x00800h
	0x0157FEh	0x0157FEh	0x0157FEh	0x0157FEh
SSS<2:0> = x00 16K	VS = 256 IW 0x000000h 0x0001FEh 0x000200h 0x0007FEh 0x000800h 0x001FFEh 0x003FFEh 0x004000h 0x007FEh 0x004000h 0x007FFEh 0x004000h 0x007FFEh 0x004000h 0x007FFEh 0x004000h	VS = 256 IW 0x00000h 0x0001FEh BS = 768 IW 0x000200h 0x0007FEh 0x000200h 0x001FFEh 0x00200h 0x003FFEh SS = 15360 IW 0x004000h 0x004000h GS = 5632 IW 0x00ABFEh 0x00157FEh 0x004000h	VS = 256 IW 0x00000h 0x0001FEh BS = 3840 IW 0x000200h 0x0007FEh 0x000200h 0x001FFEh 0x000200h 0x001FFEh SS = 12288 IW 0x004000h 0x007FFEh GS = 5632 IW 0x00ABFEh 0x00157FEh 0x00457FEh	VS = 256 IW 0x000000h 0x0001FEh 0x000200h BS = 7936 IW 0x000200h 0x0007FEh 0x002000h SS = 8192 IW 0x004000h 0x007FFEh GS = 5632 IW 0x00800h 0x004000h 0x00800h 0x007FFEh 0x004000h 0x007FFEh 0x004000h 0x008000h 0x004000h 0x008000h 0x004000h 0x008000h 0x00457FFh 0x00457FFh

TABLE 27-4: CODE FLASH SECURITY SEGMENT SIZES FOR 64 KB DEVICES

28.0 INSTRUCTION SET SUMMARY

Note:	This data sheet summarizes the feature		
	of the dsPIC33FJ32GP302/	304,	
	dsPIC33FJ64GPX02/X04,	and	
	dsPIC33FJ128GPX02/X04 families	of	
	devices. It is not intended to be a com	npre-	
	hensive reference source. To complete	ment	
	the information in this data sheet, ref	er to	
	the "dsPIC33F/PIC24H Family Refer	ence	
	Manual". Please see the Microchip	web	
	site (www.microchip.com) for the la	atest	
	reference manual sections.		

The dsPIC33F instruction set is identical to that of the dsPIC30F.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- · Word or byte-oriented operations
- · Bit-oriented operations
- Literal operations
- DSP operations
- Control operations

Table 28-1 shows the general symbols used in describing the instructions.

The dsPIC33F instruction set summary in Table 28-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- · The file register specified by the value 'f'
- The destination, which could be either the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The $\ensuremath{\mathtt{MAC}}$ class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- · The X and Y address space prefetch operations
- · The X and Y address space prefetch destinations
- · The accumulator write back destination

The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

The control instructions can use some of the following operands:

- · A program memory address
- The mode of the table read and table write instructions

29.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

29.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

29.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

29.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

29.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- · Command line interface
- · Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

AC CHARACTERISTICS			Standard Op (unless other Operating tem	erating (rwise stan perature	Conditio ated) e -40°C	ons: 3.0V to 3.6V C ≤ TA ≤+85°C for Industrial	
			$-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param.	Symbol	Charac	teristic	Min	мах	Units	Conditions
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	_	μs	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	-	μs	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5		μs	—
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	_	μs	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μs	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5		μs	—
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	—	100	ns	
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	—	300	ns	
IS25	TSU:DAT	Data Input	100 kHz mode	250		ns	—
		Setup Time	400 kHz mode	100		ns	
			1 MHz mode ⁽¹⁾	100		ns	
IS26	THD:DAT	AT Data Input	100 kHz mode	0		μs	—
		Hold Time	400 kHz mode	0	0.9	μs	
			1 MHz mode ⁽¹⁾	0	0.3	μs	
IS30	TSU:STA	Start Condition	100 kHz mode	4.7		μs	Only relevant for Repeated
		Setup Time	400 kHz mode	0.6		μs	Start condition
			1 MHz mode ⁽¹⁾	0.25		μs	
IS31	THD:STA	Start Condition	100 kHz mode	4.0		μs	After this period, the first
		Hold Time	400 kHz mode	0.6		μs	clock pulse is generated
			1 MHz mode ⁽¹⁾	0.25		μs	
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7		μs	—
		Setup Time	400 kHz mode	0.6		μs	
			1 MHz mode ⁽¹⁾	0.6		μs	
IS34	THD:ST	Stop Condition	100 kHz mode	4000		ns	_
	0	Hold Time	400 kHz mode	600		ns	
			1 MHz mode ⁽¹⁾	250		ns	
IS40	TAA:SCL	A:SCL Output Valid	100 kHz mode	0	3500	ns	_
		From Clock	400 kHz mode	0	1000	ns	
			1 MHz mode ⁽¹⁾	0	350	ns	
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μs	Time the bus must be free
			400 kHz mode	1.3		μs	before a new transmission
			1 MHz mode ⁽¹⁾	0.5	_	μs	Call Stall
IS50	Св	Bus Capacitive Lo	ading	—	400	pF	—

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

Section Name	Update Description
Section 30.0 "Electrical Characteristics"	Updated Typical values for Thermal Packaging Characteristics (see Table 30-3).
	Updated Min and Max values for parameter DC12 (RAM Data Retention Voltage) and added Note 4 (see Table 30-4).
	Updated Power-Down Current Max values for parameters DC60b and DC60c (see Table 30-7).
	Updated Characteristics for I/O Pin Input Specifications and added parameter DI21 (see Table 30-9).
	Updated Program Memory values for parameters 136, 137, and 138 (renamed to 136a, 137a, and 138a), added parameters 136b, 137b, and 138b, and added Note 2 (see Table 30-12).
	Added parameter OS42 (GM) to the External Clock Timing Requirements (see Table 30-16).
	Updated Watchdog Timer Time-out Period parameter SY20 (see Table 30-21).
	Updated the IREF Current Drain parameter AD08 (see Table 30-37).
	Updated parameters AD30a, AD31a, AD32a, AD33a, and AD34a (see Table 30-38)
	Updated parameters AD30b, AD31b, AD32b, AD33b, and AD34b (see Table 30-39)

TABLE A-2: MAJOR SECTION UPDATES (CONTINUED)

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

Listen All Messages	.230
Listen Only	. 230
Loopback	. 230
Normal Operation	230
Modulo Addressing	63
Applicability	64
Operation Example	63
Start and End Address	63
W Address Register Selection	63
MPLAB ASM30 Assembler, Linker, Librarian	. 334
MPLAB Integrated Development Environment Software	. 333
MPLAB PM3 Device Programmer	. 336
MPLAB REAL ICE In-Circuit Emulator System	. 335
MPLINK Object Linker/MPLIB Object Librarian	. 334

Ν

NVM Module	
Register Map	60
0	

0	
Open-Drain Configuration	160
Output Compare	

Ρ

Packaging	407
Marking	407
Peripheral Module Disable (PMD)	154
Pinout I/O Descriptions (table)	
PMD Module	
Register Man	60
PORTA	
Register Man	58 59
PORTB	. 50, 55
Register Man	59
Power-on Reset (POR)	
Power Saving Features	153
Clock Fraguency and Switching	153
	155
Program Address Space	
Construction	
Data Access from Program Memory Using	
Program Space Visibility	69
Data Access from Program Memory Using	
Table Instructions	68
Data Access from, Address Generation	67
Memory Map	35
Table Read Instructions	
TBLRDH	68
TBLRDL	68
Visibility Operation	69
Program Memory	
Interrupt Vector	
Organization	36
Reset Vector	
5	
R	
Reader Response	432
Register Map	
CRC	58
Dual Comparator	58
Parallel Master/Slave Port	57
Real-Time Clock and Calendar	58
Registers	
AD1CHS0 (ADC1 Input Channel 0 Select	274
AD1CHS123 (ADC1 Input Channel 1, 2, 3 Selec	t) 273
AD1CON1 (ADC1 Control 1)	268
	200
	270
	Zíl

AD1CON4 (ADC1 Control 4)	272
AD1CSSL (ADC1 Input Scan Select Low)	275
AD1PCFGL (ADC1 Port Configuration Low)	275
CiBUFPNT1 (ECAN Filter 0-3 Buffer Pointer)	241
CiBUEPNT2 (ECAN Filter 4-7 Buffer Pointer)	242
CiBLIEPNT3 (ECAN Filter 8-11 Buffer Pointer)	242
CiBLIEDNT4 (ECAN Filter 12-15 Buffer Pointer)	2/3
CiCEC1 (ECAN Paud Pate Configuration 1)	240
	239
CICFG2 (ECAN Baud Rate Configuration 2)	240
CiCTRL1 (ECAN Control 1)	232
CiCTRL2 (ECAN Control 2)	233
CiEC (ECAN Transmit/Receive Error Count)	239
CiFCTRL (ECAN FIFO Control)	235
CiFEN1 (ECAN Acceptance Filter Enable)	241
CIFIEO (ECAN FIEO Status)	236
CiEMSKSEL1 (ECAN Filter 7-0 Mask Selection)	245
246	+0,
CINTE (ECAN Interrupt Enchic)	220
	230
Clinif (ECAN Interrupt Flag)	237
CIRXFIEID (ECAN Acceptance Filter n	
Extended Identifier)	245
CiRXFnSID (ECAN Acceptance Filter n	
Standard Identifier)	244
CiRXFUL1 (ECAN Receive Buffer Full 1)	248
CiRXFUL2 (ECAN Receive Buffer Full 2)	248
CiRXMnEID (ECAN Acceptance Filter Mask n	
Extended Identifier)	247
CiRXMnSID (ECAN Accentance Filter Mask n	
Standard Identifiar)	247
CiPXOVE1 (ECAN Passive Puffer Overflow 1)	241
CIRXOVF1 (ECAN Receive Bullet Overllow 1)	249
CIRXOVF2 (ECAN Receive Burner Overnow 2)	249
CilRBnSID (ECAN Buffer n Standard Identifier)	251,
252, 254	
CiTRmnCON (ECAN TX/RX Buffer m Control)	250
CiVEC (ECAN Interrupt Code)	234
CLKDIV (Clock Divisor)	147
CORCON (Core Control)	, 92
DCICON1 (DCI Control 1)	257
DCICON2 (DCI Control 2)	258
DCICON3 (DCI Control 3)	259
DCISTAT (DCI Status)	260
DMACS0 (DMA Controller Status 0)	136
DMACS1 (DMA Controller Status 1)	120
DMACOT (DMA Controller Status 1)	100
DMAXCNT (DMA Channel X Transfer Count)	135
DMAXCON (DMA Channel X Control)	132
DMAxPAD (DMA Channel x Peripheral Address)	135
DMAxREQ (DMA Channel x IRQ Select)	133
DMAxSTA (DMA Channel x RAM Start Address A).	134
DMAxSTB (DMA Channel x RAM Start Address B).	134
DSADR (Most Recent DMA RAM Address)	139
I2CxCON (I2Cx Control)	216
I2CxMSK (I2Cx Slave Mode Address Mask)	220
I2CxSTAT (I2Cx Status)	218
IFS0 (Interrupt Flag Status 0)	103
IES1 (Interrupt Flag Status 1) 98	105
IES2 (Interrupt Flag Status 2) 100	107
IFS3 (Interrupt Flag Status 3) 101	102
IES4 (Interrupt Flag Status 4)	100
INTCONIA (Interrupt Control 1)	
	109
NITCOND (Interrupt Control 2)	. 93
INTCON2 (Interrupt Control 2)	. 93 . 95
INTCON2 (Interrupt Control 2) INTTREG Interrupt Control and Status Register	. 93 . 95 126
INTCON2 (Interrupt Control 2) INTTREG Interrupt Control and Status Register IPC0 (Interrupt Priority Control 0)	109 . 93 . 95 126 110
INTCON2 (Interrupt Control 2) INTTREG Interrupt Control and Status Register IPC0 (Interrupt Priority Control 0) IPC1 (Interrupt Priority Control 1)	109 . 93 . 95 126 110 111
INTCON2 (Interrupt Control 2) INTTREG Interrupt Control and Status Register IPC0 (Interrupt Priority Control 0) IPC1 (Interrupt Priority Control 1) IPC11 (Interrupt Priority Control 11)	. 93 . 95 126 110 111 120
INTCON2 (Interrupt Control 2) INTTREG Interrupt Control and Status Register IPC0 (Interrupt Priority Control 0) IPC1 (Interrupt Priority Control 1) IPC11 (Interrupt Priority Control 11) IPC14 (Interrupt Priority Control 14)	. 93 . 95 126 110 111 120 121
INTCON2 (Interrupt Control 2) INTTREG Interrupt Control and Status Register IPC0 (Interrupt Priority Control 0) IPC1 (Interrupt Priority Control 1) IPC11 (Interrupt Priority Control 11) IPC14 (Interrupt Priority Control 14) IPC15 (Interrupt Priority Control 15)	. 93 . 95 126 110 111 120 121 122
INTCON2 (Interrupt Control 2) INTTREG Interrupt Control and Status Register IPC0 (Interrupt Priority Control 0) IPC1 (Interrupt Priority Control 1) IPC11 (Interrupt Priority Control 11) IPC14 (Interrupt Priority Control 14) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16)	. 93 . 95 126 110 111 120 121 122 123

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE [.]	Technical Publications Manage	Total Pages Sent	
From). Nama		
11011	Company		
	Address		
	City / State / ZIP / Country		
	Telephone: ()	FAX: ()	
Appl	ication (optional):		
Wou	Id you like a reply? Y N		
Devi	ce: dsPIC33FJ32GP302/304, dsPIC33FJ128GPX02/X04	dsPIC33FJ64GPX02/X04, and Literature Number: DS70292G	
Que	stions:		
1. \	What are the best features of this	document?	
-			
2. I	How does this document meet you	r hardware and software development needs?	
-			
3. I	Do you find the organization of this	document easy to follow? If not, why?	
-			
4. \	What additions to the document do	you think would enhance the structure and subject?	
_			
5. \	What deletions from the document	could be made without affecting the overall usefulness?	
-			
6. I	s there any incorrect or misleading	a information (what and where)?	
	,		
-			
7. I	How would you improve this docu	nent?	
-			
-			