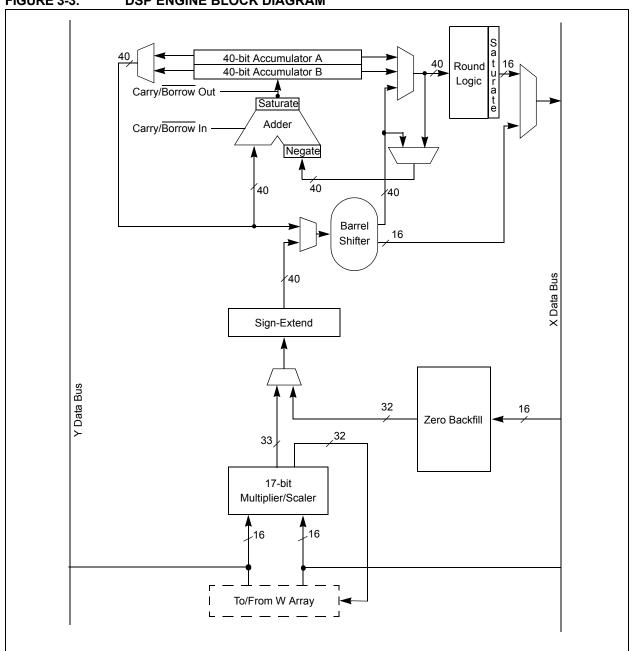


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DCI, DMA, I ² S, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gp204-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 3-3: DSP ENGINE BLOCK DIAGRAM

TABLE 4	4-5:	TIMEF	R REGIS	TER MA	٨P													
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	Register								0000
PR1	0102								Period F	Register 1								FFFF
T1CON	0104	TON	_	TSIDL	_	_	_	_	—	—	TGATE	TCKP	S<1:0>		TSYNC	TCS		0000
TMR2	0106								Timer2	Register								0000
TMR3HLD	0108						Tin	ner3 Holding	Register (fo	r 32-bit timeı	operations o	only)						XXXX
TMR3	010A								Timer3	Register								0000
PR2	010C			Period Register 2 FFFF											FFFF			
PR3	010E								Period F	Register 3								FFFF
T2CON	0110	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	T32	_	TCS		0000
T3CON	0112	TON		TSIDL				_	—	—	TGATE	TCKP	S<1:0>	—	_	TCS	—	0000
TMR4	0114								Timer4	Register								0000
TMR5HLD	0116						Tin	ner5 Holding	Register (fo	r 32-bit timeı	operations o	only)						XXXX
TMR5	0118								Timer5	Register								0000
PR4	011A								Period F	Register 4								FFFF
PR5	011C		Period Register 5										FFFF					
T4CON	011E	TON		TSIDL				_	_	-	TGATE	TCKP	S<1:0>	T32	—	TCS	_	0000
T5CON	0120	TON		TSIDL				_	_	-	TGATE	TCKP	S<1:0>	—	—	TCS	_	0000
Legend:	x = un	known valu	e on Reset,	— = unimp	lemented, r	ead as '0'. F	Reset value	s are showr	in hexadeo	cimal.								

TABLE 4-6: INPUT CAPTURE REGISTER MAP

			•/			· ••••												
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1BUF	0140								Input 1 Ca	pture Regist	er							XXXX
IC1CON	0142	—		ICSIDL	—		-			ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC2BUF	0144		Input 2 Capture Register													XXXX		
IC2CON	0146	—															0000	
IC7BUF	0158								Input 7 Ca	pture Regist	er							XXXX
IC7CON	015A												0000					
IC8BUF	015C	Input 8Capture Register											XXXX					
IC8CON	015E	—		ICSIDL	—		_			ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>		0000

Legend: x = unknown value on Reset, -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC Da	ta Buffer 0								XXXX
AD1CON1	0320	ADON	—	ADSIDL	ADDMABM	_	AD12B	FOR	M<1:0>	:	SSRC<2:0>		_	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	V	CFG<2:0	>	_	_	CSCNA	CHP							ALTS	0000		
AD1CON3	0324	ADRC	—	_		SAMC<4:0> ADCS<7:0>							0000					
AD1CHS123	0326	_	_	_	_	—	CH123N	IB<1:0>	CH123SB	_	_	_	_	_	CH123N	NA<1:0>	CH123SA	0000
AD1CHS0	0328	CH0NB	_	_		C	H0SB<4:0>	>		CH0NA	—	—		С	H0SA<4:0	>		0000
AD1PCFGL	032C	_	_	_	PCFG12	PCFG11	PCFG10	PCFG9	_	_	—	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
AD1CSSL	0330	_	_	_	CSS12	CSS11	CSS10	CSS9	_	_	_	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000
AD1CON4	0332		_		_	_	_	_	_		_	_		_	[DMABL<2:	0>	0000

TABLE 4-13: ADC1 REGISTER MAP FOR dsPIC33FJ64GP202/802, dsPIC33FJ128GP202/802 AND dsPIC33FJ32GP302

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-14: ADC1 REGISTER MAP FOR dsPIC33FJ64GP204/804, dsPIC33FJ128GP204/804 AND dsPIC33FJ32GP304

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC Da	ata Buffer 0								XXXX
AD1CON1	0320	ADON		ADSIDL	ADDMABM		AD12B	FOR	M<1:0>	:	SSRC<2:0>		—	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	V	'CFG<2:0	>	_		CSCNA	CHP	S<1:0>	BUFS	—		SMP	<3:0>		BUFM	ALTS	0000
AD1CON3	0324	ADRC				S	AMC<4:0>						ADCS	\$<7:0>				0000
AD1CHS123	0326	_	_	_	_	_	CH123N	NB<1:0>	CH123SB	_	_	_	_	_	CH123N	NA<1:0>	CH123SA	0000
AD1CHS0	0328	CH0NB	_	_		С	H0SB<4:0>	>		CH0NA	_	_		С	H0SA<4:0	>		0000
AD1PCFGL	032C	_			PCFG12	PCFG11	PCFG10	PCFG9	PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
AD1CSSL	0330	_			CSS12	CSS11	CSS10	CSS9	CSS8	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000
AD1CON4	0332	_			_	—			—	_	—	—	—	—	[DMABL<2:	0>	0000

Legend: x = unknown value on Reset, -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-15: DAC1 REGISTER MAP FOR dsPIC33FJ128GP802/804 AND dsPIC33FJ64GP802/804

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DAC1CON	03F0	DACEN	—	DACSIDL	AMPON	—	_	—	FORM	—			D	ACFDIV<6:()>			0000
DAC1STAT	03F2	LOEN	—	LMVOEN	_	_	LITYPE	LFULL	LEMPTY	ROEN	-	RMVOEN	_	_	RITYPE	RFULL	REMPTY	0000
DAC1DFLT	03F4								DAC1DF	LT<15:0>								0000
DAC1RDAT	03F6		DAC1RDAT<15:0> 0											0000				
DAC1LDAT	03F8		DAC1LDAT<15:0> 000											0000				

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.6 Flash Control Registers

R/SO-0(1) R/W-0⁽¹⁾ R/W-0⁽¹⁾ U-0 U-0 U-0 U-0 U-0 WR WREN WRERR bit 15 bit 8 R/W-0⁽¹⁾ R/W-0⁽¹⁾ R/W-0⁽¹⁾ R/W-0⁽¹⁾ R/W-0⁽¹⁾ U-0 U-0 U-0 NVMOP<3:0>(2) ERASE bit 7 bit 0 Leaend: SO = Settable only bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown WR: Write Control bit bit 15 1 = Initiates a Flash memory program or erase operation. The operation is self-timed and the bit is cleared by hardware once operation is complete 0 = Program or erase operation is complete and inactive bit 14 WREN: Write Enable bit 1 = Enable Flash program/erase operations 0 = Inhibit Flash program/erase operations bit 13 WRERR: Write Sequence Error Flag bit 1 = An improper program or erase sequence attempt or termination has occurred (bit is set automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally bit 12-7 Unimplemented: Read as '0' bit 6 ERASE: Erase/Program Enable bit 1 = Perform the erase operation specified by NVMOP<3:0> on the next WR command 0 = Perform the program operation specified by NVMOP<3:0> on the next WR command bit 5-4 Unimplemented: Read as '0' NVMOP<3:0>: NVM Operation Select bits⁽²⁾ bit 3-0 If ERASE = 1: 1111 = Memory bulk erase operation 1110 = Reserved 1101 = Erase General Segment 1100 = Erase Secure Segment 1011 = Reserved 0011 = No operation 0010 = Memory page erase operation 0001 = No operation 0000 = Erase a single Configuration register byte If ERASE = 0: 1111 = No operation 1110 = Reserved 1101 = No operation 1100 = No operation 1011 = Reserved 0011 = Memory word program operation 0010 = No operation 0001 = Memory row program operation 0000 = Program a single Configuration register byte Note 1: These bits can only be reset on POR.

REGISTER 5-1: NVMCON: FLASH MEMORY CONTROL REGISTER

2: All other combinations of NVMOP<3:0> are unimplemented.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
0-0	R/W-1		R/W-U	0-0	R/W-1		R/W-U
 bit 15		T1IP<2:0>		—		OC1IP<2:0>	bi
511 15							DI
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		IC1IP<2:0>				INT0IP<2:0>	
bit 7							bi
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own
bit 15	Unimplem	ented: Read as ')'				
bit 14-12	T1IP<2:0>:	Timer1 Interrupt	Priority bits				
	111 = Inter	rupt is priority 7 (I	nighest priori	ty interrupt)			
	•						
	•						
		rupt is priority 1					
		rupt source is dis					
bit 11	-	ented: Read as '					
bit 10-8		>: Output Compa		-	rity bits		
	111 = Inter •	rupt is priority 7 (I	nignest priori	ty interrupt)			
	•						
	•						
		rupt is priority 1 rupt source is dis	abled				
bit 7		ented: Read as '					
bit 6-4	•	: Input Capture C		errunt Priority h	nits		
		rupt is priority 7 (I					
	•		0 1	, ,			
	•						
	• 001 = Inter	rupt is priority 1					
		rupt source is dis	abled				
bit 3	Unimplem	ented: Read as ')'				
bit 2-0	INT0IP<2:0	>: External Interr	upt 0 Priority	/ bits			
	111 = Inter	rupt is priority 7 (I	nighest priori	ty interrupt)			
	•						
	•						
		rupt is priority 1					
	000 = Inter	rupt source is dis	abled				

DS70292G-page 110

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	_	—	_	—		DMA4IP<2:0>	
bit 15							bit 8
		D 444 0					
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
		PMPIP<2:0>		—			— hit (
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	own
bit 15-11	Unimpleme	ented: Read as '	0'				
bit 10-8	DMA4IP<2:	0>: DMA Chann	el 4 Data Tra	nsfer Complete	Interrupt Priori	ty bits	
	111 = Interr	upt is priority 7 (highest priori	ty interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1					
		upt source is dis	abled				
bit 7	Unimpleme	ented: Read as '	0'				
	•	ented: Read as ' >: Parallel Maste		pt Priority bits			
	PMPIP<2:0		er Port Interru				
	PMPIP<2:0	>: Parallel Maste	er Port Interru				
	PMPIP<2:0	>: Parallel Maste	er Port Interru				
bit 7 bit 6-4	PMPIP<2:0 111 = Interr •	>: Parallel Maste	er Port Interru				

bit 3-0 Unimplemented: Read as '0'

REGISTER 7	7-31: INTTR	EG: INTERR	UPT CONTI	ROL AND STA	ATUS REGI	STER	
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
_	—	—	_		ILF	<3:0>	
bit 15							bit 8
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
_				VECNUM<6:0	>		
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, rea	ad as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-12	Unimplomon	ted: Read as '	`				
	-			-1			
bit 11-8		w CPU Interru	-	el bits			
	1111 = CPU	Interrupt Priorit	y Level is 15				
	•						
	•						
		Interrupt Priorit Interrupt Priorit					
bit 7		•	•				
	Unimplemen	ted: Read as '	0.				

0111111 = Interrupt Vector pending is number 135

0000001 = Interrupt Vector pending is number 9 0000000 = Interrupt Vector pending is number 8

•

10.5 Power-Saving Resources

Many useful resources related to Power-Saving are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en532311

10.5.1 KEY RESOURCES

- Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196)
- · Code Samples
- Application Notes
- Software Libraries
- · Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

11.6 Peripheral Pin Select

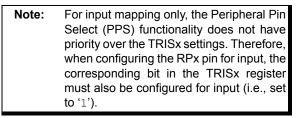
Peripheral pin select configuration enables peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, programmers can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The peripheral pin select configuration feature operates over a fixed subset of digital I/O pins. Programmers can independently map the input and/or output of most digital peripherals to any one of these I/O pins. Peripheral pin select is performed in software, and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping, once it has been established.

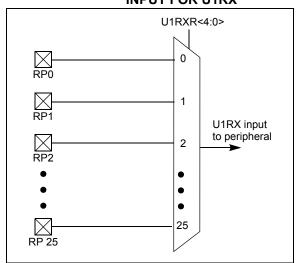
11.6.1 AVAILABLE PINS

The peripheral pin select feature is used with a range of up to 26 pins. The number of available pins depends on the particular device and its pin count. Pins that support the peripheral pin select feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable pin number.

11.6.2 CONTROLLING PERIPHERAL PIN SELECT


Peripheral pin select features are controlled through two sets of special function registers: one to map peripheral inputs, and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral selectable pin is handled in two different ways, depending on whether an input or output is being mapped.


11.6.2.1 Input Mapping

The inputs of the peripheral pin select options are mapped on the basis of the peripheral. A control register associated with a peripheral dictates the pin it is mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 11-1 through Register 11-16). Each register contains sets of 5-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 5-bit value maps the RPn pin with that value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of peripheral pin selections supported by the device.

Figure 11-2 illustrates remappable pin selection for U1RX input.

FIGURE 11-2: REMAPPABLE MUX INPUT FOR U1RX

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—		_			U1CTSR<4:0	>	
bit 15							bit 8
			D 44/4			D 44/4	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
-:+ 7	_	—			U1RXR<4:0>	•	h:+ 0
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable	oit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-13	Unimpleme	nted: Read as ')'				
bit 12-8	-	0>: Assign UAR		end $(\overline{11000})$ to	the correspo	ndina RPn nin	
		ut tied to Vss				ionig i i i più	
		ut tied to RP25					
	•						
	•						
	•						
		ut tied to RP1 ut tied to RP0					
oit 7-5	00000 = Inp)'				
	00000 = Inp Unimpleme	ut tied to RP0		1RX) to the cor	responding RF	n pin	
	00000 = Inp Unimpleme U1RXR<4:0 11111 = Inp	ut tied to RP0 nted: Read as '(1RX) to the cor	responding RF	n pin	
	00000 = Inp Unimpleme U1RXR<4:0 11111 = Inp	ut tied to RP0 nted: Read as '(>: Assign UART ut tied to Vss		1RX) to the cor	responding RF	'n pin	
bit 7-5 bit 4-0	00000 = Inp Unimpleme U1RXR<4:0 11111 = Inp	ut tied to RP0 nted: Read as '(>: Assign UART ut tied to Vss		1RX) to the cor	responding RF	'n pin	

REGISTER 11-8: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

00001 = Input tied to RP1 00000 = Input tied to RP0

14.2 Input Capture Registers

REGISTER 14-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER (x = 1, 2, 7 OR 8)

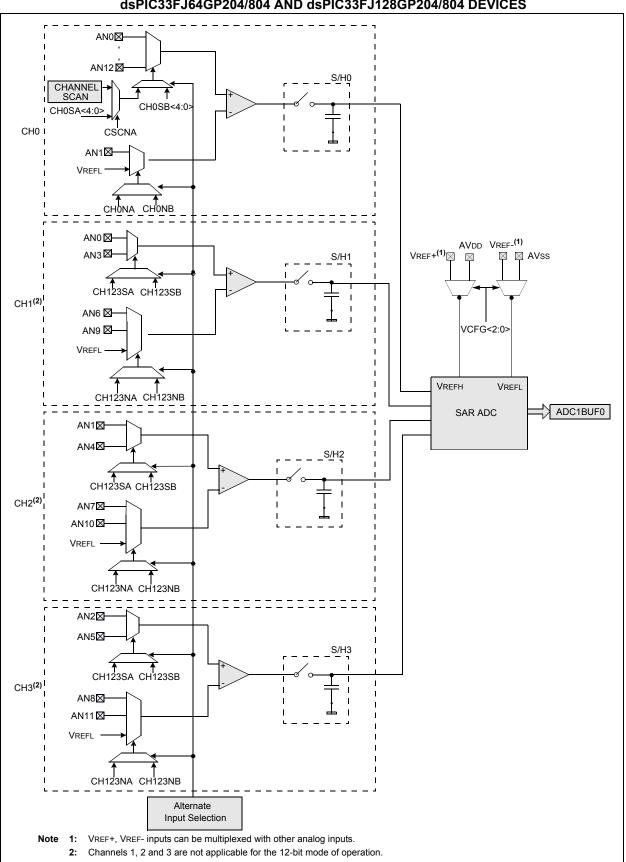
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
—	—	ICSIDL	—	—			—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R-0, HC	R-0, HC	R/W-0	R/W-0	R/W-0
ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	ICSIDL: Input Capture Module Stop in Idle Control bit
	1 = Input capture module halts in CPU Idle mode
	0 = Input capture module continues to operate in CPU Idle mode
bit 12-8	Unimplemented: Read as '0'
bit 7	ICTMR: Input Capture Timer Select bits
	 1 = TMR2 contents are captured on capture event 0 = TMR3 contents are captured on capture event
bit 6-5	ICI<1:0>: Select Number of Captures per Interrupt bits
	11 = Interrupt on every fourth capture event
	 10 = Interrupt on every third capture event 01 = Interrupt on every second capture event
	00 = Interrupt on every capture event
bit 4	ICOV: Input Capture Overflow Status Flag bit (read-only)
	1 = Input capture overflow occurred
	0 = No input capture overflow occurred
bit 3	ICBNE: Input Capture Buffer Empty Status bit (read-only)
	 1 = Input capture buffer is not empty, at least one more capture value can be read 0 = Input capture buffer is empty
bit 2-0	ICM<2:0>: Input Capture Mode Select bits
	 111 = Input capture functions as interrupt pin only when device is in Sleep or Idle mode (Rising edge detect only, all other control bits are not applicable.) 110 = Unused (module disabled) 101 = Capture mode, every 16th rising edge 100 = Capture mode, every 4th rising edge 011 = Capture mode, every rising edge 010 = Capture mode, every falling edge 010 = Capture mode, every falling edge 001 = Capture mode, every edge (rising and falling)
	(ICI<1:0> bits do not control interrupt generation for this mode.) 000 = Input capture module turned off

BUFFER 19-3	B: ECAN	I™ MESSAGE	BUFFER \	NORD 2			
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1
bit 15							bit 8
U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	RB0	DLC3	DLC2	DLC1	DLC0
bit 7							bit 0
Legend:	h:t	M - Mritabla			mented bit, read	d aa '0'	
R = Readable bitW = Writable bit-n = Value at POR'1' = Bit is set			'0' = Bit is cle	x = Bit is unkr	Iown		
bit 15-10	EID<5:0>: E	xtended Identifie	er bits				
bit 9	RTR: Remote Transmission Request bit						
	 1 = Message will request remote transmission 0 = Normal message 						
hit Q	DB1. Docor	PP4: Depended Pit 1					


bit 8	RB1: Reserved Bit 1
	User must set this bit to '0' per CAN protocol.
bit 7-5	Unimplemented: Read as '0'
bit 4	RB0: Reserved Bit 0
	User must set this bit to '0' per CAN protocol.
bit 3-0	DLC<3:0>: Data Length Code bits

BUFFER 19-4: ECAN™ MESSAGE BUFFER WORD 3

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			B	yte 1			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			B	yte 0			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bi	it	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at PO	R	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

Byte 1<15:8>: ECAN™ Message Byte 0 bit 15-8

bit 7-0 Byte 0<7:0>: ECAN Message Byte 1

25.5 Programmable CRC Registers

CRCCON: CRC CONTROL REGISTER REGISTER 25-1: R/W-0 U-0 U-0 R-0 R-0 R-0 R-0 R-0 CSIDL VWORD<4:0> _ bit 15 bit 8 R/W-0 R-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R-1 CRCFUL CRCMPT CRCGO PLEN<3:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0' bit 13 CSIDL: CRC Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12-8 VWORD<4:0>: Pointer Value bits Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<3:0> is greater than 7, or 16 when PLEN<3:0> is less than or equal to 7. bit 7 **CRCFUL:** FIFO Full bit 1 = FIFO is full 0 = FIFO is not full bit 6 **CRCMPT:** FIFO Empty bit 1 = FIFO is empty 0 = FIFO is not empty bit 5 Unimplemented: Read as '0' bit 4 CRCGO: Start CRC bit 1 = Start CRC serial shifter 0 = Turn off CRC serial shifter after FIFO is empty bit 3-0 PLEN<3:0>: Polynomial Length bits Denotes the length of the polynomial to be generated minus 1.

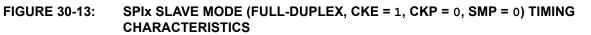
Most instructions are a single word. Certain doubleword instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.

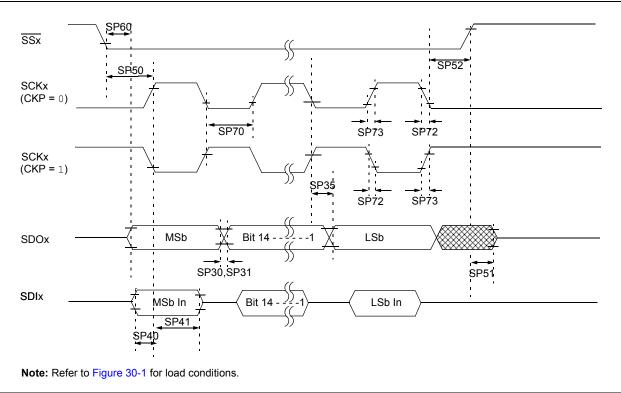
The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note: For more details on the instruction set, refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157).

TABLE 28-1:	SYMBOLS USED IN OPCODE DESCRIPTIONS
-------------	-------------------------------------


#text (text) [text] {} <n:m> .b .d .S</n:m>	Means literal defined by "text" Means "content of text" Means "the location addressed by text" Optional field or operation Register bit field Byte mode selection Double-Word mode selection Shadow register select Word mode selection (default)
[text] {} <n:m> .b .d .S</n:m>	Means "the location addressed by text" Optional field or operation Register bit field Byte mode selection Double-Word mode selection Shadow register select
{} <n:m> .b .d .S</n:m>	Optional field or operation Register bit field Byte mode selection Double-Word mode selection Shadow register select
<n:m> .b .d .S</n:m>	Register bit field Byte mode selection Double-Word mode selection Shadow register select
.b .d .S	Byte mode selection Double-Word mode selection Shadow register select
.d .S	Double-Word mode selection Shadow register select
.S	Shadow register select
	· ·
	Word mode selection (default)
.W	
Acc	One of two accumulators {A, B}
AWB	Accumulator write back destination address register \in {W13, [W13]+ = 2}
bit4	4-bit bit selection field (used in word addressed instructions) ∈ {015}
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal ∈ {0,1}
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal $\in~\{0255\}$ for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal ∈ {016384}
lit16	16-bit unsigned literal ∈ {065535}
lit23	23-bit unsigned literal ∈ {08388608}; LSb must be '0'
None	Field does not require an entry, can be blank
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate
PC	Program Counter
Slit10	10-bit signed literal \in {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal \in {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor working register pair (direct addressing)


TABLE 30-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SY10	TMCL	MCLR Pulse Width (low)	2	_	_	μs	-40°C to +85°C
SY11	Tpwrt	Power-up Timer Period		2 4 16 32 64 128	_	ms	-40°C to +85°C User programmable
SY12	TPOR	Power-on Reset Delay	3	10	30	μs	-40°C to +85°C
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μs	_
SY20	Twdt1	Watchdog Timer Time-out Period	—	_	_	_	See Section 27.4 "Watchdog Timer (WDT)" and LPRC specification F21 (Table 30-19)
SY30	Tost	Oscillator Start-up Timer Period	_	1024 Tosc		—	Tosc = OSC1 period
SY35	TFSCM	Fail-Safe Clock Monitor Delay		500	900	μs	-40°C to +85°C

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

TABLE 30-35:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING
REQUIREMENTS

АС СНА	AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature-40°C ≤TA ≤+85°C for Industrial-40°C ≤TA ≤+125°C for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Max	Units	Conditions	
SP70	TscP	Maximum SCK Input Frequency	_	_	11	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time	—	—		ns	See parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	_	_		ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	_	-	ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	_		ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns	—	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—	_	ns	—	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow $ to SCKx \uparrow or SCKx Input	120	—	—	ns	_	
SP51	TssH2doZ	SSx	10	—	50	ns	-	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	—	_	ns	See Note 4	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

AC CHARACTERISTICS			(unless		se stateo erature	d) -40°C ≤ [′]	: 3.0V to 3.6V TA ≤+85°C for Industrial TA ≤+125°C for Extended
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions
		ADC Accuracy (12-bit Mode) – Meas	uremen	ts with e	xternal	VREF+/VREF-
AD20a	Nr	Resolution ⁽¹⁾	1	2 data bi	ts	bits	
AD21a	INL	Integral Nonlinearity	-2	_	+2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD22a	DNL	Differential Nonlinearity	> -1	—	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD23a	Gerr	Gain Error	—	3.4	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD24a	EOFF	Offset Error	—	0.9	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD25a	—	Monotonicity	_	_		_	Guaranteed
		ADC Accuracy (12-bit Mode	e) – Meas	uremen	ts with i	nternal V	VREF+/VREF-
AD20a	Nr	Resolution ⁽¹⁾	1	2 data bi	ts	bits	
AD21a	INL	Integral Nonlinearity	-2	_	+2	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD22a	DNL	Differential Nonlinearity	> -1		< 1	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD23a	Gerr	Gain Error	2	10.5	20	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD24a	EOFF	Offset Error	2	3.8	10	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD25a	_	Monotonicity	_	—		—	Guaranteed
		Dynamic	Performa	ince (12	-bit Mod	e)	
AD30a	THD	Total Harmonic Distortion	—	—	-75	dB	—
AD31a	SINAD	Signal to Noise and Distortion	68.5	69.5	_	dB	_
AD32a	SFDR	Spurious Free Dynamic Range	80	—	_	dB	_
AD33a	Fnyq	Input Signal Bandwidth	_		250	kHz	—
AD34a	ENOB	Effective Number of Bits	11.09	11.3	_	bits	

TABLE 30-42: ADC MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: Injection currents > |0| can affect the ADC results by approximately 4 to 6 counts (i.e., VIH source > (VDD + 0.3V) or VIL source < (Vss – 0.3V).

Revision C (May 2009)

This revision includes minor typographical and formatting changes throughout the data sheet text.

Global changes include:

- Changed all instances of OSCI to OSC1 and OSCO to OSC2
- Changed all instances of VDDCORE and VDDCORE/ VCAP to VCAP/VDDCORE

The other changes are referenced by their respective section in the following table.

TABLE A-2: MAJOR SECTION UPDATES

Section Name	Update Description
High-Performance, 16-bit Digital Signal Controllers	Updated all pin diagrams to denote the pin voltage tolerance (see "Pin Diagrams").
	Added Note 2 to the 28-Pin QFN-S and 44-Pin QFN pin diagrams, which references pin connections to Vss.
Section 1.0 "Device Overview"	Updated AVDD in the PINOUT I/O Descriptions (see Table 1-1).
	Added Peripheral Pin Select (PPS) capability column to Pinout I/O Descriptions (see Table 1-1).
Section 2.0 "Guidelines for Getting Started with 16-bit Digital Signal Controllers"	Added new section to the data sheet that provides guidelines on getting started with 16-bit Digital Signal Controllers.
Section 3.0 "CPU"	Updated CPU Core Block Diagram with a connection from the DSP Engine to the Y Data Bus (see Figure 3-1).
	Vertically extended the X and Y Data Bus lines in the DSP Engine Block Diagram (see Figure 3-3).
Section 4.0 "Memory Organization"	Updated Reset value for CORCON in the CPU Core Register Map (see Table 4-1).
	Updated the Reset values for IPC14 and IPC15 and removed the FLTA1IE bit (IEC3) from the Interrupt Controller Register Map (see Table 4-4).
	Updated bit locations for RPINR25 in the Peripheral Pin Select Input Register Map (see Table 4-21).
	Updated the Reset value for CLKDIV in the System Control Register Map (see Table 4-33).
Section 5.0 "Flash Program Memory"	Updated Section 5.3 "Programming Operations" with programming time formula.
Section 9.0 "Oscillator Configuration"	Updated the Oscillator System Diagram and added Note 2 (see Figure 9-1).
Comgulation	Added Note 1 and Note 2 to the OSCON register (see Register 9-1).
	Updated default bit values for DOZE<2:0> and FRCDIV<2:0> in the Clock Divisor (CLKDIV) Register (see Register 9-2).
	Added a paragraph regarding FRC accuracy at the end of Section 9.1.1 " System Clock Sources ".
	Added Note 3 to Section 9.2.2 "Oscillator Switching Sequence".
	Added Note 1 to the FRC Oscillator Tuning (OSCTUN) Register (see Register 9-4).