

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DCI, DMA, I ² S, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gp204-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2.5 X AND Y DATA SPACES

The core has two data spaces, X and Y. These data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X data space is used by all instructions and supports all addressing modes. X data space has separate read and write data buses. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space.

All data memory writes, including in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable.

All effective addresses are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes, or 32K words, though the implemented memory locations vary by device.

4.2.6 DMA RAM

Every dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 device contains up to 2 Kbytes of dual ported DMA RAM located at the end of Y data space, and is part of Y data space. Memory locations in the DMA RAM space are accessible simultaneously by the CPU and the DMA controller module. DMA RAM is utilized by the DMA controller to store data to be transferred to various peripherals using DMA, as well as data transferred from various peripherals using DMA. The DMA RAM can be accessed by the DMA controller without having to steal cycles from the CPU.

When the CPU and the DMA controller attempt to concurrently write to the same DMA RAM location, the hardware ensures that the CPU is given precedence in accessing the DMA RAM location. Therefore, the DMA RAM provides a reliable means of transferring DMA data without ever having to stall the CPU.

Note:	DMA	RAM	can	be	used	for	general
	purpo	se data	a stora	age	if the D	DMA	function
	is not	require	ed in a	an ap	oplicati	on.	

4.3 Memory Resources

Many useful resources related to Memory Organization are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en532311

4.3.1 KEY RESOURCES

- Section 2. "Program Memory" (DS70203)
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

Special Function Register Maps 4.4

TABLE 4-1: **CPU CORE REGISTERS MAP**

DS
02
920
μ
age
4

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000								Working Re	gister 0								0000
WREG1	0002								Working Re	gister 1								0000
WREG2	0004								Working Re	gister 2								0000
WREG3	0006								Working Re	gister 3								0000
WREG4	0008								Working Re	gister 4								0000
WREG5	000A								Working Re	gister 5								0000
WREG6	000C								Working Re	gister 6								0000
WREG7	000E								Working Re	gister 7								0000
WREG8	0010								Working Re	gister 8								0000
WREG9	0012								Working Re	gister 9								0000
WREG10	0014							,	Working Reg	jister 10								0000
WREG11	0016								Working Reg	jister 11								0000
WREG12	0018							,	Working Reg	jister 12								0000
WREG13	001A							,	Working Reg	jister 13								0000
WREG14	001C								Working Reg	jister 14								0000
WREG15	001E								Working Reg	jister 15								0800
SPLIM	0020							Stac	k Pointer Lir	nit Register								XXXX
ACCAL	0022								ACCA	L								XXXX
ACCAH	0024								ACCA	Н								XXXX
ACCAU	0026				ACCA<	39>							AC	CAU				XXXX
ACCBL	0028								ACCB	L								XXXX
ACCBH	002A								ACCB	H								XXXX
ACCBU	002C				ACCB<	39>							AC	CBU				XXXX
PCL	002E			-				Program	Counter Lov	v Word Reg	ister							XXXX
PCH	0030	—	_	—	—	_	_		—			Progra	m Counter	High Byte R	egister			0000
TBLPAG	0032	—	_	—	—	_	_	_	—			Table F	Page Addre	ss Pointer R	egister			0000
PSVPAG	0034	_	_	—	—	_	_	—	—		Progr	am Memory	/ Visibility P	age Address	s Pointer Re	gister		0000
RCOUNT	0036							Repe	at Loop Cou	nter Registe	r							XXXX
DCOUNT	0038								DCOUNT<	:15:0>								XXXX
DOSTARTL	003A							DOST	ARTL<15:1	>							0	XXXX
DOSTARTH	003C	—	—	—	—	_	—	—	—	—	—			DOSTAR	RTH<5:0>			00xx
DOENDL	003E							DOE	NDL<15:1>								0	XXXX
DOENDH	0040	_	_	—	—	_	—	—	—	- – DOENDH							00xx	
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC		IPL<2:0>		RA	N	OV	Z	С	0000
CORCON	0044	_	_	_	US	EDT		DL<2:0>		SATA	SATB	SATDW	ACCSAT	IPL3	PSV	RND	IF	0020
Legend:	x = unkno	own value on I	Reset, — = ı	unimplemer	ited, read a	s '0'. Rese	t values are	e shown in l	hexadecima	I.								

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

© 2007-2012 Microchip Technology Inc.

TABLE 4-19: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 1(FOR dsPIC33FJ128GP802/804 AND dsPIC33FJ64GP802/804) (CONTINUED)

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1RXF11EID	046E				EID<	:15:8>							EID<	7:0>				XXXX
C1RXF12SID	0470				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	XXXX
C1RXF12EID	0472				EID<	:15:8>							EID<	7:0>				XXXX
C1RXF13SID	0474				SID<	:10:3>				SID<2:0> — EXIDE — EID<17:16>						XXXX		
C1RXF13EID	0476				EID<	:15:8>							EID<	7:0>				XXXX
C1RXF14SID	0478				SID<	:10:3>					SID<2:0>		_	EXIDE	—	EID<1	7:16>	XXXX
C1RXF14EID	047A				EID<	:15:8>							EID<	7:0>				XXXX
C1RXF15SID	047C				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	XXXX
C1RXF15EID	047E				EID<	:15:8>							EID<	7:0>				XXXX

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-20: DCI REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
DCICON1	0280	DCIEN	_	DCISIDL	—	DLOOP	CSCKD	CSCKE	COFSD	UNFM	CSDOM	DJST	_	—	—	COFSM1	COFSM0	0000 0000 0000 0000
DCICON2	0282	—	_	—	—	BLEN1	BLEN0	_		COFS	G<3:0>				V	VS<3:0>		0000 0000 0000 0000
DCICON3	0284	_	_	_	—						BCG<11	:0>						0000 0000 0000 0000
DCISTAT	0286	_	_	—	—	SLOT3	SLOT2	SLOT1	SLOT0	—	—	-		ROV	RFUL	TUNF	TMPTY	0000 0000 0000 0000
TSCON	0288	TSE15	TSE14	TSE13	TSE12	TSE11	TSE10	TSE9	TSE8	TSE7	TSE6	TSE5	TSE4	TSE3	TSE2	TSE1	TSE0	0000 0000 0000 0000
RSCON	028C	RSE15	RSE14	RSE13	RSE12	RSE11	RSE10	RSE9	RSE8	RSE7	RSE6	RSE5	RSE4	RSE3	RSE2	RSE1	RSE0	0000 0000 0000 0000
RXBUF0	0290							Receive I	Buffer 0 Da	ata Regis	ter							0000 0000 0000 0000
RXBUF1	0292							Receive I	Buffer 1 Da	ata Regis	ter							0000 0000 0000 0000
RXBUF2	0294							Receive I	Buffer 2 Da	ata Regis	ter							0000 0000 0000 0000
RXBUF3	0296							Receive I	Buffer 3 Da	ata Regis	ter							0000 0000 0000 0000
TXBUF0	0298							Transmit	Buffer 0 Da	ata Regis	ter							0000 0000 0000 0000
TXBUF1	029A							Transmit	Buffer 1 Da	ata Regis	ter							0000 0000 0000 0000
TXBUF2	029C							Transmit	Buffer 2 Da	ata Regis	ter							0000 0000 0000 0000
TXBUF3	029E							Transmit	Buffer 3 Da	ata Regis	ter							0000 0000 0000 0000

Legend: — = unimplemented, read as '0'.

TABLE 4-26: REAL-TIME CLOCK AND CALENDAR REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ALRMVAL	0620						Alarr	m Value Regis	ter Window ba	sed on APT	R<1:0>							XXXX
ALCFGRPT	0622	ALRMEN	CHIME		AMASK	<<3:0>		ALRMP	TR<1:0>	ARPT<7:-0>								0000
RTCVAL	0624						RTCC	Value Registe	er Window bas	ed on RTCF	PTR<1:0>							XXXX
RCFGCAL	0626	RTCEN	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPT	⁻ R<1:0>	CAL<7:0>							0000	
PADCFG1	02FC	—	_	—	_	—	_	—	—	—	—	—	—	_		RTSECSEL	PMPTTL	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-27: CRC REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CRCCON	0640	—	_	CSIDL		V	/WORD<4:0	>		CRCFUL	CRCMPT	—	CRCGO	PLEN<3:0>				0000
CRCXOR	0642								X<1	5:0>								0000
CRCDAT	0644								CRC Data Ir	nput Register	r							0000
CRCWDAT	0646								CRC Resi	ult Register								0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-28: DUAL COMPARATOR REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMCON	0630	CMIDL	—	C2EVT	C1EVT	C2EN	C1EN	C2OUTEN	C1OUTEN	C2OUT	C1OUT	C2INV	C1INV	C2NEG	C2POS	C1NEG	C1POS	0000
CVRCON	0632	—	-	-	_		-	_	_	CVREN	CVROE	CVRR	CVRSS		CVR	<3:0>		0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-29: PORTA REGISTER MAP FOR dsPIC33FJ128GP202/802, dsPIC33FJ64GP202/802 AND dsPIC33FJ32GP302

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	-	—	_	-	-	—	_	—	-	-	—	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	001F
PORTA	02C2	—	—	_	-	—	—	_	_	_	-	—	RA4	RA3	RA2	RA1	RA0	XXXX
LATA	02C4	—	_	_	—	—	—	_	_	_	—	—	LATA4	LATA3	LATA2	LATA1	LATA0	XXXX
ODCA	02C6	_	_		_	_	_			_	_	_	_	_	_	_	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

© 2007-2012 Microchip Technology Inc.

7.5 CPU Registers

REGISTER /-1: SR: CPU STATUS REGISTER ''
--

bit 15							bit 8
OA	OB	SA	SB	OAB	SAB	DA	DC
R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R -0	R/W-0

R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	IPL<2:0> ^(2,3)		RA	Ν	OV	Z	С
bit 7							bit 0

Legend:			
C = Clear only bit	R = Readable bit	U = Unimplemented bit, read as '0'	
S = Set only bit	W = Writable bit	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits⁽²⁾

111 = CPU Interrupt Priority Level is 7 (15), user interrupts are disabled

- 110 = CPU Interrupt Priority Level is 6 (14)
- 101 = CPU Interrupt Priority Level is 5 (13)
- 100 = CPU Interrupt Priority Level is 4 (12)
- 011 = CPU Interrupt Priority Level is 3 (11)
- 010 = CPU Interrupt Priority Level is 2 (10)
- 001 = CPU Interrupt Priority Level is 1 (9)
- 000 = CPU Interrupt Priority Level is 0 (8)

Note 1: For complete register details, see Register 3-1.

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
- 3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
—	—	—	US	EDT		DL<2:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF
bit 7							bit 0
Legend:		C = Clear only	/ bit				
R = Readable	bit	W = Writable bit		-n = Value at POR		'1' = Bit is set	
0' = Bit is cleared 'x = Bit is unknow		nown	U = Unimplemented bit, read as '0'				
bit 3	IPL3: CPU Int	terrupt Priority	Level Status I	oit 3 ⁽²⁾			
	1 = CPU inter	rupt priority lev	el is greater t	han 7			

0 = CPU interrupt priority level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

					<u> </u>	<u> </u>				
	DMA4IF	PMPIF		—	<u> </u>					
bit 15							bit 8			
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—	—	DMA3IF	C1IF ⁽¹⁾	C1RXIF ⁽¹⁾	SPI2IF	SPI2EIF			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown			
			- 1							
DIT 15	Unimplement	ted: Read as "				.,				
bit 14		A Channel 4 D	ata Transfer C	complete Interi	rupt Flag Status t	Dit				
	\perp = Interrupt n	equest has oc equest has no	currea t occurred							
bit 13	PMPIF: Paral	lel Master Port	Interrupt Flac	ı Status bit						
	1 = Interrupt r	1 = Interrupt request has occurred								
	0 = Interrupt r	equest has no	t occurred							
bit 12-5	Unimplement	ted: Read as '	0'							
bit 4	DMA3IF: DMA	A Channel 3 D	ata Transfer C	Complete Interr	rupt Flag Status b	pit				
	1 = Interrupt r	request has occurred								
	0 = Interrupt r	equest has no	toccurred	(1)						
bit 3	C1IF: ECAN1	Event Interrup	ot Flag Status	bit ⁽¹⁾						
	1 = Interrupt request has occurred									
hit 2	C1RXIE: ECA	N1 Receive D	ata Ready Inte	errunt Elan Sta	itus bit(1)					
SIL Z	1 = Interrupt request has occurred									
	0 = Interrupt request has not occurred									
bit 1	SPI2IF: SPI2	Event Interrup	t Flag Status b	bit						
	1 = Interrupt r	equest has oc	curred							
	0 = Interrupt r	equest has no	t occurred							
bit 0	SPI2EIF: SPI2	2 Error Interrup	ot Flag Status	bit						
	1 = Interrupt n	equest has oc	curred							

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

Note 1: Interrupts are disabled on devices without ECAN[™] modules.

REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)

bit 2	CMIE: Comparator Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 1	MI2C1IE: I2C1 Master Events Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 0	SI2C1IE: I2C1 Slave Events Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled

REGISTER 11-17: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			RP1R<4:0>		
bit 15		•					bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP0R<4:0>		
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			

bit 15-13	Unimplemented: Read as '0'
-----------	----------------------------

bit 12-8 **RP1R<4:0>:** Peripheral Output Function is Assigned to RP1 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP0R<4:0>:** Peripheral Output Function is Assigned to RP0 Output Pin bits (see Table 11-2 for peripheral function numbers)

REGISTER 11-18: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP3R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP2R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP3R<4:0>:** Peripheral Output Function is Assigned to RP3 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP2R<4:0>:** Peripheral Output Function is Assigned to RP2 Output Pin bits (see Table 11-2 for peripheral function numbers)

8 ⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	—			RP17R<4:0>	>		
bit 15							bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	—			RP16R<4:0>	>		
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			nown	

bit 15-13	Unimplemented: Read as '0'
bit 12-8	RP17R<4:0>: Peripheral Output Function is Assigned to RP17 Output Pin bits (see Table 11-2 for peripheral function numbers)
bit 7-5	Unimplemented: Read as '0'
bit 4-0	RP16R<4:0>: Peripheral Output Function is Assigned to RP16 Output Pin bits (see Table 11-2 for peripheral function numbers)

Note 1: This register is implemented in 44-pin devices only.

REGISTER 11-26: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—		RP19R<4:0>				
bit 15			bit 8				
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP18R<4:0>				
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP19R<4:0>:** Peripheral Output Function is Assigned to RP19 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP18R<4:0>:** Peripheral Output Function is Assigned to RP18 Output Pin bits (see Table 11-2 for peripheral function numbers)

Note 1: This register is implemented in 44-pin devices only.

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
FRMEN	SPIFSD	FRMPOL	—	_	_	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	
					<u> </u>	FRMDLY	_	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown					
bit 15	FRMEN: Fran	med SPIx Supp	ort bit					
	1 = Framed S	SPIx support en	abled (SSx p	in used as fram	ne sync pulse i	nput/output)		
1.11.4.4								
DIT 14	SPIFSD: Frai	me Sync Pulse	Direction Co	ntroi dit				
	1 = Frame sy 0 = Frame sy	nc puise input (nc puise outpui	(master)					
bit 13	FRMPOL: Fra	ame Svnc Puls	e Polarity bit					
1 = Frame sync pulse is active-high								
0 = Frame sync pulse is active-low								
bit 12-2	Unimplemented: Read as '0'							
bit 1	FRMDLY: Frame Sync Pulse Edge Select bit							
	1 = Frame sy	nc pulse coinci	des with first	bit clock				
	0 = Frame sy	nc pulse prece	des first bit cl	ock				

REGISTER 16-3: SPIxCON2: SPIx CONTROL REGISTER 2

bit 0 **Unimplemented:** Read as '0' This bit must not be set to '1' by the user application. FIGURE 17-1: I^2C^{TM} BLOCK DIAGRAM (x = 1)

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

REGISTER 19-8: CIEC: ECAN™ TRANSMIT/RECEIVE ERROR COUNT REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			TERRO	CNT<7:0>			
bit 15	bit 15 bit 8						
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
RERRCNT<7:0>							
bit 7							bit 0
Legend: C = Writable bit, but only '0' can be written to clear the bit							
R = Readable bit W = Writable bit U =			U = Unimplem	ented bit, read	l as '0'		
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	red	x = Bit is unknown		

bit 15-8	TERRCNT<7:0>: Transmit Error Count bits
bit 7-0	RERRCNT<7:0>: Receive Error Count bits

REGISTER 19-9: CICFG1: ECAN™ BAUD RATE CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	_
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SJW<1:0>			BRP<5:0>					
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'				
bit 7-6	SJW<1:0>: Synchronization Jump Width bits				
	11 = Length is 4 x TQ				
	$10 = \text{Length is } 3 \times \text{TQ}$				
	01 = Length is 2 x TQ				
	00 = Length is 1 x TQ				
bit 5-0	BRP<5:0>: Baud Rate Prescaler bits				
	11 1111 = TQ = 2 x 64 x 1/FCAN				
	•				
	•				
	•				
	00 0010 = Tq = 2 x 3 x 1/Fcan				
	00 0001 = TQ = 2 x 2 x 1/FCAN				
	00 0000 = Tq = 2 x 1 x 1/FCAN				

21.4 ADC Helpful Tips

- 1. The SMPI<3:0> (AD1CON2<5:2>) control bits:
 - a) Determine when the ADC interrupt flag is set and an interrupt is generated if enabled.
 - b) When the CSCNA bit (AD1CON2<10>) is set to '1', determines when the ADC analog scan channel list defined in the AD1CSSL/ AD1CSSH registers starts over from the beginning.
 - c) On devices without a DMA peripheral, determines when ADC result buffer pointer to ADC1BUF0-ADC1BUFF, gets reset back to the beginning at ADC1BUF0.
- On devices without a DMA module, the ADC has 16 result buffers. ADC conversion results are stored sequentially in ADC1BUF0-ADC1BUFF regardless of which analog inputs are being used subject to the SMPI<3:0> bits (AD1CON2<5:2>) and the condition described in 1c above. There is no relationship between the ANx input being measured and which ADC buffer (ADC1BUF0-ADC1BUFF) that the conversion results will be placed in.
- On devices with a DMA module, the ADC module has only 1 ADC result buffer, (i.e., ADC1BUF0), per ADC peripheral and the ADC conversion result must be read either by the CPU or DMA controller before the next ADC conversion is complete to avoid overwriting the previous value.
- 4. The DONE bit (AD1CON1<0>) is only cleared at the start of each conversion and is set at the completion of the conversion, but remains set indefinitely even through the next sample phase until the next conversion begins. If application code is monitoring the DONE bit in any kind of software loop, the user must consider this behavior because the CPU code execution is faster than the ADC. As a result, in manual sample mode, particularly where the users code is setting the SAMP bit (AD1CON1<1>), the DONE bit should also be cleared by the user application just before setting the SAMP bit.
- 5. On devices with two ADC modules, the ADCxPCFG registers for both ADC modules must be set to a logic '1' to configure a target I/O pin as a digital I/O pin. Failure to do so means that any alternate digital input function will always see only a logic '0' as the digital input buffer is held in Disable mode.

21.5 ADC Resources

Many useful resources related to ADC are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en532311

21.5.1 KEY RESOURCES

- Section 16. "Analog-to-Digital Converter (ADC)" (DS70183)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

21.6 **ADC Control Registers**

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
ADON	—	ADSIDL	ADDMABM	_	AD12B	FORM	1<1:0>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/C-0
						HC,HS	HC, HS
	SSRC<2:0>		_	SIMSAM	ASAM	SAMP	DONE
bit 7							bit 0

REGISTER 21-1: AD1CON1: ADC1 CONTROL REGISTER 1

L :1	~
- 111	

Legend:	HC = Cleared by hardware	HS = Set by hardware	C = Clear only bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15	ADON: ADC Operating Mode bit
	1 = ADC module is operating
	0 = ADC is off
bit 14	Unimplemented: Read as '0'
bit 13	ADSIDL: Stop in Idle Mode bit
	 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode
bit 12	ADDMABM: DMA Buffer Build Mode bit
	 1 = DMA buffers are written in the order of conversion. The module provides an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer 0 = DMA buffers are written in Scatter/Gather mode. The module provides a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer
bit 11	Unimplemented: Read as '0'
bit 10	AD12B: 10-bit or 12-bit Operation Mode bit
	1 = 12-bit, 1-channel ADC operation
	0 = 10-bit, 4-channel ADC operation
bit 9-8	FORM<1:0>: Data Output Format bits
	For 10-bit operation: 11 = Signed fractional (Dout = sddd dddd dd00 0000, where s =.NOT.d<9>) 10 = Fractional (Dout = dddd dddd dd00 0000) 11 = Signed integer (Dout = agag, gagd dddd dddd where g = NOT.d<9>)
	00 = Integer (DOUT = 0000 00dd dddd dddd)
	For 12-bit operation:
	11 = Signed fractional (Dout = sddd dddd dddd 0000, where s = .NOT.d<11>) 10 = Fractional (Dout = dddd dddd dddd 0000)
	01 = Signed Integer (Dout = ssss sddd dddd dddd, where s = .NOT.d<11>) 00 = Integer (Dout = 0000 dddd dddd dddd)
bit 7-5	SSRC<2:0>: Sample Clock Source Select bits
	 111 = Internal counter ends sampling and starts conversion (auto-convert) 110 = Reserved 101 = Reserved
	100 = GP timer (Timer5 for ADC1) compare ends sampling and starts conversion011 = Reserved
	 010 = GP timer (Timer3 for ADC1) compare ends sampling and starts conversion 001 = Active transition on INT0 pin ends sampling and starts conversion 000 = Clearing sample bit ends sampling and starts conversion
bit 4	Unimplemented: Read as '0'

DC CHARACTERISTICS			Standard Oper (unless otherw Operating temp	onditions: 3.0V to 3.6V ted) -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended			
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
DI60a	licl	Input Low Injection Current	0		_5(5,8)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, SOSCI, SOSCO, and RB14
DI60b	Іісн	Input High Injection Current	0		+5 ^(6,7,8)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, SOSCI, SOSCO, RB14, and digital 5V-tol- erant designated pins
DI60c	Яист	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁹⁾	_	+20 ⁽⁹⁾	mA	Absolute instantaneous sum of all ± input injection currents from all I/O pins (IICL + IICH) ≤∄ICT

TABLE 30-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: See the "Pin Diagrams" section for the 5V tolerant I/O pins.
- 5: VIL source < (Vss 0.3). Characterized but not tested.
- **6:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

FIGURE 30-5: TIMER1, 2, 3 AND 4 EXTERNAL CLOCK TIMING CHARACTERISTICS

TABLE 30-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Charact	teristic		Min	Тур	Мах	Units	Conditions	
TA10	ТтхН	TxCK High Time	Synchror no presc	nous, aler	Tcy + 20			ns	Must also meet parameter TA15.	
			Synchror with pres	nous, scaler	(Tcy + 20)/N	—	_	ns	N = prescale value	
			Asynchro	onous	20	_	—	ns	(1, 8, 64, 256)	
TA11	ΤτχL	L TxCK Low Time	Synchror no presc	nous, aler	(Tcy + 20)		—	ns	Must also meet parameter TA15.	
			Synchror with pres	nous, scaler	(Tcy + 20)/N	_	—	ns	N = prescale value	
			Asynchro	onous	20	_	_	ns	(1, 8, 64, 256)	
TA15	ΤτχΡ	TxCK Input Period	Synchror no presc	nous, aler	2 Tcy + 40	_	—	ns	—	
			Synchror with pres	nous, scaler	Greater of: 40 ns or (2 Tcy + 40)/ N	_	_	_	N = prescale value (1, 8, 64, 256)	
			Asynchro	onous	40		—	ns	—	
OS60	Ft1	SOSCI/T1CK Osc frequency Range enabled by setting (T1CON<1>))	escillator Input ge (oscillator ing bit TCS		DC	_	50	kHz	_	
TA20	TCKEXTMRL	Delay from Extern Edge to Timer Inc	nal TxCK C crement	Clock	0.75 Tcy + 40	_	1.75 Tcy + 40	—	—	

Note 1: Timer1 is a Type A.

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param No.	Symbol	Characteristic	Min.	Typ ⁽²⁾	Max.	Units	Conditions			
		Clock	Paramet	ers ⁽¹⁾						
AD50	TAD	ADC Clock Period	76	_	_	ns	—			
AD51	tRC	ADC Internal RC Oscillator Period	—	250	-	ns	—			
	Conversion Rate									
AD55	tCONV	Conversion Time	—	12 Tad		—	—			
AD56	FCNV	Throughput Rate	—	—	1.1	Msps	—			
AD57	TSAMP	Sample Time	2 Tad	—	_	—	—			
		Timin	g Param	eters						
AD60	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2 Tad	-	3 Tad	—	Auto-Convert Trigger not selected			
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2 Tad	—	3 Tad	—	_			
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾	—	0.5 TAD	_	—	—			
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)	_	_	20	μs	_			

TABLE 30-45: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

Note 1: Because the sample caps eventually loses charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

2: These parameters are characterized but not tested in manufacturing.

3: The tDPU is the time required for the ADC module to stabilize at the appropriate level when the module is turned on ADON bit (AD1CON1<15>) = 1. During this time, the ADC result is indeterminate.

|--|

AC/DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Conditions		
		Clo	ock Para	ameters				
DA01	VOD+	Positive Output Differential Voltage	1	1.15	2	V	Vod+ = Vdach – Vdacl See Note 1, 2	
DA02	Vod-	Negative Output Differential Voltage	-2	-1.15	-1	V	Vod- = Vdacl – Vdach See Note 1, 2	
DA03	Vres	Resolution	_	16	—	bits	_	
DA04	Gerr	Gain Error	—	3.1	—	%	—	
DA08	FDAC	Clock frequency	_	_	25.6	MHz	—	
DA09	FSAMP	Sample Rate	0	—	100	kHz	_	
DA10	FINPUT	Input data frequency	0	_	45	kHz	Sampling frequency = 100 kHz	
DA11	TINIT	Initialization period	1024	_	_	Clks	Time before first sample	
DA12	SNR	Signal-to-Noise Ratio	_	61		dB	Sampling frequency = 96 kHz	

Note 1: Measured VDACH and VDACL output with respect to Vss, with 15 µA load and FORM bit (DACxCON<8>) = 0.

^{2:} This parameter is tested at $-40^{\circ}C \leq TA \leq 85^{\circ}C$ only.

TABLE 30-47: COMPARATOR TIMING SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic	Min.	Тур	Max.	lax. Units Conditions			
300	TRESP	Response Time ^(1,2)	—	150	400	ns			
301	Тмс2о∨	Comparator Mode Change to Output Valid ⁽¹⁾	_		10	μs	_		

Note 1: Parameters are characterized but not tested.

2: Response time measured with one comparator input at (VDD - 1.5)/2, while the other input transitions from Vss to VDD.

TABLE 30-48: COMPARATOR MODULE SPECIFICATIONS

DC CHARACTERISTICS			Standard C (unless oth Operating te	peratir erwise emperat	ng Condition stated) ture -40°C -40°C	s: 3.0V ≤Ta ≤+8 ≤Ta ≤+1	t to 3.6V 85°C for Industrial 125°C for Extended		
Param No.	Symbol	Characteristic	Min. Typ Max. Units Conditions						
D300	VIOFF	Input Offset Voltage ⁽¹⁾	_	±10	—	mV	—		
D301	VICM	Input Common Mode Voltage ⁽¹⁾	0	—	AVDD-1.5V	V	—		
D302	CMRR	Common Mode Rejection Ratio ⁽¹⁾	-54	—	—	dB	—		

Note 1: Parameters are characterized but not tested.

TABLE 30-49: COMPARATOR REFERENCE VOLTAGE SETTLING TIME SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic	Min. Typ Max. Units Conditions					
VR310	TSET	Settling Time ⁽¹⁾	_	_	10	μs	_	

Note 1: Settling time measured while CVRR = 1 and CVR3:CVR0 bits transition from '0000' to '1111'.

TABLE 30-50: COMPARATOR REFERENCE VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			Standard O (unless oth Operating te	peratin erwise mperat	g Conditions stated) ure -40°C ≤ -40°C ≤	: 3.0V t Ta ≤+8 Ta ≤+12	o 3.6V 5°C for Industrial 25°C for Extended		
Param No.	Symbol	Characteristic	Min. Typ Max. Units Conditions						
VRD310	CVRES	Resolution	CVRSRC/24	_	CVRSRC/32	LSb	—		
VRD311	CVRAA	Absolute Accuracy	_	_	0.5	LSb	_		
VRD312	CVRur	Unit Resistor Value (R)	—	2k	_	Ω	—		

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature-40°C ≤TA ≤+150°C for High Temperature						
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions	
Clock Parameters								
HAD50	TAD	ADC Clock Period ⁽¹⁾	147	_	—	ns	_	
Conversion Rate								
	-	T_{1}			400	Kana		

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 31-18: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature-40°C ≤TA ≤+150°C for High Temperature						
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions	
Clock Parameters								
HAD50	TAD	ADC Clock Period ⁽¹⁾	104	—	—	ns	—	
Conversion Rate								
HAD56	FCNV	Throughput Rate ⁽¹⁾	_		800	Ksps	_	

Note 1: These parameters are characterized but not tested in manufacturing.

33.0 PACKAGING INFORMATION

28-Lead SPDIP

28-Lead SOIC

28-Lead QFN-S

44-Lead QFN

44-Lead TQFP

Example

Example

Example

Example

Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.			
Note:	If the full Microchip part number cannot be marked on one line, it is carried over to the next line, thus limiting the number of available characters for customer-specific information.				