

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DCI, DMA, I ² S, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x10b/12b; D/A 2x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gp802-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

- Note 1: This data sheet summarizes the features dsPIC33FJ32GP302/304, the of dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/ X04 family of 16-bit Digital Signal Controllers (DSCs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins (regardless if ADC module is not used)

(see Section 2.2 "Decoupling Capacitors")
• VCAP

- (see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSC1 and OSC2 pins when external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

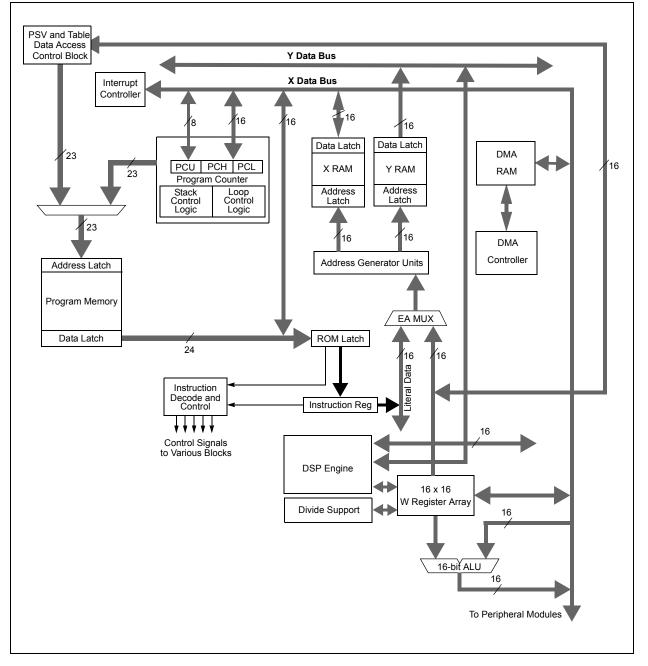
Additionally, the following pins may be required:

- VREF+/VREF- pins used when external voltage reference for ADC module is implemented
 - Note: The AVDD and AVSS pins must be connected independent of the ADC voltage reference source.

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:


- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

3.4 Special MCU Features

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 features a 17-bit by 17-bit single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed-sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0). The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 supports 16/16 and 32/16 divide operations, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A 40-bit barrel shifter is used to perform up to a 16-bit left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions.

FIGURE 3-1: dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/ X04 CPU CORE BLOCK DIAGRAM

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn forms the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

TABLE 4-37: FUNDAMENTAL ADDRESSING MODES SUPPORTED

4.5.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions and the DSP accumulator class of instructions provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note:	For the MOV instructions, the addressing mode specified in the instruction can differ
	for the source and destination EA.
	However, the 4-bit Wb (Register Offset)
	field is shared by both source and
	destination (but typically only used by
	one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-bit Literal
- 16-bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.5.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY. N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the data pointers through register indirect tables.

The two-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The effective addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W8 and W9 and Y data space for W10 and W11.

Note:	Register	Indirect	with	Register	Offset
	Addressir	ng mode i	is ava	ilable only	for W9
	(in X spac	ce) and W	/11 (in	Y space).	

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- Register Indirect
- Register Indirect Post-Modified by 2
- · Register Indirect Post-Modified by 4
- · Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.5.5 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

5.6 Flash Control Registers

R/SO-0(1) R/W-0⁽¹⁾ R/W-0⁽¹⁾ U-0 U-0 U-0 U-0 U-0 WR WREN WRERR bit 15 bit 8 R/W-0⁽¹⁾ R/W-0⁽¹⁾ R/W-0⁽¹⁾ R/W-0⁽¹⁾ R/W-0⁽¹⁾ U-0 U-0 U-0 NVMOP<3:0>(2) ERASE bit 7 bit 0 Leaend: SO = Settable only bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown WR: Write Control bit bit 15 1 = Initiates a Flash memory program or erase operation. The operation is self-timed and the bit is cleared by hardware once operation is complete 0 = Program or erase operation is complete and inactive bit 14 WREN: Write Enable bit 1 = Enable Flash program/erase operations 0 = Inhibit Flash program/erase operations bit 13 WRERR: Write Sequence Error Flag bit 1 = An improper program or erase sequence attempt or termination has occurred (bit is set automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally bit 12-7 Unimplemented: Read as '0' bit 6 ERASE: Erase/Program Enable bit 1 = Perform the erase operation specified by NVMOP<3:0> on the next WR command 0 = Perform the program operation specified by NVMOP<3:0> on the next WR command bit 5-4 Unimplemented: Read as '0' NVMOP<3:0>: NVM Operation Select bits⁽²⁾ bit 3-0 If ERASE = 1: 1111 = Memory bulk erase operation 1110 = Reserved 1101 = Erase General Segment 1100 = Erase Secure Segment 1011 = Reserved 0011 = No operation 0010 = Memory page erase operation 0001 = No operation 0000 = Erase a single Configuration register byte If ERASE = 0: 1111 = No operation 1110 = Reserved 1101 = No operation 1100 = No operation 1011 = Reserved 0011 = Memory word program operation 0010 = No operation 0001 = Memory row program operation 0000 = Program a single Configuration register byte Note 1: These bits can only be reset on POR.

REGISTER 5-1: NVMCON: FLASH MEMORY CONTROL REGISTER

2: All other combinations of NVMOP<3:0> are unimplemented.

REGISTER	7-19: IPC4		PRIORITY	CONTROL R	EGISTER 4		
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		CNIP<2:0>		<u> </u>		CMIP<2:0>	
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		MI2C1IP<2:0>		_		SI2C1IP<2:0>	
bit 7							bit
Legend:							
R = Readabl	le bit	W = Writable I	oit	U = Unimpler	mented bit, re	ad as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own
							•
bit 15	Unimpleme	ented: Read as '0)'				
bit 14-12	CNIP<2:0>	: Change Notifica	tion Interrup	t Priority bits			
		rupt is priority 7 (ł	-	-			
	•						
	•						
	• 001 = Inter	rupt is priority 1					
		rupt source is disa	abled				
bit 11	Unimpleme	ented: Read as 'o)'				
bit 10-8	CMIP<2:0>	: Comparator Inte	errupt Priority	y bits			
	111 = Inter	rupt is priority 7 (ł	nighest priori	ty interrupt)			
	•						
	•						
		rupt is priority 1					
		rupt source is disa					
bit 7	-	ented: Read as '0					
bit 6-4		:0>: I2C1 Master			3		
	111 = Inter	rupt is priority 7 (I	nighest priori	ty interrupt)			
	•						
	•						
		rupt is priority 1					
		rupt source is disa					
bit 3	-	ented: Read as '0					
bit 2-0		:0>: I2C1 Slave E					
	111 = Inter	rupt is priority 7 (ł	nghest priori	ty interrupt)			
	•						
	•						
		rupt is priority 1					
	000 = Inter	rupt source is disa	abled				

- ---.... ------

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

REGISTER	7-30: IPC1	9: INTERRUPT	PRIORITY	CONTROL	REGISTER 19	1	
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
_		DAC1LIP<2:0>(1)		D	AC1RIP<2:0> ^{(*}	1)
bit 15	·				•		bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 7	·	·			·	•	bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 14-12	111 = Interr • •	2:0>: DAC Left C rupt is priority 7 (I					
		upt is priority if	abled				
bit 11	Unimpleme	ented: Read as '	0'				
bit 10-8	111 = Interr • • 001 = Interr	2:0>: DAC Right rupt is priority 7 (I rupt is priority 1 rupt source is dis	highest priori		us bit ⁽¹⁾		
bit 7-0		ented: Read as '					
	-						

REGISTER 7-30: IPC19: INTERRUPT PRIORITY CONTROL REGISTER 19

Note 1: Interrupts are disabled on devices without Audio DAC modules.

NOTES:

11.2 Open-Drain Configuration

In addition to the PORT, LAT and TRIS registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

Refer to **"Pin Diagrams"** for the available pins and their functionality.

11.3 Configuring Analog Port Pins

The AD1PCFGL and TRIS registers control the operation of the Analog-to-Digital (ADC) port pins. The port pins that are to function as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) is converted.

The AD1PCFGL register has a default value of 0x0000; therefore, all pins that share ANx functions are analog (not digital) by default.

When the PORT register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

11.4 I/O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be an NOP, as shown in Example 11-1.

11.5 Input Change Notification

The input change notification function of the I/O ports allows the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/ X04 devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature can detect input change-ofstates even in Sleep mode, when the clocks are disabled. Depending on the device pin count, up to 21 external signals (CNx pin) can be selected (enabled) for generating an interrupt request on a change-ofstate.

Four control registers are associated with the CN module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source connected to the pin, and eliminate the need for external resistors when push-button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on change notification pins should always be disabled when the port pin is configured as a digital output.

MOV0xFF00, W0; Configure PORTB<15:8> as inputsMOVW0, TRISBB; and PORTB<7:0> as outputsNOP; Delay 1 cyclebtssPORTB, #13; Next Instruction

PORT WRITE/READ EXAMPLE

EXAMPLE 11-1:

19.4 ECAN Resources

Many useful resources related to ECAN are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en532311

19.4.1 KEY RESOURCES

- Section 21. "Enhanced Controller Area Network (ECAN™)" (DS70185)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

REGISTER	19-15: CIDU	FPN14: ECA			RPUINIER	REGISTER			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	F15BP<3:0>			F15BP<3:0> F14BP<3:0>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	F13BP<3:0>				F12BI	><3:0>			
bit 7							bit 0		
Legend:		C = Writable	bit, but only '0	' can be writter	to clear the bi	t			
R = Readabl	able bit W = Writable bit			U = Unimplemented bit, read as '0'					
-n = Value at	at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15-12	F15BP<3:0	RX Buffer ma	sk for Filter 15	5					
	1111 = Filte	er hits received in	n RX FIFO buf	ffer					
	1110 = Filte	er hits received in	n RX Buffer 14	ŀ					
	•								
	•								
	•								
	0001	er hits received in ar hits received in							
bit 11-8	F14BP<3:0	>: RX Buffer ma	sk for Filter 14	(same values	as bit 15-12)				
bit 7-4	F13BP<3:0	>: RX Buffer ma	sk for Filter 13	(same values	as bit 15-12)				

REGISTER 19-15: CiBUFPNT4: ECAN™ FILTER 12-15 BUFFER POINTER REGISTER

bit 3-0 **F12BP<3:0>:** RX Buffer mask for Filter 12 (same values as bit 15-12)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—			—	—	_	_	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CVREN	CVROE	CVRR	CVRSS		CVR	<3:0>	
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15-8	Unimplemen	ted: Read as '	0'				
oit 7	CVREN: Com	parator Voltag	e Reference E	Enable bit			
	1 = CVREF cir	rcuit powered	on				
	0 = CVREF cit	rcuit powered	down				
oit 6	CVROE: Corr	parator VREF	Output Enable	e bit			
		oltage level is o					
	0 = CVREF VC	oltage level is o	disconnected f	from CVREF pin	1		
oit 5	CVRR: Comp	arator VREF R	ange Selectio	n bit			
		U U			VRSRC/24 step : CVRSRC/32 st		
bit 4	CVRSS: Com	parator VREF	Source Select	ion bit			
				C = VREF+ - VF			
	0 = Compara	tor reference s	source CVRSR	c = AVDD - AV	SS		
hit 2 0	OVD 42.05 . C				0.0. <15 hite		

REGISTER 23-2: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

bit 3-0 **CVR<3:0>:** Comparator VREF Value Selection $0 \le CVR<3:0> \le 15$ bits $\frac{When CVRR = 1:}{CVREF = (CVR<3:0>/24) \bullet (CVRSRC)}$ When CVRR = 0:

 $\overline{CVREF} = 1/4 \bullet (CVRSRC) + (CVR<3:0>/32) \bullet (CVRSRC)$

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ALRMEN	CHIME		AMA	SK<3:0>		ALRMP	FR<1:0>
bit 15	•						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ARP	T<7:0>			
bit 7							bit (
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is clea	ared	x = Bit is unkn	iown
6:4 <i>7</i>		Alere Freble bit					
bit 15	1 = Alarm CHIM	: Alarm Enable bit n is enabled (clear IE = 0) n is disabled		ally after an ala	rm event when	ever ARPT<7:0)> = 0x00 and
bit 14	CHIME: C	hime Enable bit					
		e is enabled; ARP e is disabled; ARF				00 to 0xFF	
bit 13-10		3:0>: Alarm Mask					
		eserved – do not u	•				
	101x = R	eserved – do not ι	lse				
		nce a year (excep	t when config	ured for Februa	ry 29th, once e	very 4 years)	
		nce a month					
	0111 = O 0110 = O	nce a week					
	0110 – O	•					
		very 10 minutes					
		very minute					
		very 10 seconds					
		very second					
		very half second					
1.1.0.0					L 10.		
bit 9-8			-	Vindow Pointer			
bit 9-8	Points to t	he corresponding	Alarm Value re	gisters when re	ading ALRMVA		
bit 9-8	Points to t the ALRM	he corresponding / PTR<1:0> value d	Alarm Value re	gisters when re	ading ALRMVA		
bit 9-8	Points to t the ALRM <u>ALRMVAL</u>	he corresponding / PTR<1:0> value d <u>.<15:8>:</u>	Alarm Value re	gisters when re	ading ALRMVA		
bit 9-8	Points to t the ALRM <u>ALRMVAL</u>	he corresponding <i>,</i> PTR<1:0> value d <u>-<15:8>:</u> nplemented	Alarm Value re	gisters when re	ading ALRMVA		
bit 9-8	Points to t the ALRM <u>ALRMVAL</u> 11 = Unin 10 = ALR 01 = ALR	he corresponding <i>,</i> PTR<1:0> value d <u>-<15:8>:</u> nplemented MMNTH MWD	Alarm Value re	gisters when re	ading ALRMVA		
bit 9-8	Points to t the ALRM <u>ALRMVAL</u> 11 = Unin 10 = ALR 01 = ALR 00 = ALR	he corresponding <i>,</i> PTR<1:0> value d <u>_<15:8>:</u> nplemented MMNTH MWD MMIN	Alarm Value re	gisters when re	ading ALRMVA		
bit 9-8	Points to t the ALRM <u>ALRMVAL</u> 11 = Unin 10 = ALR 01 = ALR 00 = ALR <u>ALRMVAL</u>	he corresponding <i>J</i> PTR<1:0> value d <u><15:8>:</u> nplemented MMNTH MWD MMIN <u>_<7:0>:</u>	Alarm Value re	gisters when re	ading ALRMVA		
bit 9-8	Points to t the ALRM <u>ALRMVAL</u> 11 = Unin 10 = ALR 01 = ALR 00 = ALR <u>ALRMVAL</u> 11 = Unin	he corresponding <i>,</i> PTR<1:0> value d <u>-<15:8>:</u> nplemented MMNTH MWD MMIN <u>-<7:0>:</u> nplemented	Alarm Value re	gisters when re	ading ALRMVA		
bit 9-8	Points to t the ALRM <u>ALRMVAL</u> 11 = Unin 10 = ALR 01 = ALR 00 = ALR <u>ALRMVAL</u> 11 = Unin 10 = ALR	he corresponding <i>i</i> PTR<1:0> value d <u>-<15:8>:</u> nplemented MMNTH MWD MMIN <u>-<7:0>:</u> nplemented MDAY	Alarm Value re	gisters when re	ading ALRMVA		
bit 9-8	Points to t the ALRM <u>ALRMVAL</u> 11 = Unin 10 = ALR 01 = ALR 00 = ALR <u>ALRMVAL</u> 11 = Unin	he corresponding <i>i</i> PTR<1:0> value d <u>-<15:8>:</u> nplemented MMNTH MWD MMIN <u>-<7:0>:</u> nplemented MDAY MHR	Alarm Value re	gisters when re	ading ALRMVA		
	Points to t the ALRM 11 = Unin 10 = ALR 01 = ALR 00 = ALR 11 = Unin 10 = ALR 01 = ALR 00 = ALR	he corresponding <i>i</i> PTR<1:0> value d <u>-<15:8>:</u> nplemented MMNTH MWD MMIN <u>-<7:0>:</u> nplemented MDAY MHR	Alarm Value re ecrements on	gisters when re every read or w	ading ALRMVA		
	Points to t the ALRM 11 = Unin 10 = ALR 01 = ALR 00 = ALR ALRMVAL 11 = Unin 10 = ALR 01 = ALR 00 = ALR ARPT<7:	he corresponding <i>i</i> PTR<1:0> value d <u>-<15:8>:</u> nplemented MMNTH MWD MMIN <u>-<7:0>:</u> nplemented MDAY MHR MSEC	Alarm Value re ecrements on Counter Value	gisters when re every read or w	ading ALRMVA		
bit 9-8 bit 7-0	Points to t the ALRM 11 = Unin 10 = ALR 01 = ALR 00 = ALR ALRMVAL 11 = Unin 10 = ALR 01 = ALR 00 = ALR ARPT<7:	he corresponding <i>i</i> PTR<1:0> value d <u><15:8>:</u> 1plemented MMNTH MWD MMIN <u><7:0>:</u> 1plemented MDAY MHR MSEC 0>: Alarm Repeat	Alarm Value re ecrements on Counter Value	gisters when re every read or w	ading ALRMVA		
	Points to t the ALRM 11 = Unin 10 = ALR 01 = ALR 00 = ALR ALRMVAL 11 = Unin 10 = ALR 01 = ALR 00 = ALR ARPT<7:	he corresponding <i>i</i> PTR<1:0> value d <u><15:8>:</u> 1plemented MMNTH MWD MMIN <u><7:0>:</u> 1plemented MDAY MHR MSEC 0>: Alarm Repeat	Alarm Value re ecrements on Counter Value	gisters when re every read or w	ading ALRMVA		
	Points to t the ALRM ALRMVAL 11 = Unin 10 = ALR 01 = ALR 00 = ALR 11 = Unin 10 = ALR 00 = ALR 00 = ALR ARPT<7:(1111111)	he corresponding <i>i</i> PTR<1:0> value d <u><15:8>:</u> 1plemented MMNTH MWD MMIN <u><7:0>:</u> 1plemented MDAY MHR MSEC 0>: Alarm Repeat	Alarm Value re ecrements on Counter Value eat 255 more t	gisters when re every read or w	ading ALRMVA		
	Points to t the ALRM ALRMVAL 11 = Unin 10 = ALR 01 = ALR 00 = ALR ALRMVAL 11 = Unin 10 = ALR 00 = ALR ARPT<7:(1111111)	he corresponding <i>i</i> PTR<1:0> value d <u><15:8>:</u> nplemented MMNTH MWD MMIN <u><7:0>:</u> nplemented MDAY MHR MSEC 0>: Alarm Repeat 1 = Alarm will repe	Alarm Value re ecrements on Counter Value eat 255 more to repeat	gisters when re every read or w e bits imes	ading ALRMVA rite of ALRMVA	ALH until it reach	nes '00 ⁷ .

DECISTED 24 2 ALADM CONFIGURATION DECISTED ...

Most instructions are a single word. Certain doubleword instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

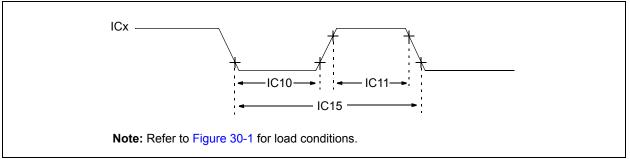
Note: For more details on the instruction set, refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157).

TABLE 28-1:	SYMBOLS USED IN OPCODE DESCRIPTIONS
-------------	-------------------------------------

#text (text) [text] {} <n:m> .b .d .S</n:m>	Means literal defined by "text" Means "content of text" Means "the location addressed by text" Optional field or operation Register bit field Byte mode selection Double-Word mode selection Shadow register select Word mode selection (default)
[text] {} <n:m> .b .d .S</n:m>	Means "the location addressed by text" Optional field or operation Register bit field Byte mode selection Double-Word mode selection Shadow register select
{} <n:m> .b .d .S</n:m>	Optional field or operation Register bit field Byte mode selection Double-Word mode selection Shadow register select
<n:m> .b .d .S</n:m>	Register bit field Byte mode selection Double-Word mode selection Shadow register select
.b .d .S	Byte mode selection Double-Word mode selection Shadow register select
.d .S	Double-Word mode selection Shadow register select
.S	Shadow register select
	· ·
	Word mode selection (default)
.W	
Acc	One of two accumulators {A, B}
AWB	Accumulator write back destination address register \in {W13, [W13]+ = 2}
bit4	4-bit bit selection field (used in word addressed instructions) ∈ {015}
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal ∈ {0,1}
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal $\in~\{0255\}$ for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal ∈ {016384}
lit16	16-bit unsigned literal ∈ {065535}
lit23	23-bit unsigned literal ∈ {08388608}; LSb must be '0'
None	Field does not require an entry, can be blank
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate
PC	Program Counter
Slit10	10-bit signed literal \in {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal \in {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor working register pair (direct addressing)

30.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 electrical characteristics. Additional information is provided in future revisions of this document as it becomes available.


Absolute maximum ratings for the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 family are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽⁴⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(4)}$	-0.3V to +5.6V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V ⁽⁴⁾	-0.3V to 3.6V
Maximum current out of Vss pin	
Maximum current into VDD pin ⁽²⁾	
Maximum current sourced/sunk by any 2x I/O pin ⁽³⁾	8 mA
Maximum current sourced/sunk by any 4x I/O pin ⁽³⁾	15 mA
Maximum current sourced/sunk by any 8x I/O pin ⁽³⁾	
Maximum current sunk by all ports	
Maximum current sourced by all ports ⁽²⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 30-2).
 - 3: Exceptions are CLKOUT, which is able to sink/source 25 mA, and the VREF+, VREF-, SCLx, SDAx, PGECx and PGEDx pins, which are able to sink/source 12 mA.
 - 4: See the "Pin Diagrams" section for 5V tolerant pins.

FIGURE 30-6: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS

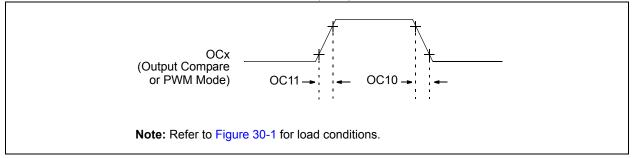


TABLE 30-25: INPUT CAPTURE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operati (unless otherwis Operating temper	e stated) ature -40°C ≤T4	. 0V to 3.6V ∧ ≤+85°C fo ∧ ≤+125°C f	or Industri	
Param No.	Symbol	Characteristic ⁽¹⁾		Min	Мах	Units	Conditions
IC10	TccL	ICx Input Low Time	No Prescaler	0.5 Tcy + 20		ns	—
			With Prescaler	10	_	ns	
IC11	TccH	ICx Input High Time	No Prescaler	0.5 Tcy + 20	_	ns	—
			With Prescaler	10	_	ns	
IC15	TccP	ICx Input Period		(Tcy + 40)/N	_	ns	N = prescale value (1, 4, 16)

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 30-7: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS

TABLE 30-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Мах	Units	Conditions	
OC10	TccF	OCx Output Fall Time	—	—		ns	See parameter D032	
OC11	TccR	OCx Output Rise Time	—	—	_	ns	See parameter D031	

Note 1: These parameters are characterized but not tested in manufacturing.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

TABLE 31-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACT	ERISTICS		(unless oth	perating Co erwise state emperature	d)	0V to 3.6V ≆+150°C for High Temperature		
Parameter No.	Typical	Мах	Units	Conditions				
Power-Down (Current (IPD)							
HDC60e	250	2000	μA	+150°C	3.3V	Base Power-Down Current ^(1,3)		
HDC61c	3	5	μΑ	+150°C 3.3V Watchdog Timer Current: ΔIwDT ^(2,4)				

Note 1: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off, and VREGS (RCON<8>) = 1.

2: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

3: These currents are measured on the device containing the most memory in this family.

4: These parameters are characterized, but are not tested in manufacturing.

TABLE 31-5: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

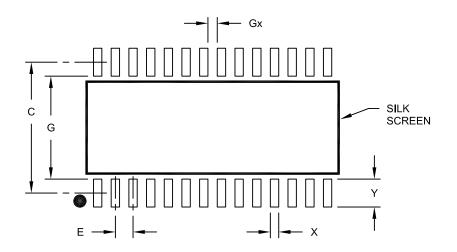
DC CHARA	(unless oth	nerwise s	,		V or High Temperature		
Parameter No.	Typical ⁽¹⁾	Мах	Doze Ratio	Units	Conditions		
HDC72a	39	45	1:2	mA			
HDC72f	18	25	1:64	mA	+150°C	3.3V	20 MIPS
HDC72g	18	25	1:128	mA			

Note 1: Parameters with Doze ratios of 1:2 and 1:64 are characterized, but are not tested in manufacturing.

-	AC TERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature-40°C ≤TA ≤+150°C for High Temperature					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		10	25	ns	_
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	28		_	ns	_
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	35		—	ns	_

TABLE 31-10: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.


TABLE 31-11: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

	AC CTERISTICS	Standard Operating Conditions Operating temperature -40°C ≤	ated)				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		10	25	ns	_
HSP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	35	_	_	ns	_
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	28	_	_	ns	_
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	35	_		ns	_

Note 1: These parameters are characterized but not tested in manufacturing.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	N	ILLIMETER	S	
Dimension	Dimension Limits			MAX
Contact Pitch	E		1.27 BSC	
Contact Pad Spacing	С		9.40	
Contact Pad Width (X28)	Х			0.60
Contact Pad Length (X28)	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

Section Name	Update Description
Section 30.0 "Electrical Characteristics"	Updated Typical values for Thermal Packaging Characteristics (see Table 30-3).
	Updated Min and Max values for parameter DC12 (RAM Data Retention Voltage) and added Note 4 (see Table 30-4).
	Updated Power-Down Current Max values for parameters DC60b and DC60c (see Table 30-7).
	Updated Characteristics for I/O Pin Input Specifications and added parameter DI21 (see Table 30-9).
	Updated Program Memory values for parameters 136, 137, and 138 (renamed to 136a, 137a, and 138a), added parameters 136b, 137b, and 138b, and added Note 2 (see Table 30-12).
	Added parameter OS42 (GM) to the External Clock Timing Requirements (see Table 30-16).
	Updated Watchdog Timer Time-out Period parameter SY20 (see Table 30-21).
	Updated the IREF Current Drain parameter AD08 (see Table 30-37).
	Updated parameters AD30a, AD31a, AD32a, AD33a, and AD34a (see Table 30-38)
	Updated parameters AD30b, AD31b, AD32b, AD33b, and AD34b (see Table 30-39)

TABLE A-2: MAJOR SECTION UPDATES (CONTINUED)

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- · Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support