

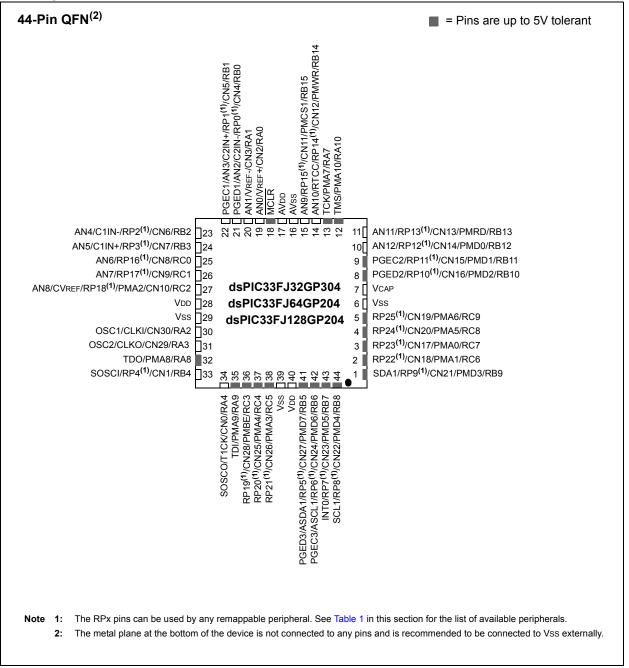
Welcome to E-XFL.COM

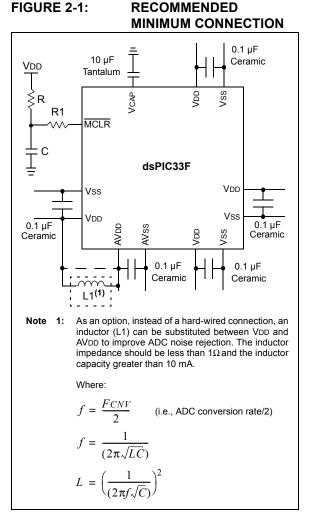
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI


Decalis	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DCI, DMA, I ² S, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gp202t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

2.2.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 µF to 47 µF.

2.3 **CPU Logic Filter Capacitor Connection (VCAP)**

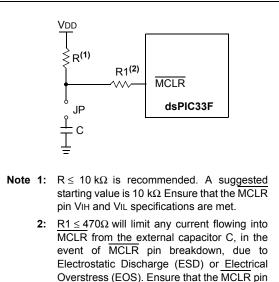
A low-ESR (< 5 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD, and must have a capacitor between 4.7 µF and 10 µF, preferably surface mount connected within one-eights inch of the VCAP pin connected to ground. The type can be ceramic or tantalum. Refer to Section 30.0 "Electrical Characteristics" for additional information.

The placement of this capacitor should be close to the VCAP. It is recommended that the trace length not exceed one-guarter inch (6 mm). Refer to Section 27.2 "On-Chip Voltage Regulator" for details.

Master Clear (MCLR) Pin 2.4

The MCLR pin provides for two specific device functions:

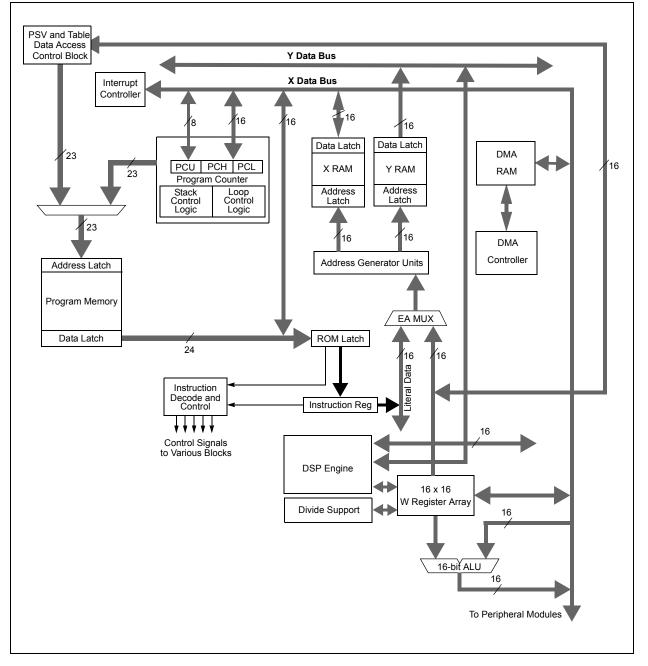
- Device Reset
- · Device programming and debugging


During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor C, be isolated from the MCLR pin during programming and debugging operations.

Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

EXAMPLE OF MCLR PIN CONNECTIONS


VIH and VIL specifications are met.

3.4 Special MCU Features

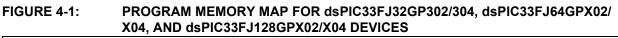
The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 features a 17-bit by 17-bit single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed-sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0). The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 supports 16/16 and 32/16 divide operations, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A 40-bit barrel shifter is used to perform up to a 16-bit left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions.

FIGURE 3-1: dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/ X04 CPU CORE BLOCK DIAGRAM

4.0 MEMORY ORGANIZATION

Note:	This data sheet summarizes the features
	of the dsPIC33FJ32GP302/304,
	dsPIC33FJ64GPX02/X04, and
	dsPIC33FJ128GPX02/X04 families of
	devices. It is not intended to be a
	comprehensive reference source. To
	complement the information in this data
	sheet, refer to Section 4. "Program
	Memory" (DS70203) of the "dsPIC33F/
	PIC24H Family Reference Manual", which
	is available from the Microchip website
	(www.microchip.com).


The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 Program Address Space

The program address memory space of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in Section 4.8 "Interfacing Program and Data Memory Spaces".

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

The memory map for the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices is shown in Figure 4-1.

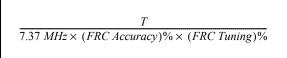
	GOTO Instruction	GOTO Instruction	GOTO Instruction	0x000000
T	Reset Address	Reset Address	Reset Address	0x000000 0x000002
	Interrupt Vector Table	Interrupt Vector Table	Interrupt Vector Table	0x000004
	Reserved	Reserved	Reserved	0x0000FE 0x000100
	Alternate Vector Table	Alternate Vector Table	Alternate Vector Table	0x000104 0x0001FE
obacc	User Program Flash Memory (11264 instructions)	User Program – – – – Flash Memory – – – – . (22016 instructions)		0x000200 0x0057FE 0x005800
			User Program Flash Memory (44032 instructions)	0x00ABFE 0x00AC00
	Unimplemented			
	(Read '0's)	Unimplemented		0x0157FE
		(Read '0's)		0x015800
			Unimplemented	
			(Read '0's)	
			(
	├ ─── ├	++		0x7FFFFE 0x800000
	Reserved	Reserved	Reserved	
				0xF7FFFE
,	Device Configuration Registers	Device Configuration Registers	Device Configuration Registers	0xF80000 0xF80017
				0xF80017 0xF80018
	Reserved	Reserved	Reserved	
)	DEVID (2)		DEVID (2)	0xFEFFFE 0xFF0000
				0xFF0002
<u> </u>	Reserved	Reserved	Reserved	0xFFFFFE

5.2 RTSP Operation

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to erase a page of memory, which consists of eight rows (512 instructions) at a time, and to program one row or one word at a time. Table 30-12 shows typical erase and programming times. The 8-row erase pages and single row write rows are edge-aligned from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

The program memory implements holding buffers that can contain 64 instructions of programming data. Prior to the actual programming operation, the write data must be loaded into the buffers sequentially. The instruction words loaded must always be from a group of 64 boundary.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register. A total of 64 TBLWTL and TBLWTH instructions are required to load the instructions.


All of the table write operations are single-word writes (two instruction cycles) because only the buffers are written. A programming cycle is required for programming each row.

5.3 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

The programming time depends on the FRC accuracy (see Table 30-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). Use the formula in Equation 5-1 to calculate the minimum and maximum values for the Row Write Time, Page Erase Time and Word Write Cycle Time parameters (see Table 30-12).

EQUATION 5-1: PROGRAMMING TIME

For example, if the device is operating at +125°C, the FRC accuracy will be $\pm 5\%$. If the TUN<5:0> bits (see Register 9-4) are set to `b111111, the minimum row write time is equal to Equation 5-2.

EQUATION 5-2: MINIMUM ROW WRITE TIME

$$T_{RW} = \frac{11064 \ Cycles}{7.37 \ MHz \times (1 + 0.05) \times (1 - 0.00375)} = 1.435 \ ms$$

The maximum row write time is equal to Equation 5-3.

$$T_{RW} = \frac{11064 \ Cycles}{7.37 \ MHz \times (1 - 0.05) \times (1 - 0.00375)} = 1.586 ms$$

Setting the WR bit (NVMCON<15>) starts the operation, and the WR bit is automatically cleared when the operation is finished.

5.4 Control Registers

Two SFRs are used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY (Register 5-2) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register. Refer to **Section 5.3 "Programming Operations"** for further details.

5.5 Flash Resources

Many useful resources related to Flash memory are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the					
	product page using the link above, enter					
	this URL in your browser:					
	http://www.microchip.com/wwwproducts/					
	Devices.aspx?dDocName=en532311					

5.5.1 KEY RESOURCES

- Section 5. "Flash Programming" (DS70191)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1										
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE			
bit 15							bit			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0			
SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—			
bit 7							bit (
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit, read	d as '0'				
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own			
				0 21110 0100						
bit 15	NSTDIS: Inte	rrupt Nesting D	isable bit							
		nesting is disat								
	•	nesting is enab								
bit 14		cumulator A O	•	•						
	•	caused by ove not caused by								
bit 13	-	cumulator B O								
		caused by ove	•	•						
	•	not caused by								
bit 12			-	Overflow Trap F	-					
	 1 = Trap was caused by catastrophic overflow of Accumulator A 0 = Trap was not caused by catastrophic overflow of Accumulator A 									
bit 11	-	-	-							
		COVBERR: Accumulator B Catastrophic Overflow Trap Flag bit 1 = Trap was caused by catastrophic overflow of Accumulator B								
	•	•	•	overflow of Accu						
bit 10		umulator A Ove	•	able bit						
		1 = Trap overflow of Accumulator A								
hit 0	0 = Trap disa		offow Trop En	abla hit						
bit 9		OVBTE: Accumulator B Overflow Trap Enable bit 1 = Trap overflow of Accumulator B								
	0 = Trap disa									
bit 8	COVTE: Cata	astrophic Overf	low Trap Enat	ole bit						
			erflow of Accur	mulator A or B e	enabled					
	0 = Trap disa									
bit 7		Shift Accumula		is bit Ilid accumulator	chift					
bit 6	DIV0ERR: Ar	 0 = Math error trap was not caused by an invalid accumulator shift DIV0ERR: Arithmetic Error Status bit 								
	1 = Math error trap was caused by a divide by zero									
		or trap was not	-	-						
bit 5		DMA Controller troller error trap								
		troller error trap								
bit 4		Arithmetic Error								
		or trap has occu								
	0 = Math erro	or trap has not o	occurred							

REGISTER 7-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3									
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0		
_	RTCIF	DMA5IF	DCIIF	DCIEIF	—	—	_		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
			_						
bit 7							bit C		
Legend:									
R = Readabl	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unkr			nown		
bit 15	Unimplemen	ted: Read as '	0'						
bit 14	RTCIF: Real-	Time Clock and	d Calendar In	terrupt Flag Sta	atus bit				
	1 = Interrupt request has occurred								
	0 = Interrupt i	equest has not	occurred						
bit 13	DMA5IF: DM	A Channel 5 Da	ata Transfer C	Complete Interr	upt Flag Status	bit			
		equest has occ							
	0 = Interrupt i	equest has not	cocurred						

REGISTER 7-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

DCIIF: DCI Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred

DCIEIF: DCI Error Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

Unimplemented: Read as '0'

bit 12

bit 11

bit 10-0

R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0			
DAC1LIF ⁽²⁾	DAC1RIF ⁽²⁾	00			00					
bit 15	DACTRIE	_	—	_						
							bit			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0			
_	C1TXIF ⁽¹⁾	DMA7IF	DMA6IF	CRCIF	U2EIF	U1EIF	_			
bit 7							bit			
Legend:										
R = Readable	hit	M = M/ritoblo	hit	LI – Unimplon	montod bit rook					
		W = Writable		•	nented bit, read		0.475			
-n = Value at F	POR	'1' = Bit is set	['0' = Bit is cle	ared	x = Bit is unkn	own			
bit 15	DAC1LIF: DA	C Left Chann	el Interrunt Fla	a Status hit(2)						
Sit TO	1 = Interrupt r		•	g clatac bit						
	0 = Interrupt r									
bit 14	DAC1RIF: DAC Right Channel Interrupt Flag Status bit ⁽²⁾									
	1 = Interrupt request has occurred									
	0 = Interrupt r	equest has no	t occurred							
bit 13-7	Unimplement	ed: Read as	0'							
bit 6	C1TXIF: ECAN1 Transmit Data Request Interrupt Flag Status bit ⁽¹⁾									
	1 = Interrupt request has occurred									
	0 = Interrupt request has not occurred									
bit 5	DMA7IF: DMA Channel 7 Data Transfer Complete Interrupt Flag Status bit									
	1 = Interrupt request has occurred									
bit 4	0 = Interrupt request has not occurred									
511 4	DMA6IF: DMA Channel 6 Data Transfer Complete Interrupt Flag Status bit 1 = Interrupt request has occurred									
	0 = Interrupt request has occurred									
bit 3	CRCIF: CRC Generator Interrupt Flag Status bit									
	1 = Interrupt request has occurred									
	0 = Interrupt request has not occurred									
bit 2	U2EIF: UART2 Error Interrupt Flag Status bit									
	1 = Interrupt request has occurred									
	0 = Interrupt request has not occurred									
bit 1	U1EIF: UART			bit						
	1 = Interrupt r 0 = Interrupt r									
hit O	•	•								
bit 0	Unimplement	eu: Read as	U							

-<u>____</u>

Note 1: Interrupts are disabled on devices without ECAN[™] modules.

2: Interrupts are disabled on devices without Audio DAC modules.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3) (CONTINUED)

- bit 3 CF: Clock Fail Detect bit (read/clear by application)
 - 1 = FSCM has detected clock failure
 - 0 = FSCM has not detected clock failure
- bit 2 Unimplemented: Read as '0'
- bit 1 LPOSCEN: Secondary (LP) Oscillator Enable bit
 - 1 = Enable secondary oscillator
 - 0 = Disable secondary oscillator
- bit 0 OSWEN: Oscillator Switch Enable bit
 - 1 = Request oscillator switch to selection specified by NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- **Note 1:** Writes to this register require an unlock sequence. Refer to **Section 39. "Oscillator (Part III)"** (DS70216) in the *"dsPIC33F/PIC24H Family Reference Manual"* (available from the Microchip website) for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - **3:** This register is reset only on a Power-on Reset (POR).

11.6.3 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. dsPIC33F devices include three features to prevent alterations to the peripheral map:

- Control register lock sequence
- Continuous state monitoring
- Configuration bit pin select lock

11.6.3.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 0x46 to OSCCON<7:0>.
- 2. Write 0x57 to OSCCON<7:0>.
- 3. Clear (or set) IOLOCK as a single operation.

Note: MPLAB[®] C30 provides built-in C language functions for unlocking the OSCCON register: __builtin_write_OSCCONL(value) __builtin_write_OSCCONH(value) See MPLAB Help for more information.

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the peripheral pin selects to be configured with a single unlock sequence followed by an update to all control registers, then locked with a second lock sequence.

11.6.3.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a configuration mismatch Reset is triggered.

11.6.3.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY configuration bit (FOSC<5>) blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure does not execute, and the peripheral pin select control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows user applications unlimited access (with the proper use of the unlock sequence) to the peripheral pin select registers.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

REGISTER 11-4: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4									
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
_					T5CKR<4:0	>			
bit 15							bit		
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
_	—	—			T4CKR<4:0	>			
bit 7							bit		
Legend:									
R = Readabl	le bit	W = Writable I	oit	U = Unimpler	mented bit, rea	ad as '0'			
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkı	s unknown		
	11001 = Inpl	ut tied to RP25							
		ut tied to RP1 ut tied to RP0							
bit 7-5	Unimplemer	nted: Read as 'o)'						
bit 4-0	T4CKR<4:0>	T4CKR<4:0>: Assign Timer4 External Clock (T4CK) to the corresponding RPn pin							
	11111 = Input tied to Vss 11001 = Input tied to RP25								
	•								
	•								
	•								
		ut tied to RP1 ut tied to RP0							

REGISTER 11-4: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4

12.0 TIMER1

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 11. "Timers" (DS70205) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer, which can serve as the time counter for the real-time clock, or operate as a free-running interval timer/counter.

The Timer1 module has the following unique features over other timers:

- Can be operated from the low power 32 kHz crystal oscillator available on the device
- Can be operated in Asynchronous Counter mode from an external clock source.
- The external clock input (T1CK) can optionally be synchronized to the internal device clock and the clock synchronization is performed after the prescaler.

The unique features of Timer1 allow it to be used for Real-Time Clock (RTC) applications. A block diagram of Timer1 is shown in Figure 12-1.

The Timer1 module can operate in one of the following modes:

- Timer mode
- · Gated Timer mode
- Synchronous Counter mode
- Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer modes are determined by the following bits:

- Timer Clock Source Control bit (TCS): T1CON<1>
- Timer Synchronization Control bit (TSYNC): T1CON<2>
- Timer Gate Control bit (TGATE): T1CON<6>

Timer control bit setting for different operating modes are given in the Table 12-1.

TABLE 12-1: TIMER MODE SETTINGS

Mode	TCS	TGATE	TSYNC
Timer	0	0	Х
Gated timer	0	1	х
Synchronous counter	1	х	1
Asynchronous counter	1	х	0

FIGURE 12-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

16.3 SPI Control Registers

REGISTER 16-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
SPIEN		SPISIDL	_	—		_	_
bit 15							bit 8
U-0	R/C-0	U-0	U-0	U-0			
0-0	SPIROV	0-0	0-0	0-0	U-0	R-0	R-0 SPIRBF
 bit 7	SPIROV	—		—		SPITBF	bit (
Legend:		C = Clearable	bit				
R = Readab		W = Writable	bit	•	mented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 14 bit 13 bit 12-7 bit 6	SPISIDL: Sto 1 = Discontinue 0 = Continue Unimplemen SPIROV: Rec 1 = A new by previous	module ted: Read as '(p in Idle Mode ue module operati module operati ted: Read as '(ceive Overflow I /te/word is com data in the SPI low has occurre	bit ration when de on in Idle mod o' Flag bit pletely receive xBUF register	de ed and discard		oftware has not	read the
bit 5-2		ted: Read as '					
bit 1	•			bit			
	 SPITBF: SPIx Transmit Buffer Full Status bit 1 = Transmit not yet started, SPIxTXB is full 0 = Transmit started, SPIxTXB is empty Automatically set in hardware when CPU writes SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR. 						
bit 0	1 = Receive o 0 = Receive is Automatically	x Receive Buffe complete, SPIxI s not complete, set in hardward cleared in hard	RXB is full SPIxRXB is e e when SPIx t	empty rransfers data t			ί Β .

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	_	—	—	AMSK9	AMSK8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = B		x = Bit is unkr	nown				

bit 15-10 Unimplemented: Read as '0'

bit 9-0 AMSKx: Mask for Address Bit x Select bit

1 = Enable masking for bit x of incoming message address; bit match not required in this position

0 = Disable masking for bit x; bit match required in this position

R-0	R/W-0							
		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
BUSY	IRQI	M<1:0>	INCM	<1:0>	MODE16	MODE	<1:0>	
bit 15							bit	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
WAITB	<1:0> ⁽¹⁾		WAITI	M<3:0>		WAITE<	:1:0> ⁽¹⁾	
bit 7							bit	
Legend:								
R = Readable	bit	W = Writable I	oit	U = Unimpler	mented bit, read	as '0'		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own	
bit 15	BUSY: Busv	bit (Master mod	le onlv)					
		usy (not useful w		essor stall is a	ctive)			
	0 = Port is no	2 (,			
bit 14-13	IRQM<1:0>:	Interrupt Reque	est Mode bits					
	or on a 10 = No inte 01 = Interrup	read or write op rrupt generated, ot generated at tl	eration when l processor sta	PMA<1:0> = 1 all activated	Write Buffer 3 is v 11 (Addressable le			
		rrupt generated						
bit 12-11		Increment Mode						
					PSP mode only	()		
	10 = Decrement ADDR<10:0> by 1 every read/write cycle 01 = Increment ADDR<10:0> by 1 every read/write cycle							
		ement or decren		•	-			
bit 10	MODE16: 8-	bit/16-bit Mode I	bit					
					o the data registe he data register			
bit 9-8	MODE<1:0>	: Parallel Port M	lode Select bit	ts				
	11 = Master mode 1 (PMCS1, PMRD/PMWR, PMENB, PMBE, PMA <x:0> and PMD<7:0>)</x:0>							
	10 = Master mode 2 (PMCS1, PMRD, PMWR, PMBE, PMA <x:0> and PMD<7:0>) 01 = Enhanced PSP, control signals (PMRD, PMWR, PMCS1, PMD<7:0> and PMA<1:0>)</x:0>							
					MCS1, PMD<7:0 PMWR, PMCS ²			
bit 7-6		Parallel Slave F : Data Setup to					-)	
011 7-0		ait of 4 TCY; mult						
		ait of 3 Tcy; mult						
		ait of 2 Tcy; mult						
	00 = Data w a	ait of 1 Tcy; mult	tiplexed addre	ess phase of 1	Тсү			
bit 5-2	WAITM<3:0	Read to Byte	Enable Strobe	e Wait State Co	onfiguration bits			
	1111 = Wait	of additional 15	TCY					
	•							
	•							
		of additional 1 T	÷ ·	n forced into a				
		dditional wait cy						
bit 1-0		Data Hold Afte	a Shope walt	State Configu	ation bits."			
	11 = Wait of							
	$ \rangle = vvalion$	5 ICY						
	10 = Wait of 01 = Wait of							

DMMODE, DADALLEL DODT MODE DECISTED

Note 1: WAITB and WAITE bits are ignored whenever WAITM3:WAITM0 = 0000.

-n = Value at POR '1' = Bit is set			0' = Bit is cleared x = Bit is unk			nown	
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
Legend:							
bit 7							bit (
			ADD	R<7:0>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
	031			ADDF	<13.0>		1.11
ADDR15	CS1				<13:8>		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 15	ADDR15: Parallel Port Destination Address bits
bit 14	CS1: Chip Select 1 bit
	1 = Chip select 1 is active
	0 = Chip select 1 is inactive
bit 13-0	ADDR13:ADDR0: Parallel Port Destination Address bits

REGISTER 26-4: PMAEN: PARALLEL PORT ENABLE REGISTER

U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	PTEN14	—	—	—	F	PTEN<10:8> ⁽¹⁾)
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN<7:2> ⁽¹⁾						PTEN	<1:0>
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14	PTEN14: PMCS1 Strobe Enable bit
	 1 = PMA14 functions as either PMA<14> bit or PMCS1 0 = PMA14 pin functions as port I/O
bit 13-11	Unimplemented: Read as '0'
bit 10-2	PTEN<10:2>: PMP Address Port Enable bits ⁽¹⁾
	1 = PMA<10:2> function as PMP address lines0 = PMA<10:2> function as port I/O
bit 1-0	PTEN<1:0>: PMALH/PMALL Strobe Enable bits
	 1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL 0 = PMA1 and PMA0 pads functions as port I/O

Note 1: Devices with 28 pins do not have PMA<10:2>.

TABLE 30-7:	DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)
-------------	--

TABLE 30-7:		AC I ERIS	HC2: POW	ER-DOWN	CURREN	I (IPD)			
DC CHARACI	TERISTICS		(unless oth	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Parameter No. ⁽³⁾	Typical ⁽²⁾	Max	Units	Units Conditions					
Power-Down	Current (IPD)	(1)							
DC60d	24	68	μA	-40°C					
DC60a	28	87	μA	+25°C	3.3∨	Base Power-Down Current ^(3,4)			
DC60b	124	292	μA	+85°C	3.3V	Base Power-Down Currents?			
DC60c	350	1000	μA	+125°C					
DC61d	8	13	μA	-40°C					
DC61a	10	15	μA	+25°C	3.3∨	Watchdog Timer Current: ∆IwDT ^(3,5)			
DC61b	12	20	μA	+85°C	3.3V				
DC61c	13	25	μA	+125°C	1				

Note 1: IPD (Sleep) current is measured as follows:

 CPU core is off (i.e., Sleep mode), oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

• CLKO is configured as an I/O input pin in the Configuration word

· All I/O pins are configured as inputs and pulled to Vss

• MCLR = VDD, WDT and FSCM are disabled, all peripheral modules are disabled (PMDx bits are all '1's)

- RTCC is disabled
- · JTAG is disabled
- 2: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.
- **3:** The Watchdog Timer Current is the additional current consumed when the WDT module is enabled. This current should be added to the base IPD current.
- 4: These currents are measured on the device containing the most memory in this family.
- 5: These parameters are characterized, but are not tested in manufacturing.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

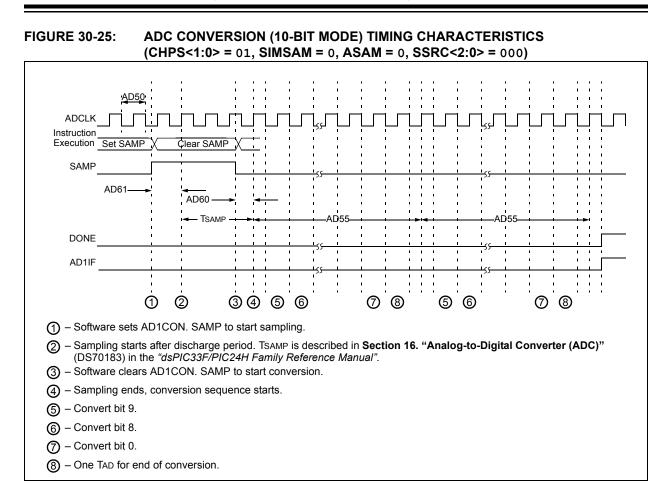
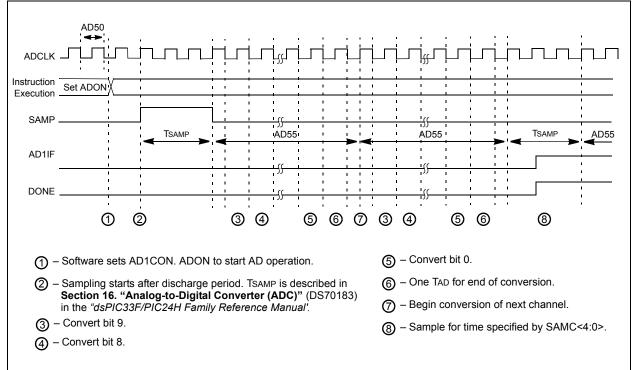



FIGURE 30-26:ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01,
SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)

© 2007-2012 Microchip Technology Inc.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+150°C for High Temperat				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions
		Program Flash Memory					
HD130	Eр	Cell Endurance	10,000	—	_	E/W	-40° C to +150°C ⁽²⁾
HD134	TRETD	Characteristic Retention	20	—	—	Year	1000 E/W cycles or less and no other specifications are violated

TABLE 31-7: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: These parameters are assured by design, but are not characterized or tested in manufacturing.

2: Programming of the Flash memory is allowed up to 150°C.

TABLE 31-17:	ADC CONVERSION	12-BIT MODE) TIMING REQUIREMENTS
--------------	----------------	-------------	-----------------------

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature-40°C ≤TA ≤+150°C for High Temperature								
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions			
Clock Parameters										
1										
HAD50	Tad	ADC Clock Period ⁽¹⁾	147	_	_	ns	—			
HAD50	TAD		147 version R	 Late	_	ns				

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 31-18: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \leq TA \leq +150^{\circ}C$ for High Temperature								
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions			
Clock Parameters										
HAD50	Tad	ADC Clock Period ⁽¹⁾	104	—		ns	—			
Conversion Rate										
HAD56	FCNV	Throughput Rate ⁽¹⁾	_	—	800	Ksps	_			

Note 1: These parameters are characterized but not tested in manufacturing.