

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DCI, DMA, I ² S, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gp204-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.8.3.2 Data Space Write Saturation

In addition to adder/subtracter saturation, writes to data space can also be saturated, but without affecting the contents of the source accumulator. The data space write saturation logic block accepts a 16-bit, 1.15 fractional value from the round logic block as its input, together with overflow status from the original source (accumulator) and the 16-bit round adder. These inputs are combined and used to select the appropriate 1.15 fractional value as output to write to data space memory.

If the SATDW bit in the CORCON register is set, data (after rounding or truncation) is tested for overflow and adjusted accordingly:

- For input data greater than 0x007FFF, data written to memory is forced to the maximum positive 1.15 value, 0x7FFF.
- For input data less than 0xFF8000, data written to memory is forced to the maximum negative 1.15 value, 0x8000.

The Most Significant bit of the source (bit 39) is used to determine the sign of the operand being tested.

If the SATDW bit in the CORCON register is not set, the input data is always passed through unmodified under all conditions.

3.8.4 BARREL SHIFTER

The barrel shifter can perform up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts in a single cycle. The source can be either of the two DSP accumulators or the X bus (to support multi-bit shifts of register or memory data).

The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value shifts the operand right. A negative value shifts the operand left. A value of '0' does not modify the operand.

The barrel shifter is 40 bits wide, thereby obtaining a 40-bit result for DSP shift operations and a 16-bit result for MCU shift operations. Data from the X bus is presented to the barrel shifter between bit positions 16 and 31 for right shifts, and between bit positions 0 and 16 for left shifts.

TABLE	4-4:	INTERRUPT CONTROLLER REGISTER MAP															-	
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	0082	ALTIVT	DISI	_	_	_		_		_	_	_	_	_	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	—	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	IC8IF	IC7IF	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0088	_	DMA4IF	PMPIF	_	_	_	_	_	_	_	_	DMA3IF	C1IF ⁽¹⁾	C1RXIF ⁽¹⁾	SPI2IF	SPI2EIF	0000
IFS3	008A	_	RTCIF	DMA5IF	DCIIF	DCIEIF	-	—		—		_	_		_	_		0000
IFS4	008C	DAC1LIF ⁽²⁾	DAC1RIF ⁽²⁾	—	—	_	-	—		—	C1TXIF ⁽¹⁾	DMA7IF	DMA6IF	CRCIF	U2EIF	U1EIF		0000
IEC0	0094	_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	IC8IE	IC7IE	_	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0098	_	DMA4IE	PMPIE	—	_	-	—		—		_	DMA3IE	C1IE ⁽¹⁾	C1RXIE ⁽¹⁾	SPI2IE	SPI2EIE	0000
IEC3	009A	_	RTCIE	DMA5IE	DCIIE	DCIEIE	-	—		—		_	_		_	_		0000
IEC4	009C	DAC1LIE ⁽²⁾	DAC1RIE ⁽²⁾	—	—	_	-	—		—	C1TXIE ⁽¹⁾	DMA7IE	DMA6IE	CRCIE	U2EIE	U1EIE		0000
IPC0	00A4	_	-	T1IP<2:0>		_	(DC1IP<2:0	>	—		IC1IP<2:0>			IN	T0IP<2:0>		4444
IPC1	00A6	_	-	T2IP<2:0>		_	(DC2IP<2:0	>	—		IC2IP<2:0>			DN	MA0IP<2:0	>	4444
IPC2	00A8	_	U	1RXIP<2:0	>	_	95	SPI1IP<2:0	>	—		SPI1EIP<2:0	>		٦	T3IP<2:0>		4444
IPC3	00AA	_		—	—	_	D	MA1IP<2:0)>	—		AD1IP<2:0>			U	1TXIP<2:0>	>	0444
IPC4	00AC	—	(CNIP<2:0>		—		CMIP<2:0>	•	—	I	WI2C1IP<2:0	>	-	SI	2C1IP<2:0	>	4444
IPC5	00AE	—	l.	C8IP<2:0>		—		IC7IP<2:0>	•	—	-	—	_	-	IN	NT1IP<2:0>		4404
IPC6	00B0	—		T4IP<2:0>		—	(DC4IP<2:0	>	—		OC3IP<2:0>		-	DN	MA2IP<2:0	>	4444
IPC7	00B2	_	U	2TXIP<2:0	>	_	U	2RXIP<2:0)>	—		INT2IP<2:0>	•		٦	T5IP<2:0>		4444
IPC8	00B4	—	С	1IP<2:0>(1)	—	C1	RXIP<2:0	_{>} (1)	—		SPI2IP<2:0>	•	-	SF	PI2EIP<2:0	>	4444
IPC9	00B6	—	—	—	—	—	_	—	-	—	-	—	_	-	DN	MA3IP<2:0	>	0004
IPC11	00BA	—	—	—	—	—	D	MA4IP<2:0)>	—		PMPIP<2:0>	•	-	—	—	_	0440
IPC14	00C0	—	D	CIEIP<2:0	>	—	_	—	-	—	-	—	_	-	—	—	_	4000
IPC15	00C2	—	—	—	—	—	I	RTCIP<2:0	>	—		DMA5IP<2:0	>	-	D	CIIP<2:0>		0444
IPC16	00C4	—	С	RCIP<2:0	>	_	I	J2EIP<2:0	>	—		U1EIP<2:0>		_	—	_	—	4440
IPC17	00C6	—	_	_	—	_	C	TXIP<2:0	(1)	—		DMA7IP<2:0	>	_	DN	MA6IP<2:0	>	0444
IPC19	00CA	—	DAG	C1LIP<2:0	>(2)	_	DA	C1RIP<2:0	>(2)	—	_	_	_	_	—	_	—	4400
INTTREG	00E0	_		_	—		ILR<3	:0>>		—			VEC	CNUM<6:0>				4444

TABLE 4-4. INTERRUPT CONTROLLER REGISTER MAP

Legend:

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1:

Interrupts disabled on devices without ECAN™ modules. Interrupts disabled on devices without Audio DAC modules. 2:

TABLE 4-7: OUTPUT COMPARE REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1RS	0180							Ou	tput Compar	e 1 Seconda	ary Register							XXXX
OC1R	0182								Output Co	mpare 1 Re	egister							XXXX
OC1CON	0184	_	_	OCSIDL	_	_	_	_	_	_	_	_	OCFLT	OCTSEL		OCM<2:0>		0000
OC2RS	0186		Output Compare 2 Secondary Register										XXXX					
OC2R	0188		Output Compare 2 Register											XXXX				
OC2CON	018A	_	_	OCSIDL	_	_	_	_	_	_	_	_	OCFLT	OCTSEL		OCM<2:0>		0000
OC3RS	018C							Ou	tput Compar	e 3 Seconda	ary Register							XXXX
OC3R	018E								Output Co	mpare 3 Re	egister							XXXX
OC3CON	0190	_	_	OCSIDL	_	_	_	_	_	_	_	_	OCFLT	OCTSEL		OCM<2:0>		0000
OC4RS	0192							Ou	tput Compar	e 4 Seconda	ary Register							XXXX
OC4R	0194		Output Compare 4 Register											XXXX				
OC4CON	0196	_	OCSIDL OCFLT OCTSEL OCM<2:0>											0000				

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-8: I2C1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	_	_	-	-	_	-	—	_	- Receive Register								0000
I2C1TRN	0202	_	_	_	_	_	_	_	-				Transmit	Register				OOFF
I2C1BRG	0204	_	_	_	_	_	_	_		Baud Rate Generator Register							0000	
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT		_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	_	_		_	_				Address Register							0000	
I2C1MSK	020C	_	_	_	-	_	-		Address Mask Register							0000		

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-9: UART1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE LPBACK ABAUD URXINV BRGH PDSEL<1:0> STSEL							0000	
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	T URXISEL<1:0> ADDEN RIDLE PERR FERR OERR URXDA								0110
U1TXREG	0224	_	_	_	_	_	—	_	UTX8			U	ART Transm	nit Register				XXXX
U1RXREG	0226	_	_	_	_	_	_	_	URX8	UART Received Register								
U1BRG	0228	Baud Rate Generator Prescaler												0000				

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.8 Interfacing Program and Data Memory Spaces

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 architecture uses a 24 bit wide program space and a 16 bit wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the data space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.

4.8.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Page register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the Most Significant bit of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

For remapping operations, the 8-bit Program Space Visibility register (PSVPAG) is used to define a 16K word page in the program space. When the Most Significant bit of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike table operations, this limits remapping operations strictly to the user memory area.

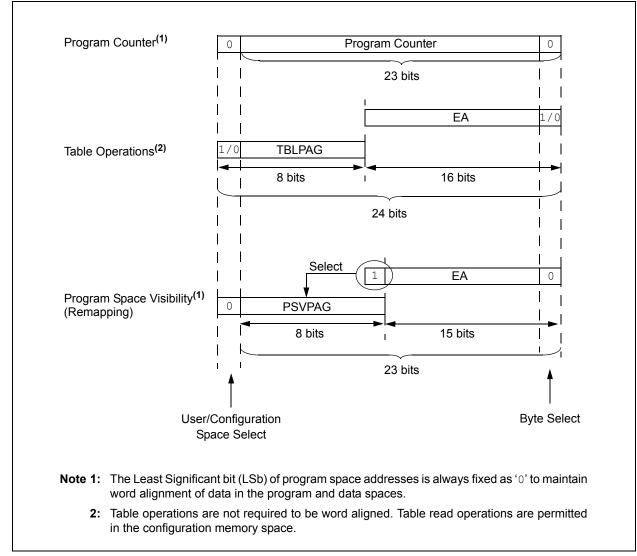

Table 4-39 and Figure 4-9 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> refers to a program space word, and D<15:0> refers to a data space word.

TABLE 4-39: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access	Program Space Address									
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>					
Instruction Access	User	0		PC<22:1>		0					
(Code Execution)		0xx xxxx xxxx xxxx xxxx xxx0									
TBLRD/TBLWT	User	TB	LPAG<7:0>		Data EA<15:0>						
(Byte/Word Read/Write)		0	XXX XXXX	XXXX XXXX XXXX XXXX							
	Configuration	TB	LPAG<7:0>	Data EA<15:0>							
		1	XXX XXXX	XXXX X	XXX XXXX XXXX						
Program Space Visibility	User	0	PSVPAG<7	<7:0> Data EA<		0>(1)					
(Block Remap/Read)	0	XXXX XXXX	ĸ	XXX XXXX XXXX XXXX							

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

4.8.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access to stored constant data from the data space without the need to use special instructions (such as TBLRDL/H).

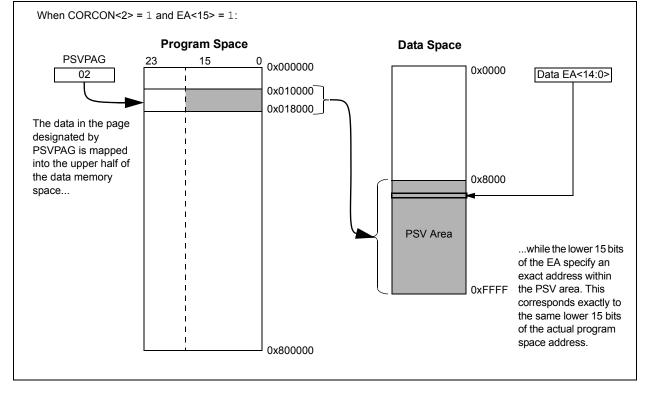
Program space access through the data space occurs if the Most Significant bit of the data space EA is '1' and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. By incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add a cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address 0x8000 and higher maps directly into a corresponding program memory address (see Figure 4-11), only the lower 16 bits of the

24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note: PSV access is temporarily disabled during table reads/writes.


For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time.

For operations that use PSV, and are executed inside a REPEAT loop, these instances require two instruction cycles in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop allows the instruction using PSV to access data, to execute in a single cycle.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

REGISTER	7-4: INTC	ON2: INTERR	UPT CONT	ROL REGIST	ER 2					
R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0			
ALTIVT	DISI	—		—	_	_	—			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
_	-		-	-	INT2EP	INT1EP	INT0EP			
bit 7							bit 0			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown			
bit 15	1 = Use alte	able Alternate In ernate vector tabl ndard (default) v	e	r Table bit						
bit 14	1 = DISI in	Instruction Status struction is active struction is not a	9							
bit 13-3	Unimpleme	ented: Read as '	0'							
bit 2	INT2EP: E>	ternal Interrupt 2	Edge Detec	t Polarity Selec	t bit					
		t on negative edg t on positive edg								
bit 1	INT1EP: External Interrupt 1 Edge Detect Polarity Select bit 1 = Interrupt on negative edge 0 = Interrupt on positive edge									

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

bit 0 INT0EP: External Interrupt 0 Edge Detect Polarity Select bit

1 = Interrupt on negative edge 0 = Interrupt on positive edge

© 2007-2012 Microchip Technology Inc.

8.3 DMA Control Registers

R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 U-0 U-0 CHEN SIZE DIR HALF NULLW bit 15 bit 8 U-0 U-0 R/W-0 R/W-0 U-0 U-0 R/W-0 R/W-0 AMODE<1:0> MODE<1:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '0' = Bit is cleared '1' = Bit is set x = Bit is unknown bit 15 CHEN: Channel Enable bit 1 = Channel enabled 0 = Channel disabled bit 14 SIZE: Data Transfer Size bit 1 = Byte 0 = Word bit 13 DIR: Transfer Direction bit (source/destination bus select) 1 = Read from DMA RAM address, write to peripheral address 0 = Read from peripheral address, write to DMA RAM address HALF: Early Block Transfer Complete Interrupt Select bit bit 12 1 = Initiate block transfer complete interrupt when half of the data has been moved 0 = Initiate block transfer complete interrupt when all of the data has been moved bit 11 NULLW: Null Data Peripheral Write Mode Select bit 1 = Null data write to peripheral in addition to DMA RAM write (DIR bit must also be clear) 0 = Normal operation bit 10-6 Unimplemented: Read as '0' bit 5-4 AMODE<1:0>: DMA Channel Operating Mode Select bits 11 = Reserved (acts as Peripheral Indirect Addressing mode) 10 = Peripheral Indirect Addressing mode 01 = Register Indirect without Post-Increment mode 00 = Register Indirect with Post-Increment mode bit 3-2 Unimplemented: Read as '0' bit 1-0 MODE<1:0>: DMA Channel Operating Mode Select bits 11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA RAM buffer) 10 = Continuous, Ping-Pong modes enabled 01 = One-Shot, Ping-Pong modes disabled 00 = Continuous, Ping-Pong modes disabled

REGISTER 8-1: DMAxCON: DMA CHANNEL x CONTROL REGISTER

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSAI	DR<15:8>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSA	DR<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplement	ted bit, re	ad as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared	ł	x = Bit is unkno	own

REGISTER 8-9: DSADR: MOST RECENT DMA RAM ADDRESS

bit 15-0 DSADR<15:0>: Most Recent DMA RAM Address Accessed by DMA Controller bits

9.3 Oscillator Control Registers

U-0 R/W-y R/W-y U-0 R-0 R-0 R-0 R/W-y COSC<2:0> NOSC<2:0>(2) bit 15 bit 8 R/W-0 R/W-0 R-0 U-0 R/C-0 U-0 R/W-0 R/W-0 CLKLOCK IOLOCK LOCK CF LPOSCEN OSWEN bit 7 bit 0 y = Value set from Configuration bits on POR Legend: C = Clear only bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-12 COSC<2:0>: Current Oscillator Selection bits (read-only) 111 = Fast RC oscillator (FRC) with Divide-by-n 110 = Fast RC oscillator (FRC) with Divide-by-16 101 = Low-Power RC oscillator (LPRC) 100 = Secondary oscillator (SOSC) 011 = Primary oscillator (XT, HS, EC) with PLL 010 = Primarv oscillator (XT, HS, EC) 001 = Fast RC Oscillator (FRC) with divide-by-N and PLL (FRCDIVN + PLL) 000 = Fast RC oscillator (FRC) Unimplemented: Read as '0' bit 11 bit 10-8 NOSC<2:0>: New Oscillator Selection bits⁽²⁾ 111 = Fast RC oscillator (FRC) with Divide-by-n 110 = Fast RC oscillator (FRC) with Divide-by-16 101 = Low-Power RC oscillator (LPRC) 100 = Secondary oscillator (SOSC) 011 = Primary oscillator (XT, HS, EC) with PLL 010 = Primary oscillator (XT, HS, EC) 001 = Fast RC Oscillator (FRC) with divide-by-N and PLL (FRCDIVN + PLL) 000 = Fast RC oscillator (FRC) CLKLOCK: Clock Lock Enable bit bit 7 If clock switching is enabled and FSCM is disabled, FCKSM<1:0>(FOSC<7:6>) = 0b01 1 = Clock switching is disabled, system clock source is locked 0 = Clock switching is enabled, system clock source can be modified by clock switching bit 6 IOLOCK: Peripheral Pin Select Lock bit 1 = Peripherial pin select is locked, write to peripheral pin select registers not allowed 0 = Peripherial pin select is not locked, write to peripheral pin select registers allowed bit 5 LOCK: PLL Lock Status bit (read-only) 1 = Indicates that PLL is in lock, or PLL start-up timer is satisfied 0 = Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled bit 4 Unimplemented: Read as '0' Note 1: Writes to this register require an unlock sequence. Refer to Section 39. "Oscillator (Part III)" (DS70216) in the "dsPIC33F/PIC24H Family Reference Manual" (available from the Microchip website) for details. Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. 2: This applies to clock switches in either direction. In these instances, the application must switch to FRC

OSCCON: OSCILLATOR CONTROL REGISTER^(1,3) **REGISTER 9-1:**

- mode as a transition clock source between the two PLL modes.
- 3: This register is reset only on a Power-on Reset (POR).

TABLE 11-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTIO

Input Name	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<4:0>
External Interrupt 2	INT2	RPINR1	INT2R<4:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<4:0>
Timer3 External Clock	T3CK	RPINR3	T3CKR<4:0>
Timer4 External Clock	T4CK	RPINR4	T4CKR<4:0>
Timer5 External Clock	T5CK	RPINR4	T5CKR<4:0>
Input Capture 1	IC1	RPINR7	IC1R<4:0>
Input Capture 2	IC2	RPINR7	IC2R<4:0>
Input Capture 7	IC7	RPINR10	IC7R<4:0>
Input Capture 8	IC8	RPINR10	IC8R<4:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<4:0>
UART1 Receive	U1RX	RPINR18	U1RXR<4:0>
UART1 Clear To Send	U1CTS	RPINR18	U1CTSR<4:0>
UART2 Receive	U2RX	RPINR19	U2RXR<4:0>
UART2 Clear To Send	U2CTS	RPINR19	U2CTSR<4:0>
SPI1 Data Input	SDI1	RPINR20	SDI1R<4:0>
SPI1 Clock Input	SCK1	RPINR20	SCK1R<4:0>
SPI1 Slave Select Input	SS1	RPINR21	SS1R<4:0>
SPI2 Data Input	SDI2	RPINR22	SDI2R<4:0>
SPI2 Clock Input	SCK2	RPINR22	SCK2R<4:0>
SPI2 Slave Select Input	SS2	RPINR23	SS2R<4:0>
DCI Serial Data Input	CSDI	RPINR24	CSDIR<4:0>
DCI Serial Clock Input	CSCK	RPINR24	CSCKR<4:0>
DCI Frame Sync Input	COFS	RPINR25	COFSR<4:0>
ECAN1 Receive	CIRX	RPINR26	CIRXR<4:0>

Note 1: Unless otherwise noted, all inputs use Schmitt input buffers.

19.6 ECAN Message Buffers

ECAN Message Buffers are part of DMA RAM Memory. They are not ECAN special function registers. The user application must directly write into the DMA RAM area that is configured for ECAN Message Buffers. The location and size of the buffer area is defined by the user application.

BUFFER 19-1: ECAN™ MESSAGE BUFFER WORD 0

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	_	SID10	SID9	SID8	SID7	SID6
bit 15							bit 8

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SID5 | SID4 | SID3 | SID2 | SID1 | SID0 | SRR | IDE |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-2	SID<10:0>: Standard Identifier bits
bit 1	SRR: Substitute Remote Request bit
	1 = Message will request remote transmission
	0 = Normal message
bit 0	IDE: Extended Identifier bit
	1 = Message will transmit extended identifier
	0 = Message will transmit standard identifier

BUFFER 19-2: ECAN™ MESSAGE BUFFER WORD 1

U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x
_	—	_	—	EID17	EID16	EID15	EID14
bit 15							bit 8

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID13 | EID12 | EID11 | EID10 | EID9 | EID8 | EID7 | EID6 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12 Unimplemented: Read as '0'

bit 11-0 EID<17:6>: Extended Identifier bits

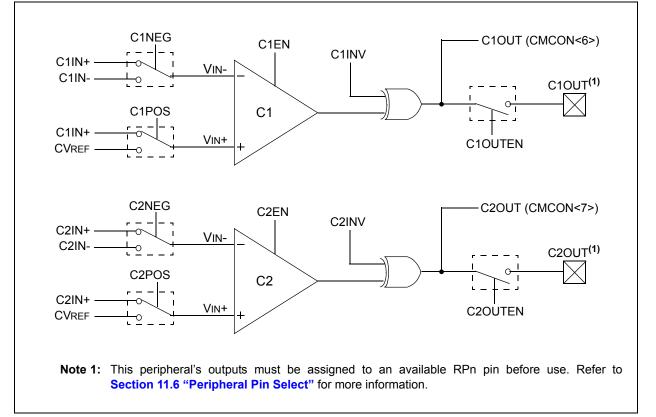
20.3 **DCI Control Registers**

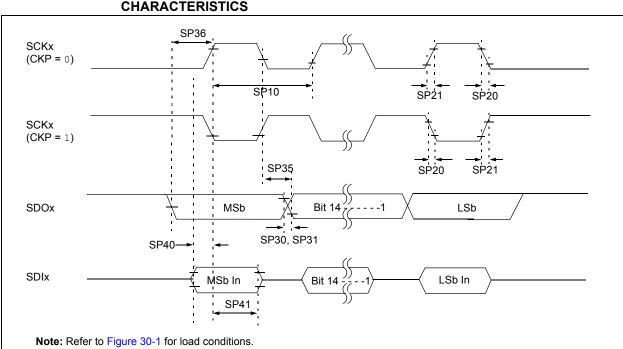
R/W-0 U-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 DCIEN DCISIDL DLOOP CSCKD CSCKE COFSD ___ ____ bit 15 Г 11_0 11_0

DCICON1: DCI CONTROL REGISTER 1 REGISTER 20-1:

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
UNFM	CSDOM	DJST	—	_	_	COFSI	M<1:0>
bit 7		-				-	bit
Legend:							
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	-	Module Enable	bit				
	1 = Module is 0 = Module is						
bit 14	Unimplemer	nted: Read as '	0'				
bit 13	DCISIDL: DO	CI Stop in Idle C	ontrol bit				
		vill halt in CPU I					
		vill continue to c	-	'U Idle mode			
bit 12	-	nted: Read as '					
bit 11	0	ital Loopback N					
		oopback mode i oopback mode i		SDI and CSDO	pins internally	connected.	
bit 10	CSCKD: Sar	nple Clock Dire	ction Control	bit			
	•	n is an input wh					
	0 = CSCK pi	n is an output w	hen DCI moo	dule is enabled			
bit 9		nple Clock Edge					
		inges on serial o inges on serial o					
bit 8	COFSD: Fra	me Synchroniza	ation Directio	n Control bit			
		n is an input wh n is an output w					
bit 7	-	erflow Mode bit					
		last value writte			n a transmit un	derflow	
bit 6	CSDOM: Set	rial Data Output	Mode bit				
		n will be tri-state		abled transmit t	ime slots		
		n drives '0's du					
bit 5	DJST: DCI D	ata Justification	Control bit				
		nsmission/recep	otion is begur	n during the san	ne serial clock	cycle as the frai	me
		nization pulse					
h #4.0		nsmission/recep	-	n one serial cloc	ск сусіе апег та	ame synchroniz	ation pulse
bit 4-2	-	nted: Read as '					
bit 1-0		>: Frame Sync	IVIODE DITS				
		C-Link mode					
		me Sync mode					
		hannel Frame S	ync mode				

bit 8


23.0 COMPARATOR MODULE


- Note 1: This data sheet summarizes the features dsPIC33FJ32GP302/304. of the dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 34. "Comparator" (DS70212) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Comparator module provides a set of dual input comparators. The inputs to the comparator can be configured to use any one of the four pin inputs (C1IN+, C1IN-, C2IN+ and C2IN-) as well as the Comparator Voltage Reference Input (CVREF).

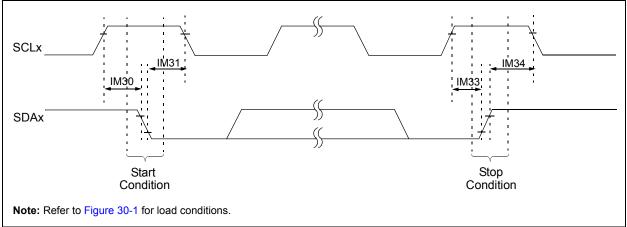
Note: This peripheral contains output functions that may need to be configured by the peripheral pin select feature. For more information, see Section 11.6 "Peripheral Pin Select".

FIGURE 23-1: COMPARATOR I/O OPERATING MODES

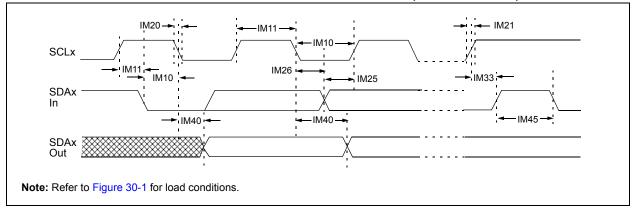
FIGURE 30-11: SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

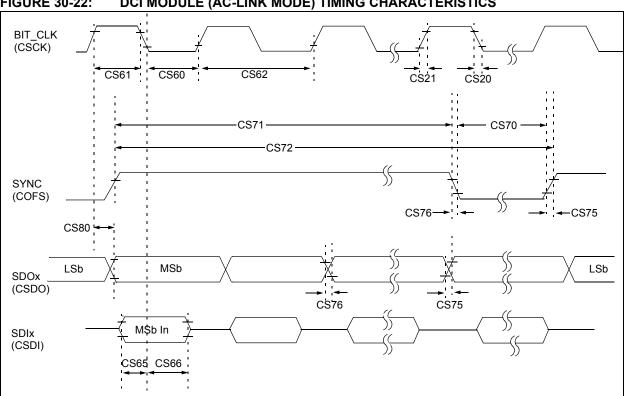
TABLE 30-30:SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING
REQUIREMENTS

			(unless c	Operatin otherwise g temperat	stated) ture -40	°C ≤Ta ≤+	/ to 3.6V 85°C for Industrial 125°C for Extended	
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ ⁽²⁾ Max Units Conditions					
SP10	TscP	Maximum SCK Frequency	_	_	9	MHz	See Note 3	
SP20	TscF	SCKx Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4	
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	_	
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	—	ns	_	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	_	ns	_	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—		ns	—	


Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.


3: The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.


4: Assumes 50 pF load on all SPIx pins.

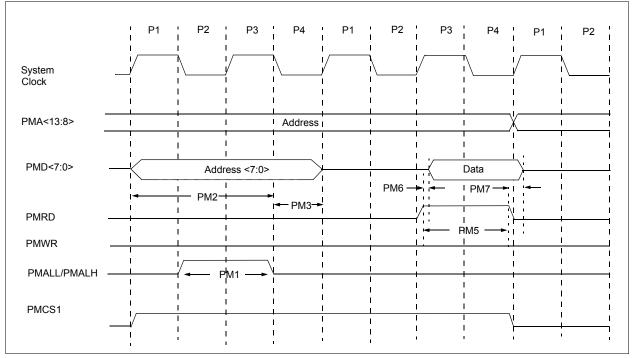


FIGURE 30-22: DCI MODULE (AC-LINK MODE) TIMING CHARACTERISTICS

FIGURE 30-28: PARALLEL MASTER PORT READ TIMING DIAGRAM

TABLE 30-52: PARALLEL MASTER PORT READ TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard C (unless oth Operating te	erwise stat	,		
Param No.	Characteristic	Min.	Тур	Max.	Units	Conditions
PM1	PMALL/PMALH Pulse-Width	—	0.5 TCY	_	ns	_
PM2	Address Out Valid to PMALL/PMALH Invalid (address setup time)	—	0.75 TCY	_	ns	—
PM3	PMALL/PMALH Invalid to Address Out Invalid (address hold time)	—	0.25 TCY	_	ns	—
PM5	PMRD Pulse-Width	_	0.5 TCY	_	ns	—
PM6	PMRD or PMENB Active to Data In Valid (data setup time)	150	—	_	ns	—
PM7	PMRD or PMENB Inactive to Data In Invalid (data hold time)	—	—	5	ns	—

NOTES:

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

Listen All Messages	. 230
Listen Only	. 230
Loopback	
Normal Operation	
Modulo Addressing	63
Applicability	64
Operation Example	63
Start and End Address	63
W Address Register Selection	63
MPLAB ASM30 Assembler, Linker, Librarian	. 334
MPLAB Integrated Development Environment Software	. 333
MPLAB PM3 Device Programmer	. 336
MPLAB REAL ICE In-Circuit Emulator System	. 335
MPLINK Object Linker/MPLIB Object Librarian	. 334

Ν

NVM Module	
Register Map	60
0	

0	
Open-Drain Configuration	
Output Compare	

Ρ

Packaging	407
Marking	
Peripheral Module Disable (PMD)	
Pinout I/O Descriptions (table)	
PMD Module	
Register Map	60
PORTA	
Register Map	58 59
PORTB	. 50, 55
Register Map	59
Power-on Reset (POR)	
Power-Saving Features	
Clock Frequency and Switching	
Program Address Space	
Construction	
Data Access from Program Memory Using	
Program Space Visibility	69
Data Access from Program Memory Using	
Table Instructions	
Data Access from, Address Generation	
Memory Map	35
Table Read Instructions	
TBLRDH	68
TBLRDL	68
Visibility Operation	69
Program Memory	
Interrupt Vector	
Organization	36
Reset Vector	
5	
R	
Reader Response	432
Register Map	
CRC	58
Dual Comparator	58
Parallel Master/Slave Port	
Real-Time Clock and Calendar	
Registers	
AD1CHS0 (ADC1 Input Channel 0 Select	274
AD1CHS123 (ADC1 Input Channel 1, 2, 3 Selec	
AD1CON1 (ADC1 Control 1)	
AD1CON2 (ADC1 Control 2)	
AD1CON2 (ADC1 Control 2)	
	Zíl

AD1CON4 (ADC1 Control 4)	
AD1CSSL (ADC1 Input Scan Select Low)	
AD1PCFGL (ADC1 Port Configuration Low)	275
CiBUFPNT1 (ECAN Filter 0-3 Buffer Pointer)	241
CiBUFPNT2 (ECAN Filter 4-7 Buffer Pointer)	
CiBUFPNT3 (ECAN Filter 8-11 Buffer Pointer)	
CiBUFPNT4 (ECAN Filter 12-15 Buffer Pointer)	
CiCFG1 (ECAN Baud Rate Configuration 1)	
CiCFG2 (ECAN Baud Rate Configuration 2)	
CiCTRL1 (ECAN Control 1)	
CiCTRL2 (ECAN Control 2)	
CiEC (ECAN Transmit/Receive Error Count)	
CiFCTRL (ECAN FIFO Control)	235
CiFEN1 (ECAN Acceptance Filter Enable)	241
CiFIFO (ECAN FIFO Status)	236
CiFMSKSEL1 (ECAN Filter 7-0 Mask Selection)	
246	240,
	000
CilNTE (ECAN Interrupt Enable)	
CiINTF (ECAN Interrupt Flag)	237
CiRXFnEID (ECAN Acceptance Filter n	
Extended Identifier)	245
CiRXFnSID (ECAN Acceptance Filter n	
Standard Identifier)	244
CiRXFUL1 (ECAN Receive Buffer Full 1)	248
CiRXFUL2 (ECAN Receive Buffer Full 2)	
CiRXMnEID (ECAN Acceptance Filter Mask n	240
Extended Identifier)	247
CiRXMnSID (ECAN Acceptance Filter Mask n	247
· ·	o 4 -
Standard Identifier)	
CiRXOVF1 (ECAN Receive Buffer Overflow 1)	
CiRXOVF2 (ECAN Receive Buffer Overflow 2)	
CiTRBnSID (ECAN Buffer n Standard Identifier)	251,
252, 254	
CiTRmnCON (ECAN TX/RX Buffer m Control)	250
CiTRmnCON (ECAN TX/RX Buffer m Control)	
	234
CiTRmnCON (ECAN TX/RX Buffer m Control) CiVEC (ECAN Interrupt Code) CLKDIV (Clock Divisor)	234 147
CiTRmnCON (ECAN TX/RX Buffer m Control) CiVEC (ECAN Interrupt Code) CLKDIV (Clock Divisor) CORCON (Core Control)	234 147 9, 92
CiTRmnCON (ECAN TX/RX Buffer m Control) CiVEC (ECAN Interrupt Code) CLKDIV (Clock Divisor) CORCON (Core Control)	234 147 9, 92 257
CiTRmnCON (ECAN TX/RX Buffer m Control) CiVEC (ECAN Interrupt Code) CLKDIV (Clock Divisor) CORCON (Core Control)	234 147), 92 257 258
CiTRmnCON (ECAN TX/RX Buffer m Control) CiVEC (ECAN Interrupt Code) CLKDIV (Clock Divisor) CORCON (Core Control)	234 147 9, 92 257 258 259
CiTRmnCON (ECAN TX/RX Buffer m Control) CiVEC (ECAN Interrupt Code) CLKDIV (Clock Divisor) CORCON (Core Control)	234 147 9, 92 257 258 259 260
CiTRmnCON (ECAN TX/RX Buffer m Control) CiVEC (ECAN Interrupt Code) CLKDIV (Clock Divisor) CORCON (Core Control)	234 147 9, 92 257 258 259 260 136
CiTRmnCON (ECAN TX/RX Buffer m Control) CiVEC (ECAN Interrupt Code) CLKDIV (Clock Divisor)	234 147 9, 92 257 258 259 260 136 138
CiTRmnCON (ECAN TX/RX Buffer m Control) CiVEC (ECAN Interrupt Code) CLKDIV (Clock Divisor)	234 147 9, 92 257 258 259 260 136 138 135
CiTRmnCON (ECAN TX/RX Buffer m Control) CiVEC (ECAN Interrupt Code) CLKDIV (Clock Divisor)	234 147 9, 92 257 258 259 260 136 138 135
CiTRmnCON (ECAN TX/RX Buffer m Control) CiVEC (ECAN Interrupt Code) CLKDIV (Clock Divisor)	234 147 257 258 259 260 136 138 135 132
CiTRmnCON (ECAN TX/RX Buffer m Control) CiVEC (ECAN Interrupt Code) CLKDIV (Clock Divisor)	234 147 257 258 259 260 136 138 135 132 135
CiTRmnCON (ECAN TX/RX Buffer m Control) CiVEC (ECAN Interrupt Code) CLKDIV (Clock Divisor)	234 147 257 258 259 260 136 138 135 132 135 133
CiTRmnCON (ECAN TX/RX Buffer m Control) CiVEC (ECAN Interrupt Code) CLKDIV (Clock Divisor)	234 147 257 258 259 260 136 138 135 132 135 133 134
CiTRmnCON (ECAN TX/RX Buffer m Control) CiVEC (ECAN Interrupt Code) CLKDIV (Clock Divisor)	234 147 9, 92 257 258 259 260 136 138 135 132 135 133 134 134
CiTRmnCON (ECAN TX/RX Buffer m Control) CiVEC (ECAN Interrupt Code) CLKDIV (Clock Divisor)	234 147), 92 257 258 259 260 136 138 135 132 135 133 134 134 139
CiTRmnCON (ECAN TX/RX Buffer m Control) CiVEC (ECAN Interrupt Code) CLKDIV (Clock Divisor)	234 147 2, 92 257 258 259 260 136 138 135 132 135 133 134 134 139 216
CiTRmnCON (ECAN TX/RX Buffer m Control) CiVEC (ECAN Interrupt Code) CLKDIV (Clock Divisor)	234 147 2,92 257 258 259 260 136 138 135 132 135 133 134 134 139 216 220
CiTRmnCON (ECAN TX/RX Buffer m Control) CiVEC (ECAN Interrupt Code) CLKDIV (Clock Divisor)	234 147 2,92 257 258 259 260 136 138 135 132 135 133 134 134 139 216 220 218
CiTRmnCON (ECAN TX/RX Buffer m Control) CiVEC (ECAN Interrupt Code) CLKDIV (Clock Divisor)	234 147 9, 92 257 258 259 260 136 138 135 132 135 133 134 134 139 216 220 218 103
CiTRmnCON (ECAN TX/RX Buffer m Control) CiVEC (ECAN Interrupt Code) CLKDIV (Clock Divisor)	234 147 9, 92 257 258 259 260 136 138 135 132 135 133 134 134 139 216 220 218 103 105
CiTRmnCON (ECAN TX/RX Buffer m Control) CiVEC (ECAN Interrupt Code) CLKDIV (Clock Divisor)	234 147), 92 257 258 259 260 136 138 135 132 135 133 134 134 139 216 220 218 103 105 107
CiTRmnCON (ECAN TX/RX Buffer m Control) CiVEC (ECAN Interrupt Code) CLKDIV (Clock Divisor)	234 147), 92 257 258 259 260 136 138 135 132 135 133 134 134 139 216 220 218 103 105 107 108
CiTRmnCON (ECAN TX/RX Buffer m Control) CiVEC (ECAN Interrupt Code) CLKDIV (Clock Divisor)	234 147 9, 92 257 258 259 260 136 138 135 132 135 133 134 139 216 220 218 103 105 107 108 109
CiTRmnCON (ECAN TX/RX Buffer m Control) CiVEC (ECAN Interrupt Code) CLKDIV (Clock Divisor)	234 147 9, 92 257 258 259 260 136 138 135 132 135 133 134 139 216 220 218 103 105 107 108 109
CiTRmnCON (ECAN TX/RX Buffer m Control) CiVEC (ECAN Interrupt Code) CLKDIV (Clock Divisor)	234 147 9, 92 257 258 259 260 136 138 135 132 135 133 134 139 216 220 218 103 105 107 108 109 93
CiTRmnCON (ECAN TX/RX Buffer m Control) CiVEC (ECAN Interrupt Code) CLKDIV (Clock Divisor)	234 147 9, 92 257 258 259 260 136 138 135 132 135 133 134 139 216 220 218 103 105 107 108 109 93 95
CiTRmnCON (ECAN TX/RX Buffer m Control) CiVEC (ECAN Interrupt Code) CLKDIV (Clock Divisor)	234 147 9, 92 257 258 259 260 136 138 135 132 135 133 134 139 216 20 218 103 105 107 108 109 93 95
CiTRmnCON (ECAN TX/RX Buffer m Control) CiVEC (ECAN Interrupt Code) CLKDIV (Clock Divisor)	234 147 9, 92 257 258 259 260 136 138 135 132 135 133 134 139 216 20 218 103 105 107 108 109 93 95 126
CiTRmnCON (ECAN TX/RX Buffer m Control) CiVEC (ECAN Interrupt Code) CLKDIV (Clock Divisor)	234 147 9, 92 257 258 259 260 136 138 135 132 135 133 134 139 216 20 218 105 107 108 109 93 95 126 110 111
CiTRmnCON (ECAN TX/RX Buffer m Control) CiVEC (ECAN Interrupt Code) CLKDIV (Clock Divisor) CORCON (Core Control)	234 147 9, 92 257 258 259 260 136 138 135 132 135 133 134 134 139 216 220 218 103 105 107 108 109 95 126 110 111 120
CiTRmnCON (ECAN TX/RX Buffer m Control) CiVEC (ECAN Interrupt Code) CLKDIV (Clock Divisor) CORCON (Core Control)	234 147 9, 92 257 258 259 260 136 138 135 132 135 133 134 134 139 216 220 218 105 107 108 109 95 126 110 111 120 121
CiTRmnCON (ECAN TX/RX Buffer m Control) CiVEC (ECAN Interrupt Code) CLKDIV (Clock Divisor) CORCON (Core Control)	234 147 9, 92 257 258 259 260 136 138 135 132 135 133 134 134 139 216 220 218 103 105 107 108 109 93 95 126 110 111 120 121 122